

The Lighting Handbook 10th Edition

Presented to IES Raleigh Section by:

Bob Henderson, LC, CLEP

Linda Anderson, LEED AP, LC

December 6, 2011

Golden Corral, Cary, NC

History of the IES Handbook

- IES founded in 1906
- First 41 years the IES used "Transactions of the Society" instead of a handbook
- First IES Handbook edition published in 1947; it was felt that this format would be available to a more broad, general audience
- 9th edition (previous) published in 2000; think about how much has changed in 11 years – LEDs, S/P ratios, etc. Wow!
- Handbook has become the principal source for lighting knowledge!
- Each edition thru the years has emphasized the current trends and needs
- Some editions placed more emphasis on quantitative ; in recent years, quality earned important recognition

Do I Need the 10th Edition Handbook?

- It takes into account several issues that impact designs of today:
 - Energy limits and codes (January meeting topic)
 - Spectral Effects (perception and visual performance)
 - Need for flexibility when determining illumination
 - Age
 - Task Reflectance
 - Task Importance
 - Returns to a more "analytical" approach to recommendations
 - Allows the RPs, DGs, and TMs to fully address design details for a given application
 - It holds the current recommendations for lighting practitioners
 - The IES 10th Edition Handbook Is the most important reference document in the lighting profession!

- Three sections make up this Handbook:
 - Framework describes the science and technology of lighting, including vision, optics, non-visual effects of optical radiation, photometry and light sources.
 - **Design** includes fundamentals for the design of electric lighting and daylighting, energy management, controls, and economics
 - Application Framework
 - Establishes the design context for many lighting applications
 - Provides Illuminance recommendations for specific tasks and areas
 - Identifies some of the analytic goals of the lighting design using science and technology

1. Framework Table of Contents

- 1. Physics and Optics of Radiant Power
- 2. Vision: Eye and Brain
- 3. Photobiology and Nonvisual Effects of Optical Radiation
- 4. Perceptions and Performance
- 5. Concepts and Language of Lighting
- 6. Color
- 7. Light Sources: Technical Characteristics
- 8. Luminaires: Forms and Optics
- 9. Measurement of Light: Photometry
- 10. Calculation of Light and Its Effects

2. Design Table of Contents

- 11. Lighting Design: In the Building Design Process
- 12. Components of Lighting Design
- 13. Light Sources: Application Considerations
- 14. Designing Daylighting
- 15. Designing Electric Lighting
- 16. Lighting Controls
- 17. Energy Management
- 18. Economics
- 19. Sustainability
- 20. Contract Documents

3. Applications Table of Contents

- 21. Lighting for Art
- 22. Lighting for Common Applications
- 23. Lighting for Courts and Correctional Facilities
- 24. Lighting for Education
- 25. Lighting for Emergency, Safety, and Security
- 26. Lighting for Exteriors
- 27. Lighting for Health Care
- 28. Lighting for Hospitality and Entertainment
- 29. Lighting for Libraries
- 30. Lighting for Manufacturing

3. Applications Table of Contents (Continued)

- 31. Lighting for Miscellaneous Applications
- 32. Lighting for Offices
- 33. Lighting for Residences
- 34. Lighting for Retail
- 35. Lighting for Sports and Recreation
- 36. Lighting for Transport
- 37. Lighting for Worship

IES Raleigh Section is an IES Sustaining Member We Have the IES Library and 10th Edition Handbook

• 10th Edition Handbook is part of the IES Library which includes the handbook, RPs, LMs, TMs, DGs, Guidelines and more.

- Available for members to use AT NO COST with a reservation
- Call Bob Henderson and he will provide a conference room for you to look up information in the Library.
- Check the section website for contact information: *www.iesraleigh.org* and look for the link entitled IES Library.

<u>Click here</u> to open illuminance recommendation sample tables.

Chapter 7 Light Sources: Technical Characteristics

Table 7.1|Reflectance of

Figure 7.30|Fluorescent Lamp Bases

Ground Material

Material	Reflectance (percent)
Brick	10
+Light buff	48
Dark red glazed	30
Concrete	40
Asphalt (free from dirt)	7
Grass (dark green)	6
Gravel	13
Slate (dark clay)	8
Snow	-
•New	74
•Old	64
Vegetation (mean)	25

Typical for Fit	chear magneus pain	or observation					
© 	C 23	G 23-2	GK 23-2	G 24 d	2		
Typical for Ele	ectronic or Dimming	Ballst Operation					
1 1 1 1 1 1 1 1 1 1						Medium Scraw Ba	***
	\bigcirc						
Ŧ							
GX 24 d-2	GX 24 d-3	GX 24 q-1	GX 24 q-2	GX 24 q-3	GX 24 q-4	GX 24 q-5	
Typical for Lir	near Fluorescent Ope	eration					
	F		Ð	部	<u> </u>	U]
Ainiature Bi-pin for T5	Miniature Bi-pin for T8	Recessed Double Contact for T8 HO	Axial T2 Subminiature	4-pin for TS Circular shape	T Rapid	8 & T12 Start U-shape	

