- Let *a* be a positive number such that the arithmetic mean of *a* and 2 exceeds their geometric mean by 1. Then the value of *a* is (A) 3
 - (B) 5
 - (C) 9
 - (D) 8
 - (E) 10
- 2. The coefficient of the middle term in the expansion of (x + 2y)⁶
 (A) ⁶C₃
 (B) 8(⁶C₃)
 - (C) 8(⁶C₄)
 - (D) (E) 8(⁶C₅)
- 3. Let (1+x)ⁿ = 1 + a₁x + a₂x² + ... + a_nxⁿ. If a₁, a₂ and a₃ are in A.P., then the value of *n* is
 (A) 4
 (B) 5
 (C) 6
 (D) 7
 - (E) 8

4. The number of positive integers less than 40,000 that can be formed by using all the digits 1, 2, 3, 4 and 5 is equal to (A) 24
(B) 78
(C) 32

- (D) 216
- (E) 72

- 5. If the sum of the coefficients in the expansion of $(a^2x^2 6ax + 11)^{10}$, where *a* is a constant, is 1024, then the value of *a* is (A) 5 (B) 1 (C) 2 (D) 3
 - (E) 4

6. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3}$ = 30800 : 1, then the value of *r* is (A) 40 (B) 51 (C) 101 (D) 410 (E) 41

- From 12 books, the difference between number of ways a selection of 5 books when one specified book is always excluded and one specified book is always included is (A) 64
 - (B) 118
 - (C) 132
 - (D) 330
 - (E) 462

8. If $A = \begin{bmatrix} x & -2 \\ 3 & 7 \end{bmatrix}$ and $A^{-1} = -7$, then $\begin{bmatrix} \frac{7}{34} & \frac{1}{17} \\ \frac{-3}{34} & \frac{2}{17} \end{bmatrix}$ the value of x is (A) 2 (B) 3 (C) -4 (D) 4 (E) -2

9. If $\begin{vmatrix} x^{2} + x & 3x - 1 & -x + 3 \\ 2x + 1 & 2 + x^{2} & x^{3} - 3 \\ x - 3 & x^{2} + 4 & 3x \end{vmatrix} = a_{0} + a_{1}x - a_{2}x^{2} + \dots + a_{7}x^{7}$, then the value of a_{0} is (A) 25 (B) 24 (C) 23 (D) 22 (E) 21

10. The	value	of	determina	16!	16! 17! 17! 18! 18! 19!	equal	to
(A) 15	!			+			16!
(B) 2		(15!)		(16!)		(17!)
(C) 15	!	+		16!	+		17!
(D) 16	ļ			+			17!
(E) 2 (15! + 16!)						
11	If A is a $(A) A$	non-singular	matrix of	order	3, then <i>adj</i> (<i>adjA</i>) is	equal t0

(A)
$$A$$

(B) A^{-1}
(C) $\frac{1}{|A|}A$
(C) $|A|A$
(D) $\frac{1}{|A|}A^{-1}$
(E)

$\begin{vmatrix} x - y - z \\ - y + z \\ z \end{vmatrix} = \begin{vmatrix} 0 \\ 5 \\ 3 \end{vmatrix}$	then	the	values	of <i>x</i> , <i>y</i> and <i>z</i> are	respectively
, ,	chen	circ	raidee		
(A) 5,			2,		2
(B) 1,			-2,		3
(C) 0,			-3,		3
(D) 11,			8,		3
(E) 4, 1, 3					

13. Which one of the following is true always for any two non-singular matrices *A* and *B* of same order? (A) AB = BA(B) $(AB)^{t} = A^{t}B^{t}$ (C) (A + B) $(A - B) = A^{2} - B^{2}$ (D) $(AB)^{-1} = B^{-1}A^{-1}$ (E) AB = -BA

						$\frac{x=11}{x} > 0$
14. The	solution	set	of	the	inequation	x-3 is
(A) (-∞,		-11)		U	(3,	∞)
(B) (-∞,		-10)		U	(2,	∞)
(C) (-10	0,	-11)		U	(1,	∞)
(D) (0,		5)	U		(-1,	0)
(E) (-5,	0)∪(3,7)					

15. If 3	≤	3t –	18	≤	18,	then	which	one	of	the	following	is	true?
(A) 15	5		≤			2 <i>t</i> +	-		1		≤		20
(B) 8							≤ <i>t</i> <						12
(C) 8				≤ t	+		1				≤		13

(D) 21	≤	3 <i>t</i> ≤	24
(E) $t \le 7$ or $t \ge 12$			

16. Let p : 7 is greater than and not 4 in q:Paris is France be two statements. Then $\sim (p \lor q)$ is statement the (A) 7 greater than 4 Paris is not France is or in (B) 7 not greater is than 4 and Paris is not in France (C) 7 is greater than 4 Paris is in France or (D) 7 is not greater than 4 Paris is not France or in (E) 7 is greater than 4 and Paris is not in France

17. If $S(p, q, r) = (\sim p) \vee [\sim (q \vee r)]$ is a compound statement, then $S(\sim p, \sim q, \sim r)$ is (A) $\sim S(p, q, r)$ (B) S(p, q, r)(C) $p \vee (q \wedge r)$ (D) $p \vee$ (E) $S(p, q, \sim r)$ (Q) $(q \vee r)$ (Q

