HSC Maharashtra Board question paper: March 2013

Note:

- i. All question are compulsory
- Answer to the two sections are to be written in the same answer book. ii.
- Figure to the right hand side indicate full marks. iii.
- Write balanced chemical equations and draw neat and labelled diagrams wherever necessary. iv.
- Encery new question must be started on a new page. v.
- Use of logarithmic table is allowed vi.

CHEMISTRY: SECTION – I

Q. 1. Select and write the most appropriate answer from the given alternatives for each sub-question:	[7]

i.	In body centred cubic structure the space occupied is about				
	(A)	68 %	(B)	53 %	
	(C)	38 %	(D)	32 %	
ii.	For a gaseous reaction the unit of rate of reaction is				

- - (A) L atm s^{-1} (B) atm $\text{mol}^{-1} \text{ s}^{-1}$ (C) atm s^{-1} (D) mol s
- iii. Which of the following compounds contains S = O as well as S = S bonds?
 - Sulphuric acid (B) Thiosulphuric acid Sulphurous acid Thiosulphurous acid (D)
- Which of the following solutions shows maximum depression in freezing point? iv.
 - (A) $0.5 \text{ M Li}_2\text{SO}_4$ 1 M NaCl (C) $0.5 \text{ M Al}_2(SO_4)_3$ (D) 0.5 M BaCl₂
- For a chemical reaction $\Delta S = -0.035$ kJ/K and $\Delta H = -20$ kJ. v.
 - (A) 5.14 K (B) 57.14 K (C) 571.4 K (D) 5714.0 K
- vi. The standard e.m.f of the following cell is 0.463 V

$$Cu \mid Cu_{(1M)}^{++} \mid\mid Ag_{(1M)}^{+} \mid Ag. \text{ If } E_{Ag}^{O} = 0.800 \text{ V},$$

What is the standard potential of Cu electrode?

- (A) 1.137 V 0.337 V (C) 0.463 V (D) -0.463 V
- vii. Fe₂O₃ is reduced to spongy iron near the top of blast furance by
 - (A) H₂ (B) CaO (C) SiO_2 (D) CO

Q. 2. (A) Answer any SIX of the following:

[12]

- i. Distinguish between crystalline solid and amorphous solid.
- ii. State Kohlrausch Law and write mathematical expression of molar conductivity of the given solution at infinite dilution.
- iii. Write cell reactions in lead storage battery during discharge.
- iv. Draw structures and write geometry of PCl₃ and PCl₃.
- v. Prove that $\Delta H = \Delta U + \Delta n$ RT. What is the condition under which $\Delta U = \Delta H$?
- vi. Mention names and formulae of two ores of aluminium.
- Derive the relationship between relative lowering of vapour pressure and molar mass of nonvolatile solute.
- viii. What is pseudo first order reaction? Give one example of it.

Q. 3. Answer any THREE of the following:

[9]

- i. Calculate the mole fraction and molality of HNO_3 in a solution containing 12.2 % HNO_3 . (Given atomic masses : H = 1, N = 14, O = 16)
- ii. Consider the reaction –

$$3\bar{I}_{(aq)} + S_2O_8^{2-} \rightarrow I_{3(aq)}^- + 2SO_{4(aq)}^{2-}$$

At particular time t,
$$\frac{d[SO_4^{2-}]}{dt} = 2.2 \times 10^{-2} \text{ m/s}.$$

What are the values of the following at the same time?

a.
$$-\frac{d[I^-]}{dt}$$

b.
$$-\frac{d\left[S_2O_8^{2-}\right]}{dt}$$

c.
$$-\frac{d\left[I_3^-\right]}{dt}$$

- iii. 300 M mol of perfect gas occupies 13 L at 320 K. Calculate the work done in joules when the gas expands
 - a. isothermally against a constant external pressure of 0.20 atm.
 - b. isothermal and reversible process.
 - c. into vaccum until the volume of gas is increased by 3L. $(R = 8.314 \text{ J mol}^{-1} \text{ k}^{-1})$
- iv. What is the action of the following reagents on ammonia?
 - a. Excess of air
 - b. Excess of chlorine
 - c. Na metal

Q. 4. Answer any ONE of the following:

[7]

- i. a. Explain with reason sign conventions of ΔS in the following reactions:
 - 1. $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$
 - 2. $CO_{2(g)} \longrightarrow CO_{2(s)}$
 - b. Explain the following terms:
 - 1. Smelting
 - 2. Flux
 - c. Gold occurs as face centred cube and has a density of 19.30 kg dm^{-3} . Calculate atomic radius of gold. (Molar mass of Au = 197)
- ii. a. Explain the trends in the following properties with reference to group 16:
 - 1. Atomic radii and ionic radii
 - 2. Density
 - 3. ionisation enthalpy
 - 4. Electronegativity
 - b. In the electolysis of AgNO₃ solution 0.7g of Ag is deposited after a certain period of time.
 Calculate the quantity of electricity required in coulomb.
 (Molar mass of Ag is 107.9 g mol⁻¹).
 - c. Define Osmosis.