DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO				
	COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2010			
a .				
Seria	al No. MATHEMATICS			
	Code No. 13			
(T '	Allowed : Two Hours Maximum Marks : 300			
Iime	Allowed : 1 Wo Hours			
	INSTRUCTIONS			
1.	IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK			
	THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES			
	OR ITEMS, ETC, IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.			
2.	ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D AS THE CASE MAY BE IN THE			
	APPROPRIATE PLACE IN THE RESPONSE SHEET.			
3.	You, have to enter your Roll Number on this Your Roll No.			
	Test Booklet in the Box provided alongside.			
	DO NOT write anything else on the Test Booklet.			
4.	This Booklet contains 100 items (questions). Each item comprises <i>four</i> responses (answers). You will select			
	one response which you want to mark on the Response Sheet. In case you feel that there is more than one			
	correct response, mark the response which you consider the best. In any case, choose ONLY ONE response			
	for each item.			
5.	In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written			
	representation explaining the details of such alleged discrepancy, be submitted within three days, indicating			
	the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not			
	received within time shall not be entertained at all.			
6.	You have to mark all your responses ONLY on the separate Response Sheet provided. See directions in the			
	Response Sheet.			
7.	All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of			
	correct responses marked by you in the Response Sheet.			
8.	Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you			
	have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card			
	and Instructions.			
9.	While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use			
	"ONLY BALL POINT PEN".			
10.	After you have completed filling in all your responses on the Response Sheet and the examination has			
	concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away			
	with you the Test Booklet.			
DO NOT OPEN THIS TEST DOOL ET UNTIL VOU ADE ASVED TO DO SO				
	DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO			

ROUGH WORK

1. Rank of the matrix
$$\begin{bmatrix} 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \\ 10 & 11 & 12 & 13 \\ 15 & 16 & 17 & 18 \end{bmatrix}$$

(A) 4 (B) 3
(C) 2 (D) 1
2. Test whether the matrix equation is consistant ? If so, solution is

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & -5 & 5 \\ 3 & 9 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 2 \\ 4 \end{bmatrix}$$

(A) Inconsistant (B) Consistant $x = -1, y = 1, z = 2$
(C) No solution, exist (D) Consistant $x = 1, y = 1, z = 0$
3. Inverse of the matrix $\begin{bmatrix} 7 & 3 \\ 2 & 6 \end{bmatrix}$
(A) $\begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix}$
(B) $\frac{1}{36} \begin{bmatrix} -6 & -3 \\ 2 & +7 \end{bmatrix}$
(C) $\frac{1}{36} \begin{bmatrix} 6 & -3 \\ -2 & -7 \end{bmatrix}$
(D) $\frac{1}{36} \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix}$
(E) $\frac{1}{36} \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix}$
(D) $\frac{1}{36} \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix}$
(E) $\frac{1}{36} \begin{bmatrix} 976 & 960 \\ 320 & 336 \end{bmatrix}$
(E) $\begin{bmatrix} 976 & 320 \\ 320 & 960 \end{bmatrix}$
(D) $\begin{bmatrix} 976 & 336 \\ 320 & 960 \end{bmatrix}$

5. Value of the determinant
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 8 & 0 & 2 \end{bmatrix}$$
(A) zero
(B) 8
(C) -8
(D) 16
(C) -8
(D) 16
(A) zero
(B) $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
(C) n aⁿ⁻¹
(D) xⁿ⁻¹ × a
(C) n aⁿ⁻¹
(C) x - $\frac{x^2}{2} + \frac{x^3}{3} - \dots$
(B) 1 + x + x^2 + \dots
(C) x - $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(C) x - $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(C) x - $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(C) x - $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(C) x - $\frac{x^3}{3} + \dots$
(D) x + $\frac{x^3}{3} + \dots$
(E) D) (2) x + \frac{x^3}{3} + \dots
(E) D) (2) x +