18. For any two statements p and q, ~ $(p \lor q) \lor (\sim p \land q)$ is logically equivalent to

- (A) p
- (B) ~*p*
- (C) q
- (D) ~q
- (E) $p \lor q$

19. If
$$\tan \alpha = \frac{b}{a}$$
, $a > b > 0$ and if $0 < \alpha < \frac{\pi}{4}$, then $\sqrt{\frac{a+b}{a-b}} - \sqrt{\frac{a-b}{a+b}}$ is equal to
(A) $\frac{2\sin \alpha}{\sqrt{\cos 2\alpha}}$
(B) $\frac{2\cos \alpha}{\sqrt{\cos 2\alpha}}$
(C) $\frac{2\sin \alpha}{\sqrt{\sin 2\alpha}}$
(D) $\frac{2\cos \alpha}{\sqrt{\sin 2\alpha}}$
(E) $\frac{2\tan \alpha}{\sqrt{\cos 2\alpha}}$

20. If $\tan^{-1}(x + 2) + \tan^{-1}(x - 2) - \tan^{-1}\left(\frac{1}{2}\right) = 0$, then one of the values of x is equal to (A) -1 (B) 5 (C) (D) 1 (E) $\frac{-1}{2}$ 21. If $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$, $\sin \alpha = \frac{4}{5}$ and $\cos (\alpha + \beta) = \frac{-12}{13}$, then $\sin \beta$ is equal to (A) $\frac{63}{65}$ (B) $\frac{63}{65}$ (C) $\frac{5}{13}$ (C) $\frac{5}{13}$ (E) $\frac{8}{65}$

22. The	number	of	solutions	of	cos20	=	sinθ	in	(0,2п)	is
(A) 1										
(B) 2										
(C) 3										
(D) 4										

(E) 0

		si	$n^{-1}\left(\frac{4}{5}\right) + 2 ta$	$\operatorname{un}^{-1}\left(\frac{1}{3}\right)$		
23. The	value	of		(³⁾ is	equal	to
π						
(A) ³						
π						
(B) ⁴						
π						
(C) 2						
π						
(D) 6						
π						
(E) 12						

24. The value of tan 40° + tan 20° + $\sqrt{3}$ tan 20° is equal to (A) $\sqrt{12}$ (B) $\frac{\sqrt{3}}{2}$ (C) 1 $\frac{\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\sqrt{3}$

25. The period of the function $f(\theta) = 4 + 4\sin^3\theta - 3\sin\theta$ is (A) $\frac{2\pi}{3}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{2}$ (D) π (E) 2π

26. The	value	of x in $\left(0, \frac{\pi}{2}\right)$ satisfying	ng the	equation	$\sin x \cos x = \frac{1}{4}$ is
	π				
(A)	6				
	π				
(B)	3				
	π				
(C)	8				
	π				
(D)	4				
	π				
(E)	12				

27. The	value	of	sin⁻¹(cos(4095°))	is	equal	to
$\frac{-\pi}{2}$						
(A) ³						
(B) $\frac{\pi}{6}$						
(B) δ -π						
(C) 4						
$\frac{\pi}{2}$						
(D) 4						
(E) $\frac{\pi}{2}$						

28. If <i>the</i>	distance l	between (2, 3) and -	5, 2) is e	qual to the d	istance b	etween	(x, 2)
and	(1,	3),	then	the	values	of	x	are
(A) -6	5,							8
(B) 6,								8
(C) -8	3,							6
(D) -	7,							7
(E) –8	3, -6							

29. The line segment joining the points (4, 7) and (-2, -1) is a diameter of a circle. If the cirle intersects the x - axis at A and B, then AB is equal to (A) 4
(B) 5
(C) 6
(D) 7

(E) 8

 30. If the three points (0, 1), (0, -1) and (x, 0) are vertices of an equilateral triangle,

 then
 the
 values
 of x are

 (A) $\sqrt{3}$,
 $\sqrt{2}$

 (B) $\sqrt{3}$,
 $-\sqrt{3}$

 (C) $-\sqrt{5}$,
 $\sqrt{3}$

 (D) $\sqrt{2}$,
 $-\sqrt{2}$

 (E) $\sqrt{5}$, $-\sqrt{5}$

31. The area of the triangle formed by the points (2, 2), (5, 5), (6, 7) is equal to (in square (A) $\frac{9}{2}$

- (B) 5
- (C) 10
- 3
- (D) 2
- (E) 14

32. If the line $px - qy = r$ intersects the co-ordinates axes at $(a, 0)$ and $(0, b)$, the	32. If the line p	x - qy = r intersects t	he co-ordinates axes	at (<i>a</i> , 0	and (0, b), then
---	-------------------	-------------------------	----------------------	-------------------	---------------------------

the	value	of $a + b$ is	equal	to
(A) $r\left(\frac{q+p}{pq}\right)$				
(B) $r\left(\frac{q-p}{pq}\right)$				
(C) $r \frac{(p-q)}{pq}$				
(D) $r\left(\frac{p+q}{p-q}\right)$				
$r\left(\frac{p-q}{p+q}\right)$				
(E) $(p+q)$				

33. The vertices of a triangle are A(3, 7), B(3, 4) and C(5, 4). The equation of the bisector of the angle $\angle ABC$ is (A) y = x +(B) y = x -(C) y = 3x - 5(D) y = x(E) y = -x

