Reg. No. : \qquad
Name : \qquad

Combined First and Second Semester B. Tech. Degree Examination, May 2009 ENGINEERING MATHEMATICS - I (2003 Scheme)

Time: 3 Hours
Max. Marks: 100
Instructions: 1) Part A is Compulsory.
2) From Part B answer six questions choosing two from each Module.

PART - A
(Answer all questions. Each question carries $\mathbf{4}$ marks.)

1. If $\mathrm{x}=\mathrm{a}(\mathrm{t}-\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1+\cos \mathrm{t})$ find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$.
2. Evaluate $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$.
3. Find the maxima and minima of $x^{3} y^{2}(12-x-y)$ if $x>0, y>0$.
4. Test the convergence of $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$.
5. Find the Laplace transform of $\frac{1-\cos 2 t}{t}$.
6. Show that perpendicular tangents of a parabola intersect on the diretrix.
7. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$.
8. Show that the vectors $X_{1}=(1,-1,0), X_{2}=(0,1,-1), X_{3}=(0,2,1)$ and $X_{4}=(1,0,3)$ are linearly dependent and find the relation between them.
9. Find the rank of the matrix $\left[\begin{array}{ccc}3 & 1 & 7 \\ 1 & 2 & 4 \\ 4 & -1 & 7 \\ 2 & 1 & 5\end{array}\right]$.
10. Show that the matrix $\left[\begin{array}{rrc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$ is diagonalizable.
PART - B
(Answer two questions form each Module. Each question carries $\mathbf{1 0}$ marks.)

MODULE - I

11. a) If $\cos ^{-1}\left(\frac{y}{b}\right)=n \log \left(\frac{x}{n}\right)$ prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+2 n^{2} y_{n}=0$.
b) If $\log u=\frac{x^{3}+y^{3}}{3 x+4 y}$ show that $x-\frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u \log u$.
12. Show that the equation of the evolute of the Parabola $x^{2}=4 a y$ is $4(y-2 a)^{3}=27 a x^{2}$.
13. a) Show that the series $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{P}}}$ is convergent for $\mathrm{P}>1$ and divergent for $\mathrm{P} \leqq 1$.
b) Show that every absolutely convergent series is convergent.

MODULE - II

14. Using Laplace transform solve the differential equation
$\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t, y(0)=y^{\prime}(0)=0$.
15. a) Using convolution theorem evaluate $L^{-1}\left(\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right)$.
b) Show that the normal to the rectanguar hyperbola $x y=c^{2}$ at the point $P\left(c t, \frac{c}{t}\right)$ meets the curve again at the point $\mathrm{Q}\left(\frac{-\mathrm{c}}{\mathrm{t}^{3}},-\mathrm{ct}^{3}\right)$
16. Find the centre, eccentricity, foci and directrices of the hyperbola.
$9 x^{2}-16 y^{2}+72 x-32 y-16=0$.
MODULE - III
17. Show that the system of equations
$3 x+3 y+2 z=1$
$x+2 y=4$
$10 y+3 z=-2$
$2 x-3 y-z=5$ are consistent and solve them.
18. Find the eigen values and eigen vectos of the matrix
$\left[\begin{array}{rrr}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$
19. Reduce $8 x^{2}+7 y^{2}+3 z^{2}-12 x y+4 x z-8 y z$ into Canonical form. Specify the matrix also.
