Reg. No.:		-								
10cg. 110								1		

Question Paper Code: 51010

B.E./B.Tech. DEGREE EXAMINATIONS, JANUARY 2012.

First Semester

(Common to all branches)

(Regulations 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. The product of two eigenvalues of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigenvalue of A.
- 2. Can $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ be diagonalized? Why?
- 3. Find the equation of the sphere concentric with $x^2 + y^2 + z^2 4x + 6y 8z + 4 = 0$ and passing through the point (1, 2, 3).
- 4. Find the equation of the right circular cone with vertex at the origin, whose axis is $\frac{x}{1} = \frac{y}{-1} = \frac{z}{2}$ and with a semi-vertical angle 30°.
- 5. Find the radius of curvature for $y = e^x$ at the point where it cuts the y-axis.

- 6. Find the envelope of the family of lines $\frac{x}{t} + yt = 2c$, where t is the parameter.
- 7. If $u = x^y$, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.
- 8. If $x = u^2 v^2$ and y = 2uv, find the Jacobian of x and y with respect to u and v.
- 9. Express $\int_{0}^{\infty} \int_{0}^{\infty} f(x,y)dxdy$ in polar co-ordinates.
- 10. Evaluate $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x+y} dx \, dy \, dz$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the eigenvalues and eigenvectors of $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. (8)
 - (ii) Find A^n using Cayley Hamilton theorem, taking $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.

 Hence find A^3 .

Or

- (b) Reduce the quadratic form $2x^2 + 5y^2 + 3z^2 + 4xy$ to canonical form by orthogonal reduction and state its nature. (16)
- 12. (a) (i) Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + z = 3 as the greatest circle. (8)
 - (ii) Find the equation of the cone formed by rotating the line 2x + 3y = 6, z = 0 about the y-axis. (8)

Or

- (b) (i) Obtain the equation of the tangent planes to the sphere $x^2 + y^2 + z^2 + 2x 4y + 6z 7 = 0$ which intersect in the line 6x 3y 23 = 0 = 3z + 2. (8)
 - (ii) Find the equation of the right circular cylinder of radius 2 and whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$. (8)
- 13. (a) (i) If $y = \frac{ax}{a+x}$, prove that $\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$, where ρ is the radius of curvature.
 - (ii) Find the circle of curvature of $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$. (8)

Or

- (b) (i) Find the evolute of the parabola $y^2 = 4ax$. (8)
 - (ii) Find the envelope of $\frac{x}{l} + \frac{y}{m} = 1$, where the parameters l and m are connected by the relation $\frac{l}{a} + \frac{m}{b} = 1$ (a and b are constants). (8)
- 14. (a) (i) If z = f(x,y), where $x = u^2 v^2$, y = 2uv, prove that $\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4\left(u^2 + v^2\right)\left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}\right).$ (8)
 - (ii) Find the Taylor's series expansion of $x^2y^2 + 2x^2y + 3xy^2$ in powers of (x+2) and (y-1) upto 3^{rd} degree terms. (8)

Or

- (b) (i) If x + y + z = u, y + z = uv, z = uvw, prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2v$. (8)
 - (ii) Find the extreme values of the function $f(x,y) = x^3 + y^3 3x 12y + 20.$ (8)

- 15. (a) (i) Change the order of integration in $\int_{0}^{a} \int_{0}^{b\left(\sqrt{a^2-x^2}\right)} x^2 dy dx$ and then evaluate it. (8)
 - (ii) Transform the double integral $\int_{0}^{a} \int_{\sqrt{ax-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{dxdy}{\sqrt{a^{2}-x^{2}-y^{2}}}$ into polar co-ordinates and then evaluate it. (8)

(b) (i) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$$
. (8)

(ii) Find the smaller of the areas bounded by the ellipse $4x^2 + 9y^2 = 36$ and the straight line 2x + 3y = 6. (8)