34. The equation of a straight line which passes through the point $(a\cos^3\theta, a\sin^3\theta)$ and perpendicular to $x \sec\theta + y \csc\theta = a$ is $\frac{x}{a} + \frac{y}{a}$ (A) $\frac{x}{a} + \frac{y}{a} = a \cos\theta$ (B) $x \cos\theta - y \sin\theta = a \cos2\theta$ (C) $x \cos\theta + y \sin\theta = a \cos2\theta$ (D) $x \cos\theta + y \sin\theta - a \cos2\theta = 1$ (E) $x \cos\theta - y \sin\theta + a \cos2\theta = -1$ 35. The slopes of the lines which make an angle 45° with the line 3x - y = -5 are (A) 1, -1 (B) , -1 (C) 1, -1 (D) 2, $-\frac{1}{2}$ (E) -2,

36. The equation of one of the lines parallel to 4x + 3y = 5 and at a unit distance from the point (-1, -4) is (A) 3x + 4y -3 0 = 4*y* (B) 3*x* + + 3 0 = (C) 4*x* -3y + 3 0 = (D) 4x -3y -3 0 = (E) 4x - 3y - 4 = 0

37. The equation of family of circles with centre at (h, k) touching the x – aix is given by

- (A) $x^2 + y^2 2hx + h^2 = 0$
- (B) $x^2 + y^2 2hx 2ky + h^2 = 0$
- (C) $x^2 + y^2 2hx 2ky h^2 = 0$
- (D) $x^2 + y^2 2hx 2ky = 0$
- (E) $x^2 + y^2 + 2hx + 2ky = 0$
- 38. If two circles $(x + 7)^2 + (y 3)^2 = 36$ and $(x 5)^2 + (y + 2)^2 = 49$ touch each other externally, then the point of contact is $\begin{pmatrix} -19 \\ 13 \end{pmatrix}$ (A)

(B)
$$\left(\frac{-19}{13}, \frac{9}{13}\right)$$

(C) $\left(\frac{17}{13}, \frac{9}{13}\right)$
(C) $\left(\frac{-17}{13}, \frac{9}{13}\right)$
(D) $\left(\frac{-17}{13}, \frac{9}{13}\right)$
(E) $\left(\frac{19}{13}, \frac{19}{13}\right)$

 39. The equation of the chord of the circle $x^2 + y^2 = 81$ which is bisected at the point

 (-2, 3) is

 (A) 3x - y = 13

 (B) 3x - 4y = 13

 (C) 2x - 3y = 13

 (D) 3x - 3y = 13

(E) 2x - 3y = -13

40. The distance of the midpoint of line joining two points (4, 0) and (0, 4) from the

centre		of	the	e circle	$e x^2 + y^2 =$	16	is
(A) √2	2						
(B) 21	⁄2						
(C) 31	/2						
(D) 2v	/3						
(E) √3	5						
41. One	of the	points	on the	parabola $y^2 =$	12 <i>x</i> with f	focal distance	12, is
(A) (3	,						6)
(B) (9	,						6√3)
(C) (7	,						2√21)
(D) (8	,						4√6)
(E) (1	√12)						

42. If the length of the major axis of an ellipse is 8 times the length of the mirror

17

axis,	then	the	eccentricity	of	the	ellipse	is
(A) $\frac{8}{17}$							
15							
(B) 17							
$\frac{9}{17}$							
(C) 17	_						
$(\Box) \frac{2\sqrt{2}}{17}$	_						
(D) 17 13							
(E) 17							

43. If a point P(x, y) moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if C is the centre of the ellipse, then the sum of maximum and minimum values of CP is (A) 25 (B) 9

- (C) 4
- (-)
- (D) 5
- (E) 16

44. The distance between the foci of the conic $7x^2 - 9y^2 = 63$ is equal to

- (A) 8
- (B) 4
- (C) 3
- (D) 7
- (E) 12

45. If
$$|\vec{a}| = 5$$
, $|\vec{b}| = 6$ and $\vec{a}.\vec{b} = -25$, then $|\vec{a} \times \vec{b}|$ is equal to
(A) 25
(B) $6\sqrt{11}$
(C) $11\sqrt{5}$
(D) $11\sqrt{6}$
(E) $5\sqrt{11}$

46. If
$$\vec{p}$$
, \vec{q} and \vec{r} are perpendicular to $\vec{q} + \vec{r}$, $\vec{r} + \vec{p}$ and $\vec{p} + \vec{q}$ respectively and
if $|\vec{p} + \vec{q}| = 6$, $|\vec{q} + \vec{r}| = 4\sqrt{3}$ and $|\vec{r} + \vec{p}| = 4$ then $|\vec{p} + \vec{q} + \vec{r}|$
(A) $5\sqrt{2}$
(B) 10
(C) 15
(D) 5
(E) 25

- 47. The vectors of magnitude *a*, 2*a*, 3*a* meet at a point and their directions are along the diagonals of three adjacent faces of a cube. Then the magnitude of their resultant is
 - (A) 5*a*
 - (B) 6*a*
 - (C) 10a
 - (D) 9a
 - (E) 7a

