T.Y. B.Sc. (Semester - III) Examination, 2009
 MATHEMATICS (Paper - VII) (MT-337)

A) Operations Research - I
B) Graph Theory
C) Computational Mathematics - I
D) Combinatorics
(2004 Pattern)
Time : 2 Hours
Max. Marks: 40

Note : 1) Candidates are advised to see the relevant question paper and solve the same.

2) Use of logarithmic tables and calculators is allowed.
3) All questions are compulsory.
4) Graph paper will be supplied on demand.
5) Figures to the right indicate full marks.

A) Operations Research - I

1. Attempt the following :
i) Define a standard form of LPP.
ii) What is the difference between slack and surplus variables.
iii) When do we use artificial variable in simplex method ?
iv) What is an unbalanced transportation problem ?
v) What is the condition that the transportation problem has an alternate optimum solution?
vi) What is an assignment problem ?
vii) Write two applications of duality in LPP.
viii) True/False. Every transportation problem is an assignment problem.
ix) Find a feasible region of the following LPP.

$$
\begin{aligned}
& \text { Maximize } \mathrm{Z}=\mathrm{x}_{1}+2 \mathrm{x}_{2} \\
& \quad \text { Subject to, } \\
& \mathrm{x}_{1}=2, \mathrm{x}_{2}=3
\end{aligned}
$$

x) What do you mean by degeneracy in a transportation problem ?
P.T.O.
2. Attempt any two of the following :
i) Wild West produces two types of cowboy hats. Type 1 hat requires twice as much labour time as does each of type 2 . If all produced hats are of type 2 only, the company can produce a total of 400 hats a day. The market daily limits are 150 and 200 hats for type 1 and 2 respectively. The profit per type 1 hat is Rs. 8 and that of type 2 hat is Rs. 5. Formulate the problem as a linear programming so as to maximize the profit.
ii) Solve the following linear programming problem by simplex method.

Maximize $Z=3 x_{1}+2 x_{2}+5 x_{3}$
Subject to,

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3} \leq 430 \\
& 3 x_{1}+2 x_{3} \leq 460 \\
& x_{1}+4 x_{2} \leq 420 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

iii) Determine all the basic solutions to the following system of linear equation.

$$
\begin{array}{r}
\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=4 \\
2 \mathrm{x}_{1}+\mathrm{x}_{2}+5 \mathrm{x}_{3}=5
\end{array}
$$

3. Attempt any two of the following :
i) Solve the following assignment problem.

Operator

		I	II	III	IV	V
	Machines	10	5	13	15	16
	B	3	9	18	3	6
C	10	7	2	2	2	
	D	5	11	9	7	12
	E	7	9	10	4	12

ii) Find the initial basic feasible solution by VAM.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Supply
$\mathbf{1}$	3	4	6	3	30
$\mathbf{2}$	3	5	7	10	50
$\mathbf{3}$	2	6	5	7	70
Demand	22	44	41	43	

iii) Find optimal solution of the following transportation problem.

Destination

Origin | | $\mathbf{D}_{\mathbf{1}}$ | $\mathbf{D}_{\mathbf{2}}$ | $\mathbf{D}_{\mathbf{3}}$ | $\mathbf{D}_{\mathbf{4}}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{O}_{\mathbf{1}}$ | 1 | 2 | 1 | 4 | 30 |
| $\mathbf{O}_{\mathbf{2}}$ | 3 | 3 | 2 | 1 | 50 |
| $\mathbf{O}_{\mathbf{3}}$ | 4 | 2 | 5 | 9 | 20 |
| Demand | 20 | 40 | 30 | 10 | |

4. Attempt any one of the following :
i) Use Big-M method to solve the following linear programming problem.

Maximize $Z=-2 x_{1}-x_{2}$
Subject to,

$$
\begin{aligned}
& 3 x_{1}+x_{2}=3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

ii) A company has three plants and four warehouses. The supply and demand in units and corresponding transportation cost are given with a solution.

Answer the following questions giving reason.
a) Is this solution feasible ?
b) Is this solution degenerate ?
c) In this solution optimal?
d) Does this problem have more than one optimal solution? If so find an alternate solution.