Chapter 8 Luminaires: Forms and Optics

Figure 8.1|CIE Luminaire Classification System

Figure 8.4 Outdoor Luminaire Intensity Distribution Classification System

Туре	Description	Plan View
Type I	Narrow, symmetric illuminance pattern	\longleftrightarrow
Type II	Slightly wider, more asymmetric illuminance pattern than Type I	
Type III	Wide, asymmetric illuminance pattern	
Type IV	Asymmetric, forward throw illuminance pattern	
Type V	Symmetrical circular illuminance pattern	
Type VS	Symmetrical, nearly square illuminance pattern	

Chapter 10: Calculation of Light and Its Effects

Table 10.1|Tabulation of Fundamental Equations

Quantity	Condition	Formula
	Point Source	$E_{p} = \frac{I(\theta, \psi) \cos(\xi)}{D^{2}}$
	Point Source, using an Intensity Array	$\begin{split} E_p = \frac{I'(\theta, \psi) \cos(\xi)}{D^2} & \begin{array}{c} I'(\theta, \psi) \text{ interpolated from:} \\ I'(\theta_i, \psi_j), I'(\theta_{i+1}, \psi_j), I'(\theta_i, \psi_{j+1}), I'(\theta_{i+1}, \psi_{j+1}) \\ \theta_i \leq \theta \leq \theta_{i+1} \text{ and } \psi_j \leq \psi \leq \psi_{j+1} \end{split}$
	Point Source	$\Phi = \int\limits_{A_r} \frac{I(\theta, \psi) \cos(\xi)}{D^2} dA_r$
	Point Source, using an Approximate Area Integral	$\begin{split} \Phi &= \sum_{i=1}^N \frac{I'(\theta_i,\psi_i) \cos(\hat{\xi}_i)}{D^2} \Delta A_i & \begin{array}{l} N = \text{number of pieces of area} \\ \Delta A_r = \text{area of } i^{th} \text{ piece} \\ I'(\theta_i,\psi_i) &= \text{ interpolated intensity for } i^{th} \text{ piece} \end{split}$
	Area Source, Arbitrary Luminance	$E_{\rm p} = \int L(\theta,\psi;u,v) \cos(\xi) d\omega_s$
	Area Source, Homogeneous Luminance	$E_{\rm p} = \int L(\theta,\psi) \cos(\xi) d\omega_s$
	Area Source, Homogeneous Luminance, using an Approximated Area Integral	$E_{\rm p} = \sum_{i=1}^{N} \frac{L'(\theta_i, \psi_i) \cos(\theta_i) \cos(\hat{\xi}_i)}{D_i^2} \underline{\Delta} A_i \qquad \begin{array}{l} N = \text{number of pieces of area} \\ \Delta A_r = \text{area of } i^{th} \text{piece} \\ L'(\theta_i, \psi_i) = \text{interpolated for } i^{th} \text{piece} \end{array}$
	Area Source, using Far-Field Luminous Intensity and an Approximated Area Integral	$E_p = \frac{1}{A}\sum_{i=1}^N \frac{I'(\theta_i,\psi_i)\cos(\xi_i)}{D_i^2} \Delta A_i \qquad \begin{array}{l} N = \text{number of pieces of luminaire} \\ \Delta A_i = \text{area of } i^{th} \text{ piece of luminaire} \\ I'(\theta_i,\psi_i) = \text{ interpolated for } i^{th} \text{ piece} \end{array}$
	Area Source, Homogeneous Diffuse Exitance	$E_p = M \frac{1}{\pi} \int_{A_s} \frac{\cos(\theta) \cos(\xi)}{D^2} dA_s \qquad \begin{array}{l} M = \text{diffuse exitance of area source} \\ A_s = \text{entire area of the source} \end{array}$
	Area Source, Arbitrary Luminance	$\Phi = \int\limits_{A_r} \int\limits_{\Omega_s} L(\theta, \psi; u, v) cos(\xi) d\omega_s dA_r \qquad \Omega_s = \text{entire solid angle of the source} \\ A_r = \text{entire area of the receiver}$
	Area Source, Homogeneous Luminance, using an Approximated Area Integral	$\Phi = \sum_{j=1}^{K} \sum_{i=1}^{N} \frac{L'(\theta_{ij}, \psi_{ij}) cos(\theta_{ij}) cos(\hat{s}_{ij}) \Delta A_i \Delta A_j}{D_{ij}^2} \begin{array}{c} N = \text{number of source pieces} \\ K = \text{number of receiver pieces} \\ \Delta A_i = i^{th} \text{ piece of source} \end{array}$
Flux on an Area	Area Source, using Far-Field Luminous Intensity and an Approximated Area Integral	$\Phi = \sum_{j=1}^{K} \frac{1}{A_s} \sum_{i=1}^{N} \frac{I'(\theta_{ij}, \psi_{ij}) cos(\xi_{ij}) \Delta A_i}{D_{ij}^2} \Delta A_j \qquad \begin{array}{l} \Delta A_j = j^{th} \text{ piece of receiver} \\ L'(\theta_{ij}, \psi_{ij}), I'(\theta_{ij}, \psi_{ij}) \text{ are} \\ \text{interpolated for each } (i,j) \\ A_s = \text{ entire are of the source} \end{array}$