48. Which one of the following vectors is of magnitude 6 and perpendicular to both $\vec{a} = 2\hat{i} + 2\hat{j} + \hat{k}_{and}$ $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}_{and}$ (A) $2\hat{i} - \hat{j} - 2\hat{k}$

(B)

$$2\left(2\hat{i}-\hat{j}+2\hat{k}\right)$$
(C)

$$3\left(2\hat{i}-\hat{j}-2\hat{k}\right)$$
(C)

$$2\left(2\hat{i}+\hat{j}-2\hat{k}\right)$$
(D)

$$2\left(2\hat{i}-\hat{j}-2\hat{k}\right)$$
(E)

49. If the vectors $\vec{a} = 2\hat{i} + \hat{j} + 4\hat{k}$, $\vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{c} = 2\hat{i} - 3\hat{j} - \lambda\hat{k}$ are coplanar, then the value of λ is equal to (A) 2 (B) 1 (C) 3 (D) -1 (E) 0

50. Let A(1, -1, 2) and B(2, 3, -1) be two points. If a point P divides AB internally in

the ratio 2:3, then the position vector of *P* is $\frac{1}{\sqrt{5}} \begin{pmatrix} \wedge & \wedge & \wedge \\ i+j+k \end{pmatrix}$ (A) $\frac{1}{\sqrt{3}} \begin{pmatrix} \wedge & \wedge & \wedge \\ i+6j+k \end{pmatrix}$ (B) $\frac{1}{\sqrt{3}} \begin{pmatrix} \wedge & \wedge & \wedge \\ i+j+k \end{pmatrix}$ (C) $\frac{1}{\sqrt{3}} \begin{pmatrix} \wedge & \wedge & \wedge \\ i+j+k \end{pmatrix}$

(D)
$$\frac{1}{\sqrt{5}} \begin{pmatrix} \hat{n} & \hat{j} + \hat{j} + \hat{j} & \hat{k} \end{pmatrix}$$

(E) $\frac{1}{5} \begin{pmatrix} \hat{n} & \hat{j} & \hat{k} & \hat{k} \\ 7 & \hat{i} + 3 & \hat{j} + 4 & \hat{k} \end{pmatrix}$
51. If the scalar product of the vector $\hat{i} + \hat{j} + 2 & \hat{k}$ with the unit vector along $\hat{m} & \hat{i} + 2 & \hat{j} + 3 & \hat{k}$ is equal to 2, then one of the values of m is (A) 3
(B) 4
(C) 5
(D) 6
(E) 7
52. A plane makes intercepts *a*, *b*, *c* at *A*, *B*, **C** on the coordinate axes respectively. If the centre of the triangle *ABC* is at (3, 2, 1), then the equation of the plane is

(A) <i>x</i> +	2y +	3 <i>z</i> =	9
(B) 2 <i>x</i> –	2 <i>y</i> –	6 <i>z</i> =	18
(C) 2 <i>x</i> +	2y +	6 <i>z</i> =	18

(D)	2 <i>x</i> +	2 <i>y</i> +	6 <i>z</i> =	18
(E) $2x + 2y + 6z$	= 9			

53. If the plane 3x + y + 2z + 6 = 0 is parallel to the line $\frac{3x - 1}{2b} = 3 - y = \frac{z - 1}{a}$

(A) (B) $\frac{3}{2}$ (C) 3 (D) 4 (E) $\frac{5}{2}$ 54. The equation of the line passing through the point (3, 0, -4) and perpendicular to

the plane
$$2x - 3y + 5z - 7 = 0$$
 is
 $\frac{x-2}{3} = \frac{y}{-3} = \frac{z+4}{5}$
(A) $\frac{x-3}{2} = \frac{y}{-3} = \frac{z-4}{5}$
(B) $\frac{x-3}{2} = \frac{-y}{-3} = \frac{z+4}{5}$
(C) $\frac{x+3}{2} = \frac{y}{3} = \frac{z-4}{5}$
(D) $\frac{x+3}{2} = \frac{y}{3} = \frac{z-4}{5}$
(E) $\frac{x-2}{3} = \frac{y}{3} = \frac{z+4}{5}$

 $\vec{r} = s\left(\hat{i}+2\hat{j}-4\hat{k}\right) + t\left(3\hat{i}+4\hat{j}-4\hat{k}\right) + \left(1-t\right)\left(2\hat{i}-7\hat{j}-3\hat{k}\right)$ 55. The plane

the

line

is parallel to

$$\vec{r} = \left(-\hat{i} + \hat{j} - \hat{k}\right) + t \left(-\hat{i} - 2\hat{j} + 4\hat{k}\right)$$
(A)

$$\vec{r} = \left(-\hat{i} + \hat{j} - \hat{k}\right) + t \left(\hat{i} - 2\hat{j} + 4\hat{k}\right)$$
(B)

$$\vec{r} = \left(\hat{i} + \hat{j} - \hat{k}\right) + t \left(-\hat{i} - 4\hat{j} + 7\hat{k}\right)$$
(C)

$$\vec{r} = \left(-\hat{i} + \hat{j} - \hat{k}\right) + t \left(-2\hat{i} + 2\hat{j} + 4\hat{k}\right)$$
(D)

$$\vec{r} = \left(-\hat{i} + \hat{j} - 3\hat{k}\right) + t \left(2\hat{i} + 6\hat{j} - 8\hat{k}\right)$$
(E)

