Con. 9049-12.

(REVISED COURSE)

KR-3447

(2 Hours)

[Total Marks: 60

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from remaining questions No. 2 to 6.
- (3) Assume suitable data wherever required.
- (4) Figures to the right indicate marks.

1. Attempt any five :-

www.campuskeeda.com

15

- (a) Explain the term lattice parameters of Cubic crystal.
- (b) What is the probability of an electron being thermally excited to conduction band in silicon at 20°C. The band gap energy is 1·12eV; Boltzmann constant is 1·38 x 10⁻²³ J/k.
- (c) Mobility of holes is 0.025 m²/V-sec. What would be the resistivity of P-type silicon if the Hall coefficient of the sample is 2.25 x 10⁻⁵ m³/C?
- (d) Define dielectrics, electric dipole and polarizability.
- (e) Differentiate between soft and hard magnetic materials.
- (f) Define 'Reverberation time'. Write sabine's formula and explain the terms in it.
- (g) State the terms: magnetostriction effect; piezo-electric effect.
- 2. (a) Explain the formation of energy bands in solids. With neat energy band diagrams explain extrinsic semiconductors.
 - (b) Draw the unit cell of HCP. What is its co-ordination number, atomic radius, and effective number of atoms per unit cell. Also calculate its packing factor.
- 3. (a) What is hysteresis? Draw a hysteris loop for ferromagnetic material and explain the various important points on it. What is the technical significance of the area enclosed under it. For a transformer which kind of material will you prefer-the one with small hysteresis area or the big one?
 - (b) Derive Bragg's law. Calculate the glancing angle on the plane (100) for a crystal of rock salt (a = 2.125 A°). Consider the case of 2^{nd} order maximum and $\lambda = 0.592 \text{A}^{\circ}$.
- (a) Calculate the number of atoms per unit cell of a metal having lattice parameter 2.9A° 5 and density 7.87 gm/cm³. Atomic weight of metal is 55.85, Avagadro number is 6.023 x 10²³/gm-mole.
 - (b) Prove that the Fermi level lies exactly at the centre of the forbidden energy gap in case of an intrinsic semiconductor.
 - (c) Explain ionic polarization and obtain polarizability (α_i) .

5

frequency 3MHz.

www.campuskeeda.com

change in thickness required if the same plate is used to produce ultrasonic waves of