

T.Y. B.Sc. (Semester – III) Examination, 2009 MATHEMATICS (Paper – VII) (MT-337) A) Operations Research – I B) Graph Theory C) Computational Mathematics – I

D) Combinatorics

(2004 Pattern)

Time : 2 Hours

Max. Marks : 40

Note : 1) Candidates are advised to see the relevant question paper and solve the same.

- 2) Use of logarithmic tables and calculators is allowed.
- 3) All questions are compulsory.
- 4) Graph paper will be supplied on demand.
- 5) Figures to the **right** indicate **full** marks.

A) Operations Research – I

- 1. Attempt the following :
 - i) Define a standard form of LPP.
 - ii) What is the difference between slack and surplus variables.
 - iii) When do we use artificial variable in simplex method ?
 - iv) What is an unbalanced transportation problem ?
 - v) What is the condition that the transportation problem has an alternate optimum solution ?
 - vi) What is an assignment problem ?
 - vii) Write two applications of duality in LPP.
 - viii) True/False. Every transportation problem is an assignment problem.
 - ix) Find a feasible region of the following LPP.

Maximize $Z = x_1 + 2x_2$ Subject to, $x_1 = 2, x_2 = 3$

x) What do you mean by degeneracy in a transportation problem ?

[3617] - 307

10

[3617] - 307

-2-

- 2. Attempt **any two** of the following :
 - i) Wild West produces two types of cowboy hats. Type 1 hat requires twice as much labour time as does each of type 2. If all produced hats are of type 2 only, the company can produce a total of 400 hats a day. The market daily limits are 150 and 200 hats for type 1 and 2 respectively. The profit per type 1 hat is Rs. 8 and that of type 2 hat is Rs. 5. Formulate the problem as a linear programming so as to maximize the profit.
 - ii) Solve the following linear programming problem by simplex method.

$$Maximize Z = 3x_1 + 2x_2 + 5x_3$$

Subject to,

$$\begin{aligned} x_1 + 2x_2 + x_3 &\leq 430 \\ 3x_1 + 2x_3 &\leq 460 \\ x_1 + 4x_2 &\leq 420 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

iii) Determine all the basic solutions to the following system of linear equation.

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + x_2 + 5x_3 = 5$$

- 3. Attempt **any two** of the following :
 - i) Solve the following assignment problem.

		Operator					
		Ι	Π	Ш	IV	V	
	A	10	5	13	15	16	
<u>Machines</u>	B	3	9	18	3	6	
	С	10	7	2	2	2	
	D	5	11	9	7	12	
	E	7	9	10	4	12	

10

	1	2	3	4	Supply
1	3	4	6	3	30
2	3	5	7	10	50
3	2	6	5	7	70
Demand	22	44	41	43	

ii) Find the initial basic feasible solution by VAM.

iii) Find optimal solution of the following transportation problem.

		D ₁	D ₂	D ₃	\mathbf{D}_{4}	Supply
	0,	1	2	1	4	30
Origin	O ₂	3	3	2	1	50
	0,	4	2	5	9	20
	Demand	20	40	30	10	

- 4. Attempt **any one** of the following :
 - i) Use Big-M method to solve the following linear programming problem.

Maximize $Z = -2x_1 - x_2$

Subject to,

$$\begin{aligned} &3x_1 + x_2 = 3 \\ &4x_1 + 3x_2 \ge 6 \\ &x_1 + 2x_2 \le 4 \\ &x_1 \ge 0, x_2 \ge 0. \end{aligned}$$

10

ii) A company has three plants and four warehouses. The supply and demand in units and corresponding transportation cost are given with a solution.

Dlam4a	Warehouses										
Plants	Ι		II		III		IV		Suppry		
		5		10		4		5	10		
Α					10	-		-	10		
-		6		8		7		2			
В	20						5		25		
С		4		2		5		7	•		
	5		10		5				20		
Demand	25		1	0	15		5		55		

Answer the following questions giving reason.

- a) Is this solution feasible ?
- b) Is this solution degenerate ?
- c) In this solution optimal ?
- d) Does this problem have more than one optimal solution ? If so find an alternate solution.