56. The distance between the line $\vec{r} = \left(2\hat{i}+2\hat{j}-\hat{k}\right) + \lambda \left(2\hat{i}+\hat{j}-2\hat{k}\right)$ and the $\vec{r} \cdot \left(\hat{i}+2\hat{j}+2\hat{k}\right) = 10$ is equal to (A) 5 (B) 4 (C) 3 (D) 2 (E) 1

57. Equation of the plane passing through the intersection of the planes x + y + z =

6 and 2 <i>x</i> +	3y + 4z +	5 = 0 and	the point	(1, 1,	1) is
(A) 20 <i>x</i> +	23 <i>y</i> +	26 <i>z –</i>	69	=	0
(B) 31 <i>x</i> +	45 <i>y</i> +	49 <i>z</i> +	52	=	0
(C) 8 <i>x</i> +	5 <i>y</i> +	2z –	69	=	0
(D) 4 <i>x</i> +	5 <i>y</i> +	6 <i>z</i> –	7	=	0
(E) <i>x</i> + <i>y</i> + 2 <i>z</i> +	- 17 = 0				

58. The equation of $\frac{x}{2} = \frac{y-2}{-1} = \frac{z}{3}$ and	+1	containing	the	lines $\frac{x-2}{2}$	$\frac{-1}{2} = \frac{y+1}{-1}$	$=\frac{z}{3}$
(A) 8 <i>x</i> - <i>y</i> +	5 <i>z</i> –	8		=		0
(B) 8 <i>x</i> + <i>y</i> −5 <i>z</i> −		7+		=		0
(C) <i>x</i> –8 <i>y</i> +	3 <i>z</i> +	6		=		0
(D) $8x + y - 5z +$		7		=		0
(E) $x + y + z - 6 = 0$						

59. The vector equation of the straight line
$$\frac{1-x}{3} = \frac{y+1}{-2} = \frac{3-z}{-1}$$

(A)
(A)
 $\vec{r} = \left(\hat{i} - \hat{j} + 3\hat{k}\right) + \lambda \left(3\hat{i} + 2\hat{j} - \hat{k}\right)$
(B)
 $\vec{r} = \left(3\hat{i} - 2\hat{j} - \hat{k}\right) + \lambda \left(\hat{3}\hat{i} - 2\hat{j} - \hat{k}\right)$
(C)
 $\vec{r} = \left(3\hat{i} + 2\hat{j} - \hat{k}\right) + \lambda \left(\hat{i} - \hat{j} + 3\hat{k}\right)$
(D)
 $\vec{r} = \left(\hat{i} - \hat{j} + 3\hat{k}\right) + \lambda \left(\hat{3}\hat{i} + 2\hat{j} + \hat{k}\right)$
(E)

- 60. The arithmetic mean of 7 consecutive integers starting with 'a' is m. Then the arithmetic mean of 11 consecutive integers starting with 'a + 2' is
 (A) 2a
 (B) 2m
 - (C) *a* + 4 (D) *m* + 4
 - (E) *a* + *m* + 2

61. The probability distribution of a random variable *X* is given by

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
P(X=x)	р	2 <i>p</i>	3р	4 <i>p</i>	5 <i>p</i>	7p	8p	9p	10 <i>p</i>	11 <i>p</i>	12 <i>p</i>

62.

Then	the	value	of <i>P</i> is
1			
(A) 72			
3			
(B) 73			
5			
(C) 72			

(D) $\frac{1}{74}$ (E) $\frac{1}{73}$

63. The mean and variance of n observations $x_1, x_2, x_3, \dots, x_n$ are 5 and 0 $\sum_{i=1}^n x_i^2 = 400$ respectively. If *i*=1 , then the value of *n* is equal to (A) 80 (B) 25 (C) 20

- (D) 16
- (E) 4

64. If A and B are mutually exclusive events and if $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{13}{21}$, then P(A) is equal to (A) $\frac{1}{7}$ (B) $\frac{2}{7}$ (C) $\frac{5}{7}$ (D) $\frac{6}{7}$

65. If f is a real valued function such that f(x + y) = f(x) + f(y) and f(1) = 5, then the value of f(100) is (A) 200 (B) 300

(C) 350 (D) 400 (E) 500

$$\frac{\left(e^{x}-1\right)^{2}}{\sin\left(\frac{x}{a}\right)\log\left(1+\frac{x}{4}\right)}$$
for $x \neq 0$, and $f(0) = 12$. If f is continuous
at $x = 0$, then the value of a is equal to
(A) 1
(B) -1
(C) 2
(D) -2
(E) 3

equal

to

67.
$$\lim_{x \to 0} \left(\frac{x}{\sqrt{1 + x} - \sqrt{1 - x}} \right)_{\text{is}}$$

(A) 0
(B) 1
(C) 2
(D) -1
(E) -2

68.
$$\frac{\lim_{x \to 0} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right)}{(A) - \frac{1}{4}}$$