(A)
$$x = 0, a$$

(B) $x = a; -a$
(C) $x = 0, -a$
(D) $a = 0; x = 0$

(C) $\frac{4}{3}\pi a^3$ (D) $2\pi a^3$

BKU-14149-A

19. Surface area generated by revolving
$$y = \sin x$$
, between 0 and π about x axis is :
(A) 4π (B) π
(C) 2π (D) $3\pi/2$
20. Area of the region bounded by the curve $y = 3x^2 - x$, and the x axis between $x = -1$ and $x = 1$ is :
(A) $27/55$ (B) $55/27$
(C) $5/27$ (D) $55/7$
21. Value of $\int_{-\pi/2}^{\pi/2} x \sin x \, dx$ is :
(A) 0 (B) 1
(C) 2 (D) 3
22. If $x^2 + y^4 = c$, then $(dy/dx) - (partial diffn w.r.t. $x)/p.d.$, w.r.t. $'y'$ gives :
(A) yx^{x-1}/xy^{x-1} (B) $-(yx^{y-1} + y^x \log x)/(xy^{x-1} + x)\log x)$
(C) $-(yx^{y-1} + y^k \log x)$ (D) $xy^{y-1} + y^y \log x/(xy^{x-1} + x)\log x)$
(C) $-(yx^{y-1} + y^k \log x)$ (D) $xy^{y-1} + y^y \log x^2$
23. If $x^2 - y^2 + u^2 + 2v^2 = 1$ and $x^2 + y^2 - u^2 - v^2 = 2$ then $\frac{\partial u}{\partial x} = \dots n \cdot p^2$ and $\frac{\partial v}{\partial x} = \dots n \cdot p^2$
(A) $3xu; -2xv$ (B) $\frac{3x}{u}; \frac{-2x}{v}$
(C) $\frac{3u}{x}; \frac{-2v}{y}$ (D) $xn; -xv$
24. If $u = \sin^{-1}(\frac{x+y}{x})$ then $x(\frac{\partial u}{\partial x}) + y(\frac{\partial u}{\partial y}) = \dots n \cdot p^2$
(A) $-\sin u$ (B) $-\tan u$
(B) $\tan u$
(C) $\cot u$ (D) $-\tan u$
25. Test the series for convergence $\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots \infty^2$
(A) convergent (B) divergent
(C) absolute convergent (D) oscillatory
26. Test the convergence of $\sum_{1}^{\pi} \frac{(n+1)}{\sqrt{n}(n+2)}$.
(A) convergent (B) divergent
(C) oscillatory (D) absolute convergent
(B) divergent
(C) oscillatory (D) absolute convergent$

www.examrace.com

27.	Singular solution of $y = x \left(\frac{dy}{dx}\right) + \frac{1}{(dy/dx)}$	is :	
	(A) $y^2 = x$ (C) $4y^2 = x$		$y^2 = 4x$ $y = 4x^2$
28.	Rewrite the equation $p = sin(y - px)$ in CLA (A) $y = px + sin^{-1} p$ (C) $y + px + sin^{-1} p = 0$	(B)	JT'S equation: $y = cx + sin^{-1} c$ $x = py + sin^{-1} p$
29.	Solve $yp^2 + (x - y)p - x = 0$, here $p = \frac{dy}{dx}$. (A) $(y + x - c)(x^2 + y^2 - c) = 0$ (C) $y + x = x^2 + y^2$		$(y - x - c) (x^{2} + y^{2} - c) = 0$ $(y + x) = \phi(x^{2} + y^{2})$
30.	Solution of $\left(\frac{dy}{dx}\right)^2 - 8\left(\frac{dy}{dx}\right) + 15 = 0$ is: (A) $(y - 3x + c)(y - 5x + c) = 0$		(y+3x+c)(y+5x+c) = 0
31.	(C) $(y + 3x) (y + 5x) = 0$ Particular solution of $(D^2 + 1)^2 y = x^4$, is : (A) $x^4 + 12x^2$ (C) $x^4 - 24x^2 + 72$	(B)	(y-3x) (y-5x) = 0 $x^4 + 24x^2$ 24x
32.	In which the region of the curve $y^2(a + x) =$ (A) $x > 0$ (B) $0 < x < 3a$ (C) $x \le -a$ and $x > 3a$ (D) $-a < x < 3a$	x ² (3	a – x) does not lie ?
33.	Particular integral of $D^2y = x \sin x$: (A) (Ax + B) (C) (x + 1) cos x - sin x	(B) (D)	$(1-x)\sin x$ $(1-x)\sin x - \cos x$
34.	The curve $9y^2 = x^2 (4 - x^2)$ is symmetrical at (A) y-axis (B) x-axis (C) $y = x$	oout	