Chapter 12: Components of Lighting Design

Table 12.9|Typical Prescribed Lighting Design Factors (Codes & Standards)

Sponsor	Relevant Directive(s)	Exemplary Document(s) and/or Citations ^a		
ASHRAE	Energy Standard	ANSI/ASHRAE/IESNA Standard 90.1		
American Society of Heating Refrigerating and Air Conditioning Engineers	Sustainability Standard	ANSI/ASHRAE/IESNA Standard 189.1		
ASME American Society of Mechanical Engineers	Elevator/Escalator Codes	• ASME A17.1/CSA B44		
CaGBC Canada Green Building Council	Sustainability Initiative	Leadership in Energy and Environmental Design (LEED)		
CCNNIE Comité Consultivo Nacional de Normalización de Instalaciones Eléctricas	Electrical Code	NOM-001-SETE-2005 Mexican Electrical Code (MEC)		
CONAE Comisión Nacional para el Ahorro de Energía	• Energy Code	NOM-007-ENER-2004 Mexican Energy Efficiency Standard		
CSA	Electrical Code	Canadian Electrical Code (CEC)		
Canadian Standards Association	Product Standards	Safety requirements for luminaires, lamps, control gear		
ICC	Building Code	International Building Code (IBC)		
International Code Council	Energy Code	International Energy Conservation Code (IECC)		
	Sustainability Code	International Green Construction Code (IGCC)		
NFPA	Electrical Code	National Fire Protection Association (NFPA) 70		
National Fire Protection Association	Health Care Facilities	• NFPA 99		
	Life Safety Code	• NFPA 101		
NRC	Building Code	National Building Code of Canada		
National Research Council Canada	Energy Code	Model National Energy Code of Canada for Buildings (MNECE		
UL Underwriters Laboratories	Product Standards	Safety requirements for luminaires, lamps, control gear		
USDOJ U.S. Department of Justice	Accessible Design Standards	Americans with Disabilities Act (ADA)		
USGBC 0.5. Green Building Council	Sustainability Initiative	Leadership in Energy and Environmental Design (LEED)		
Various	Municipal Ordinances	Light pollution and/or light trespass requirements Exterior illuminances		
	State/Provincial/Territorial Codes	Energy standards		
	codes	Hazardous disposal regulations		
		I ife safety codes		
		- Suctainability standards		
		Sustainability standards		

Chapter 13 Light Sources: Application Considerations

 Table 13.1b|Lamp Performance and Operating Characteristics| Fluorescent and HID

 Table 13.3|Dimming Performance Ratings (Filament, HID, Fluorescent, LED)

 Table 13.6|Industry Standards and Guides for SSL (LED) e.g. LM-79, LM-80, etc.

Chapter 14 Designing Daylighting

Table 14.1|Daylight Conditions By Orientation

Facade Orientation	Daylight Characteristics			
North	 Most stable and easiest to control Provides high quality diffuse daylight At higher latitudes, some sunlight penetration is possible early and late on a summer day, otherwise the facade is free of direct sunlight Lowest available incident daylight, but reduced need for shading could result in more daylight delivered to the building interior over the year 			
South	 High angle summer sunlight is relatively easy to control with an overhang Deep penetration of low angle winter sunlight can be controlled with adjustable blinds or operable shades to avoid discomfort glare High latitudes have lower sun angles High solar loads occur during the coldest time of year 			
East	 Low-angle morning sunlight requires operable blinds or shades in work areas Afternoon conditions are similar to North since facade is in shade Vertical shading devices can block morning solar angles in winter at higher latitudes 			
West	 Low-angle afternoon sunlight requires operable blinds or shades in work areas Late afternoon solar gain corresponds with peak exterior temperatures, creating high space cooling loads Morning conditions are similar to North since facade is in shade Vertical shading devices can block afternoon solar angles in winter at higher latitudes 			

Table 14.3 Examples of Glass Properties

Glass Type	Color	VT (%)	SHGC (%)	LSG	U-Factor (Winter)
Standard Low-E	• Clear	79	70	1.13	2.74
	Grey Tint	40	45	0.89	2.74
	Bronze Tint	48	50	0.96	2.74
	• Blue-Green Tint	60	39	1.54	2.74
Reflective Low-E	Reflective Grey	15	27	0.56	2.74
	Reflective Bronze	19	30	0.63	2.74
Spectrally Selective Low-E	Low Iron Clear	64	27	2.37	1.60
	• Green	49	28	1.75	1.60
Skylight, Low-E, Double w/Argon Fill	• Clear	53	32	1.66	2.85
	• White	38	30	1.27	2.74
Skylight, Triple	• White	45	58	0.78	1.71

Chapter 16 Lighting Controls

- Table 16.1|Lighting Control Options and Their Application
- Figures 16.2, 16.3 & 16.4|Wiring Configurations for Single Pole, 3-Way & 4-Way Switches
- Table 16.2|Occupancy Sensor Technologies And Guidelines For Their Use
- Table 16.29|UL 924 Listed Devices For Emergency Lighting Conditions Where Control Override Is Required

Thank You!

Questions?