(B) $-\frac{1}{2}$
(C) 0 equal to

(D)
$$\frac{\frac{2}{9}}{\frac{-6}{5}}$$

71. The derivative of $\sin^{-1} \left(2x\sqrt{1-x^2} \right)$ with respect to $\sin^{-1} (3x - 4)$	x³) is
(A) $\frac{2}{3}$ (B) $\frac{3}{2}$	
(B) ²	
(C)	
(D) 1	
(E) 0	
	dy
72. If $y = \tan^{-1}x + \sec^{-1}x + \cot^{-1}x + \csc^{-1}x$, then	dx =
$x^2 - 1$	
(A) $\frac{x^2 - 1}{x^2 + 1}$	
(B) π	
(C) 0	
(D) 1	
(E) $x\sqrt{x^2+1}$	
(E) $\frac{1}{x\sqrt{x^2+1}}$ 73. If $f(x) = x-2 + x+1 - x$, then $f^{-1}(-10)$ is equal	l to
(A) -3	
(B) -2	
(C) -1	
(D)	0
(E) 1	

74. If $x = a(1 + \cos\theta)$, $y = a(\theta + \sin\theta)$, then $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$ is (A) $\frac{-1}{a}$

$$\frac{1}{a}$$
(B) $\frac{a}{a}$
(C) -1
(D) -2
(E) $\frac{-2}{a}$

76. The distance between the origin and the normal to the curve $y = e^{2x} + x^2$ at x = 0

77. The value	of c in	(0, 2)	satisfying	the	mean	value	theorem	for	the	function	
f(x)	$= x(x \cdot$	-	1) ² , <i>x</i> ∈[0,	2]	is	e	qual	to)
3											
(A) 4											
4											
(B) ³											
1											
(C) ³											
2											
(D) 3											
5											
(E) 3											

78. The point on the curve $x^2 + y^2 = a^2$, $y \ge 0$ at which the tangent is parallel to xaxis (A) (a, (B) (-a, 0)

	0)
$\left(\frac{a}{2}, \frac{\sqrt{3}}{2}a\right)$	
(C) ()	
(D) (0, <i>a</i>)	
(E) (0, <i>a</i> ²)	

79. The angle between the curves, $y = x^2$ and $y^2 - x = 0$ at the point (1, 1), is

(A) $\frac{\pi}{2}$ (B) $\tan^{-1} \frac{4}{3}$ (C) $\frac{\pi}{3}$

(D)
$$\frac{\pi}{4}$$

(E) tan⁻¹ $\frac{3}{4}$

80. An edge of a variable cube is increasing at the rate of 10 cm/sec. How fast the volume of the cube will increase when the edge is 5 cm long? (A) 750 cm³/sec (B) 75 cm³/sec (C) 300 cm³/sec (D) 150 cm³/sec

(E) 25 cm³/sec

81.The	minimum	value	of	f(x)	$= \left 3 - x\right + \frac{1}{2}$	7 is
(A) 0						
(B) 6						
(C) 7						
(D) 8						
(E) 10						
82. If the e	rror committed in	n measuring	the radius of	the circle	is 0.05%, then	the
correspo	onding erro	r in	calculating	g the	area	is
(A) 0.05	%					
(B) 0.00	25%					
(C) 0.25	%					
(D) 0.1%	/o					
(E) 0.2%	6					
$\int \frac{1}{2\pi}$	$\frac{x+2}{x^2+6x+5} dx$	$x = P \int \frac{1}{2x}$	$\frac{4x+6}{^2+6x+5}$	$dx + \frac{1}{2}$	$\int \frac{dx}{2x^2 + 6x + 6x} dx$	5
then		the		alus		P is
1						
(A) 3						

- (B) (C) $\frac{1}{4}$ (D) 2
- (E) 1

84.
$$\int (x+1)(x+2)^{7}(x+3)dx$$
 is equal to
(A)
$$\frac{(x+2)^{10}}{10} - \frac{(x+2)^{8}}{8} + C$$
(B)
$$\frac{(x+1)^{2}}{2} - \frac{(x+2)^{8}}{8} - \frac{(x+3)^{2}}{2} + C$$
(C)
$$\frac{(x+2)^{10}}{10} + C$$
(D)
$$\frac{(x+1)^{2}}{2} + \frac{(x+2)^{8}}{8} - \frac{(x+3)^{2}}{2} + C$$
(E)
$$\frac{(x+2)^{9}}{9} - \frac{(x+2)^{7}}{7} + C$$

85.
$$\int \frac{(x^{2}+1)\sqrt{x+1} \, dx}{\mathrm{is}} \operatorname{equal}$$
to
(A)
$$\frac{(x+1)^{\frac{7}{2}}}{7} - 2\frac{(x+1)^{\frac{5}{2}}}{5} + 2\frac{(x+1)^{\frac{3}{2}}}{3} + C$$
(A)
$$2\left[\frac{(x+1)^{\frac{7}{2}}}{7} - 2\frac{(x+1)^{\frac{5}{2}}}{5} + 2\frac{(x+1)^{\frac{3}{2}}}{3}\right] + C$$
(B)
$$\frac{(x+1)^{\frac{7}{2}}}{7} - 2\frac{(x+1)^{\frac{5}{2}}}{5} + C$$

$$\frac{(x+1)^{\frac{7}{2}}}{7} - 3\frac{(x+1)^{\frac{5}{2}}}{5} + 11(x+1)^{\frac{1}{2}} + C$$