(D) both the axis

f

35.	Equation of parabola whose focus is $(2, -3)$ (A) $(y+3)^2 = (x-2)$ (C) $4(x^2-4x) + 36y + 43 = 0$	(B)	its directrix $2y - 3 = 0$: $(x - 2)^2 = (y + 3)$ 4x(x - 4) = 9(y - 3)
36.	The axis of the parabola $y^2 - 2y + 8x - 23 =$ (A) $y = -1$ (C) $x = 3$	(B)	$ \begin{array}{l} x = -3 \\ y = 1 \end{array} $
37.	$16x^2 - 3y^2 - 32x - 12y - 44 = 0$ represents (A) an ellipse (C) a parabola	(B) (D)	a circle a hyperbola
38.	The line $4x + 2y = c$, is a tangent to the para (A) -1 (C) 4	abola (B) (D)	-2
39.	The point of intersection of the tangent at t (A) $(6t^2, 8t)$ (C) $(t^2, 4t)$	(B)	nd $t_2 = 3t$ to the parabola $y^2 = 8x$, is : (8t, 6t ²) (4t, t ²)
40.	The length of the latus rectum of the parabolation (A) 8 (C) 4	ola y ² (B) (D)	6
41.	The directrix of the parabola $y^2 = x + 4$, is: (A) $x = \frac{15}{4}$ (C) $x = \frac{-17}{4}$	(B)	$x = \frac{-15}{4}$ $x = \frac{17}{4}$
	4		4

- 42. The length of the latus rectum of the parabola whose vertex is (2, -3) and the directrix x = 4 is :
 - (A) 2 (C) 6 (B) 4 (D) 8
 - (C) 0 (D) 8
- 43. The focus of the parabola $x^2 = 16y$, is :

(A)
$$(4, 0)$$
(B) $(0, 4)$ (C) $(-4, 0)$ (D) $(0, -4)$

44. The vertex of the parabola $x^2 = 8y - 1$, is :

(A)
$$\begin{pmatrix} -\frac{1}{8}, 0 \end{pmatrix}$$

(B) $\begin{pmatrix} \frac{1}{8}, 0 \end{pmatrix}$
(C) $\begin{pmatrix} 0, \frac{1}{8} \end{pmatrix}$
(D) $\begin{pmatrix} 0, -\frac{1}{8} \end{pmatrix}$

- 45. The line 2x + 3y + 9 = 0 touches the parabola $y^2 = 8x$ at the point :
 - (A) (0, -3) (B) (2, 4)(C) $\left(-6, \frac{9}{2}\right)$ (D) $\left(\frac{9}{2}, -6\right)$

46. The tangents at the end of any focal chord to the parabola $y^2 = 12x$, intersect on the line :

- (A) x 3 = 0 (B) (x + 3) = 0
- (C) y + 3 = 0 (D) y = 3
- 47. The angle between the two tangents drawn from the point (-4, 4) to $y^2 = 16x$ is :
 - (A) 45° (B) 30°
 - (C) 60° (D) 90°
- 48. The equation of a sphere with centre at (2, 3, 5) which touches the x_oy plane, is
 - (A) $(x+2)^2 + (y+3)^2 + (z+5)^2 = 5^2$
 - (B) $(x-2)^2 + (y-3)^2 + (z-5)^2 = 5^2$
 - (C) $x^2 + y^2 + z^2 + 4x + 6y + 10z + 63 = 0$
 - (D) $x^2 + y^2 + z^2 = 5^2$