(E) $(x+1)^{\frac{7}{2}} + (x+1)^{\frac{5}{2}} + (x+1)^{\frac{3}{2}} + C$

$$\int \frac{1+x}{x+e^{-x}} dx$$
is
$$\log \left| \left(x - e^{-x} \right) \right| + C$$
(A)
$$\log \left| \left(x + e^{-x} \right) \right| + C$$
(B)
$$\log \left| \left(1 + xe^{x} \right) \right| + C$$
(C)
$$\left| \log \left| \left(1 + xe^{x} \right)^{2} + C \right|$$
(D)
$$\left| \log \left| \left(1 - xe^{x} \right) \right| + C$$
(E)

equal

to

 $\int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx$ 87. (A) $\frac{\left[\log(x + \sqrt{1 + x^2})\right]^2 + C}{x \log(x + \sqrt{1 + x^2})\right]^2 + C}$ (B) $\frac{x \log(x + \sqrt{1 + x^2}) + C}{(C) \frac{1}{2} \log(x + \sqrt{1 + x^2}) + C}$ (C) $\frac{1}{2} \left[\log(x + \sqrt{1 + x^2})\right]^2 + C$ (E) $\frac{x}{2} \log(x + \sqrt{1 + x^2}) + C$

equal

to

88.
$$\int \frac{dx}{\sqrt{1 - e^{2x}}} is \log \left| e^{-x} + \sqrt{e^{-2x} - 1} \right| + C$$
(A)
$$\log \left| e^{x} + \sqrt{e^{2x} - 1} \right| + C$$
(B)
$$-\log \left| e^{-x} + \sqrt{e^{-2x} - 1} \right| + C$$
(C)
$$-\log \left| e^{-2x} + \sqrt{e^{-2x} - 1} \right| + C$$
(D)
$$\log \left| e^{-2x} + \sqrt{e^{-2x} - 1} \right| + C$$
(E)
$$\log \left| e^{-2x} + \sqrt{e^{-2x} - 1} \right| + C$$

equal

89. $\int \frac{\cos x + x \sin x}{x^2 + x \cos x} dx$ is $\log \left| \frac{\sin x}{1 + \cos x} \right| + C$ (A) $\log \left| \frac{\sin x}{1 + \cos x} \right| + C$ (B) $\log \left| \frac{2 \sin x}{x + \cos x} \right| + C$ (C) $\log \left| \frac{2 \sin x}{x + \cos x} \right| + C$ (D) $\log \left| \frac{x \sin x}{x + \cos x} \right| + C$ (E) $\log \left| \frac{x}{x + \cos x} \right| + C$ (E) $\log \left$

equal

to

to

90. The integral
$$\int_{0}^{\frac{\pi}{6}} \frac{2 \sin^{-1} \frac{x}{2}}{x} dx$$
 equals
(A)
$$\int_{0}^{\frac{\pi}{6}} \frac{x dx}{\tan x}$$
(B)
$$\int_{0}^{\frac{\pi}{6}} \frac{2x}{\tan x} dx$$
(C)
$$\int_{0}^{\frac{\pi}{6}} \frac{2x dx}{\tan x}$$
(D)
$$\int_{0}^{\frac{\pi}{6}} \frac{x dx}{\sin x}$$
(E)
$$\int_{0}^{\frac{\pi}{6}} \frac{2x}{\sin x} dx$$

91. The area of the plane region bounded by the curve $x = y^2 - 2$ and the line y = -

<i>x</i> is	(in	square	units)
13			
(A) ³			
2			
(B) <u>5</u>			
9			
(C) 2			
$\overline{5}$			
(D) ²			
13			
(E) 2			

$$\int_{0}^{a} f(2a-x) dx = m \int_{0}^{a} f(x) dx = n \int_{0}^{2a} f(x) dx$$
is equal to
(A) $2m + n$
(B) $m + 2n$
(C) $m - n$
(D) $n - m$
(E) $m + n$
(E) $m + n$
(F) $f(x) dx$
(G) $\int_{-100}^{100} f(x^{2}) dx$
(G) $\int_{-100}^{100} f(-x^{2}) dx$
(C) $\int_{-100}^{100} f(-x^{2}) dx$
(C) $\int_{-100}^{100} f(-x) dx$
(D) $\int_{-100}^{100} f(-x) dx$
(D) $\int_{-100}^{100} f(-x) dx$
(E) $\int_{-100}^{100} [f(x) + f(-x)] dx$

$$\int_{-1}^{1} \left(e^{x^{3}} + e^{-x^{3}}\right) \left(e^{x} - e^{-x}\right) dx$$
94. $_{-1}^{-1}$ is equal to
$$\frac{e^{2}}{2} - 2e$$
(A) $\frac{e^{2}}{2} - 2e$
(B) $e^{2} - 2e$
(C) $2(e^{2} - e)$
(C) $2(e^{2} - e)$

(D) 2e⁻² -(E) 0

95. The family of curves $y = e^{a \sin x}$, where *a* is an arbitrary constant, is represented by the differential equation (A) $\log y = \frac{dy}{\tan x \frac{dy}{dx}}$ (B) $y \log y = \tan x \frac{dy}{dx}$ (C) $y \log y = \frac{dy}{x}$ (D) $\log y = \frac{dy}{x}$