49. The length of the semi-major and the length of minor axis of the ellipse $\frac{x^2}{144} + \frac{y^2}{169} = 1$

13; 24

D) 13:12

- are :
- (A) 26; 12
- (C) 12;26
- 50. The distance between the foci of the ellipse $9x^2 + 5y^2 = 180$, is :
 - (A) 4 (C) 8 (B) 6 (D) 2
- 51. The length of major and semi-minor axes of an ellipse are 8, 2 and their corresponding equation are y = 6 and x = -4, then the equation of ellipse is :

(A)
$$\frac{(x+4)^2}{4} + \frac{(y-6)^2}{16} = 1$$

(B) $\frac{(x+4)^2}{16} + \frac{(y-6)^2}{4} = 1$
(C) $\frac{(x+4)^2}{16} - \frac{(y-6)^2}{4} = 1$
(D) $\frac{(x+4)^2}{4} - \frac{(y-6)^2}{16} = 1$

- 52. The straight line 2x y + c = 0 is a tangent to the ellipse $4x^2 + 8y^2 = 32$, if c is :
 - (A) $\pm 2\sqrt{3}$ (B) ± 6 (C) 36 (D) ± 4

BKU-14149-A

9

53.	(A) 4	(B)	
	(C) 6	(D)	18
54.	Two tangents from (5, 2) to the ellipse $2x^2$. (A) $x - y = 3$; $x + 9y = 13$ (C) $x + 9y = 0$; $x - y = 10$	(B)	= 14 are : x = y; x + 9y + 3 = 0 x - y = 3; x - 9y + 13 = 0
55.	Equation of chord of contact of tangents from (A) $x + 5y = 5$ (C) $x - 5y = 5$	(B)	point (2, 4) to the ellipse $2x^2 + 5y^2 = 20$ is : -x + 5y - 5 = 0 x = 5y
56.	Equation of the tangent and normal to the p (A) $3x - 2y - 1 = 0$ 2x + 3y + 8 = 0 (C) $3x + 2y + 1 = 0$ 2x + 3y + 8 = 0	(B)	bla $x^{2} + x - 2y + 2 = 0$ at $(1, 2)$: 3x - 2y + 1 = 0 2x + 3y - 8 = 0 3x = 2y 2x + 3y = 0
57.	The point (2, 3, 4) is one end of the diameter other end is : (A) (0, -1, -8) (B) (1, 0, -8) (C) (8, 0, -1) (D) (0, 8, -1)	er of a	a sphere $x^2 + y^2 + z^2 - 2x - 2y + 4z - 1 = 0$; the
58.		tion o (B)	ce fallen in time t seconds is given by $x = \frac{1}{2} \text{ gt}^2$ f the supplies after it has fallan for 2 seconds : 19.6; 16.9 -18; 9
59.	Angle between the asymptotes of the hype	rbola	$3x^2 - y^2 - 12x - 6y - 9 = 0$ is :
	(A) $\frac{\pi}{3}$ (C) $\frac{4\pi}{3}$	(B) (D)	$\frac{2\pi}{\frac{2\pi}{3}}$
60.	Eccentricity of ellipse is less than :		
	(A) zero	(B)	one
	(C) 1.5	(D)	2
61.	If $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, represents ellipse b^2 must b		
	(A) $a^2(1+e^2)$		a^{2}/e^{2}
	(C) $a^2(e^2 - 1)$	(D)	$a^2(1-e^2)$
DIZT	T 1 41 40 A	10	

62.	Which of the following is not a binary operation on R?

- (A) a * b = ab(B) a * b = a - b(C) $a * b = \sqrt{ab}$ (D) $a * b = \sqrt{a^2 + b^2}$
- 63. A monoid becomes a group if it also satisfies the :
 - (A) Closure axiom (B) Associative axiom
 - (C) Identity axiom (D) Inverse axiom
- 64. Which of the following is not a group?
 - (A) $(Z_n, +_n)$ (B) (Z, +)
 - (C) (Z, .)(D) (R, +)

65. In the set of integers with operation * defined by a * b = (a + b - ab), the value of 3 * (4 * 5) is :

(B) 15

(D) 5

(B) 6

(B) 3

D)

- (A) 25
- (C) 10

66. The order of [7] in $[Z_9, +_9]$ is :

- (A) 9
- (C) 3 (D) 1
- 67. In the multiplicative group of cube root of unity, the order of w^2 is :
 - (A) 4
 - (C) 2
- 68. The value of $[3]_{+11} ([5]_{+11} ([6])$ is :
 - (A) [0] (B) [1] (C) [2] (D) [3]
- 69. In the set of real numbers R, an operation * is defined by $a * b = \sqrt{a^2 + b^2}$. Then the value of (3 * 4) * 5 is :
 - (A) 5 (C) 25 (B) $5\sqrt{2}$ (D) 50
- 70. Which of the following is correct?
 - (A) An element of a group can have more than one inverse
 - (B) If every element of a group is its own inverse then the group is abelian
 - (C) The set of all 2×2 real matrices forms a group under matrix multiplication
 - (D) $(a * b)^{-1} = a^{-1} * b^{-1}$ for all $a, b \in G$

BKU-14149-A

11

71. The order of –i, in the multiplicative group of unity is :

(A)	FOUR	(B)	THREE
(C)	TWO	(D)	ONE

- 72. In the multiplicative group of n^{th} roots of unity, the inverse of w^k is; (k < n):
 - (A) $w^{1/k}$ (B) w^{-1}
 - (C) w^{n-k} (D) $w^{n/k}$

73. In the set of integers under the operation * defined by a * b = a + b - 1, the identity element is :

- (A) zero (B) one
- (C) a (D) b

74. If S be a non-empty set and o be a binary operation on S defined by x o y = x; x, $y \in S$ then o is :

- (A) Non-commutative but associative (B) Commutative
- (C) Non-commutative (D) Commutative and associative
- 75. The Rolle's constant for the function $y = x^2$ on [-2, 2] is
 - (A) $\frac{2\sqrt{3}}{3}$ (B) Zero (C) Two (D) -2
- 76. The 'C' of the Lagranges Mean value theorem for the function $f(x) = x^2 + 2x 1$; a = 0; b = 1 is :
 - (A) –1
 - (C) 0 (D)

77. The value of 'C' in Rolle's theorem for the function $f(x) = \cos\left(\frac{x}{2}\right) \operatorname{on}[\pi, 3\pi]$ is :

(A) 0 (B) 2π (C) $\pi/2$ (D) $3\pi/2$

78. The value of C of Lagranges Mean value theorem for $f(x) = \sqrt{x}$ when a = 1, and b = 4 is :

(A) $\frac{9}{4}$	(B) $\frac{3}{2}$
(C) $\frac{1}{2}$	(D) $\frac{1}{4}$
-	

79.	$\operatorname{Lt}_{x \to \infty} \left(\frac{x^2}{e^x} \right) = \dots ?$		
	(A) 2	(B)	b) 0
	(C) ∞	. ,)) 1
80.	The area bounded by the line $y = x$, then x-a	axis, t	, the ordinates $x = 1$, $x = 2$ is :
	(A) 3/2	(B)	3) 5/2
	(C) 1/2	(D)	D) 7/2
81.		the v	value of $\lim_{x \to a} \left[\frac{g(x) \cdot f(a) - g(a) \cdot f(x)}{x - a} \right]$ is equal
	to: (A) 5	(D)	9) -5
	(A) 5 (C) 3		() -3
82.	Which of the following function is increasing		
	(A) e^x	(B)	$\frac{1}{x}$
	(C) $-x^2$	(D)	x^{-2}
83.	The function $f(x) = x^2 - 5x + 4$, is increasing (A) $(-\infty, 1)$ (C) $(4, \infty)$	(B)	(1, 4) (1, 4) everywhere
84.	The function $f(x) = x^2$, is decreasing in : (A) $(-\infty, \infty)$ (C) $(0, \infty)$		() $(-\infty, 0)$ (-2, ∞)
85.	The function $y = \tan x - x$, is:	Y.	
	(A) an increasing function in $\left(0, \frac{\pi}{2}\right)$		
	(B) a decreasing function in $\left(0, \frac{\pi}{2}\right)$		
	(C) increasing in $\left(0, \frac{\pi}{4}\right)$ and decreasing in		
	(D) decreasing in $\left(0, \frac{\pi}{4}\right)$ and increasing in	$\left(\frac{\pi}{4},\right)$	$\left(\frac{\pi}{2}\right)$

0.6			
86.	In a given semi-circle of diameter 4 cm a rec rectangle is :	tangl	e is to be inscribed. The maximum area of the
	(A) 2	(B)	4
	(C) 8	(D)	
		(D)	
87.	The least possible perimeter of a rectangle of	f 100	m^2 is :
	(A) 10	(B)	
	(C) 40	(D)	60
88.	If $f(x) = x^2 - 4x + 5$, on [0, 3] then the absolu	te ma	ximum value is :
	(A) 2	(B)	
	(C) 4	(D)	
0.0			
89.	The curve $y = -e^{-x}$ is :	(D)	
	(A) concave upward for x > 0(C) everywhere concave upward	. ,	concave downward for $x > 0$ everywhere concave downward
	(C) everywhere concave upward	(D)	everywhere concave downward
90.	Which of the following curves is concave do	wn?	
	$(A) y = -x^2$	(B)	
	(C) $y = e^x$	(D)	$y = x^2 + 2x - 3$
91.	The point of inflexion of the curve $y = x^4$, is a	at ·	
11	(A) $x = 0$		x = 3
	(C) $x = 12$	- AL 2	nowhere
92.	The curve $y = ax^3 + bx^2 + cx + d$, has a point (A) $a + b = 0$		The second se
	(A) $a + b = 0$ (C) $2a + b = 0$		a + 3b = 0
	(C) $3a + b = 0$	(D)	3a + b = 1
02	le vi du l'ele		
93.	If $u = x^y$, then $\frac{\partial u}{\partial x}$, is equal to:		
	(A) yx^{y-1}	(B)	u log x
	(C) u log y	(D)	xy ^{x-1}
04	If $y = \sin^{-1}(x^4 + y^4)$ and $f = \sin y$ then fi	h .	magness function of degrees
94.	If $u = \sin^{-1}\left(\frac{x + y}{x^2 + y^2}\right)$ and $f = \sin u$, then f i	s a no	mogeneous function of degree :
	(A) 0	(B)	1
	(C) 2	(D)	
		` '	

95. If
$$\mathbf{u} = \frac{1}{\sqrt{x^2 + y^2}}$$
 then, $\mathbf{x} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \mathbf{u}}{\partial \mathbf{y}}$, is equal to :
(A) $\frac{\mathbf{u}}{2}$ (B) \mathbf{u}
(C) $\frac{3\mathbf{u}}{2}$ (D) $-\mathbf{u}$
96. The curve $y^2(\mathbf{x}-2) = \mathbf{x}^2(1+\mathbf{x})$, has :
(A) an asymptote parallel to x-axis (B) an asymptote parallel to y-axis
(C) an asymptotes parallel to both axes (D) no asymptotes
97. If $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$, then $\frac{\partial \mathbf{r}}{\partial \mathbf{x}}$ is equal to :
(A) $\sec \theta$ (B) $\sin \theta$
(C) $\cos \theta$ (D) $\csc \theta$
98. If $\mathbf{u} = \log\left(\frac{\mathbf{x}^2 + \mathbf{y}^2}{\mathbf{xy}}\right)$ then $\mathbf{x} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \mathbf{u}}{\partial \mathbf{y}}$, is :
(A) 0 (B) \mathbf{u}
(C) $2\mathbf{u}$ (D) $\left(\frac{1}{\mathbf{u}}\right)$

- 99. Air is being pumped into spherical balloon so that its volume increases at a rate of 100 cm³/sec. How fast is the radius of the balloon is increasing when diameter is 500 m?
 - (A) $25\pi \, \text{cm/s}$
 - (B) 25 cm/s
 - (C) 5π cm/sec

(D)
$$\left(\frac{1}{25\pi}\right)$$
 cm/s

100. An asymptote to the curve $y^2(a + 2x) = x^2(3a - x)$ is :

(A)
$$x = 3a$$

(B) $x = -a/2$
(D) $x = 0$

ROUGH WORK

BKU-14149-A

160