(E)
$$y \log y = \cos x \, dx$$

96. The integrating factor of $x \frac{dy}{dx} + (1+x)y = x$ is (A) x (B) 2x (C) $e^{x\log x}$ (D) e^x (E) xe^x

97. The degree and order of the differential equation $y = px + \sqrt[3]{a^2p^2 + b^2}$, where

p =
$$\frac{dy}{dx}$$
, are (A) 3,1

- (B) 1,
 (C) 1,
 (D) 3,
- (E) 3, 2

98. The	solution	of	the	differential	equation	$\frac{dy}{dx} + 1 = e^{x+y} \text{ is }$
(A) <i>x</i> -	$+ e^{x+y} = C$					
(B) <i>x</i> -	$-e^{x+y}=C$					
(C) <i>x</i> -	$+ e^{-(x+y)} = C$					
(D) <i>x</i> -	$-e^{-(x+y)}=C$					
(E) <i>xe</i>	x+y + y = C					

99. Let $f(x) = \frac{\alpha x^2}{x+1}, x \neq -1$ (A) $1 - \frac{1}{a}$ (B) $\frac{1}{a}$ (C) $1 + \frac{1}{a}$ (D) $\frac{1}{a} - 1$ (E) $\frac{-1}{a}$ (C) $\frac{1}{a} - 1$ (D) $\frac{1}{a} - 1$ (E) $\frac{-1}{a}$ (E) $\frac{1}{a} - 1$ (

100. For $a, b \in R$, define $a^*b = \frac{a}{a+b}$, where $a+b\neq 0$. If $a^*b = 5$, then the value of b^*a is

(A) 5
(B) -5
(C) 4
(D) -7

(E) -4

101. Let $A = \{x, y, z\}$ and $B = \{a, b, c, d\}$. Which one of the following is not a relation from A to B? (A) $\{(x, a), (x, c)\}$ (B) $\{(y, c), (y, d)\}$ (C) $\{(z, a), (z, d)\}$ (D) $\{(z, b), (y, b), (a, d)\}$ (E) $\{(x, c)\}$

 $\sin^{-1} \log_2$ is 102. The domain of (A) [2, 12] (B) [-1, 1] $\left[\frac{1}{3}, 24\right]$ (C) $\left[\frac{2}{3}, 24\right]$ (D) (E) [6, 24] If $f(x) = x^2 - 1$ and $g(x) = (x + 1)^2$, then $(g \circ f)(x)$ is 103. (A) $(x+1)^4 - 1$ (B) *x*⁴-1 (C) *x*⁴ (D) (x+1)⁴ (E) (x-1)⁴-1

- (A) *A*∩*B*
- (B) *A*∪*B*
- (C) *B*-A
- (D) *A-B*
- (E) $(A-B)\cup(B-A)$

105. If $(x + iy)^{\frac{1}{3}} = 2 + 3i$, then 3x + 2y is equal to (A) -20 (B) -60 (C) -120 (D) 60 (E) 156

106. The modulus of the complex number *z* such that |z+3-i|=1 and arg $z = \pi$ is equal to (A) 1 (B) 2 (C) 9 (D) 4 (E) 3

107. If
$$z_1$$
, z_2 , ..., , z_n are complex numbers such that $|z_1| = |z_2| = ... = |z_n| = 1$, then $|z_1 + z_2 + ... + z_n|$ is equal to
(A) $|z_1 z_2 z_3 ... z_n|$
(B) $|z_1| + |z_2| + ... + |z_n|$
(B) $|\frac{1}{z_1} + \frac{1}{z_2} + ... + \frac{1}{z_n}|$
(C) $|n|$
(D) $|n|$
(E) \sqrt{n}

			$\frac{\cos 30^\circ + i \sin 30^\circ}{}$	
108.	The	value	of $\cos 60^o - i \sin 60^o$ is equal	to
(A) <i>i</i>				
(B) -	·i			
	$1 + \sqrt{3}i$			
(C)	2			
	$1 - \sqrt{3}i$			
(D)	2			
(E) 1	.+ <i>i</i>			

109.	If $z = r(\cos\theta + i\sin\theta)$,	then	the	value	$\frac{z}{z} + \frac{z}{z}$
(A) co	DS				2 <i>0</i>
(B) 2		COS			20
(C) 2					$\cos heta$
(D) 2					$\sin heta$
(E) 2	sin 20				

$$z_{1} = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)_{\text{and}} z_{2} = \sqrt{3} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right),$$

110. If
then $|z_{1}z_{2}|$ is
(A) 6
(B) $\sqrt{2}$
(C) $\sqrt{6}$
(D) $\sqrt{3}$
(E) $\sqrt{2} + \sqrt{3}$

111. The value of ${\it a}$ for which the equation $2x^2+2\sqrt{6}x+a=0$ has equal roots, is

- (A) 3
- (B) 4
- (C) 2
- (D) √3
- (E) √2

112. If $\frac{3}{2} + \frac{7}{2}i$ is a solution of the equation $ax^2 - 6x + b = 0$ where *a* and *b* are real numbers, then the value of *a* + *b* is equal to (A) 10 (B) 22 (C) 30

- (D) 29
- (E) 31

113. If the roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c$ is (A) -1

- (B) 0
- (0) 0
- (C) 1

(D) 2 (E) 3

(=) 5

114. If α and β are the roots of the equation $ax^2 + bx + c = 0$, $(c \neq 0)$, then $1 \qquad 1$

					1	
the	equation	whose	roots	are	$\overline{a\alpha+b}$ and	$a\beta+b_{\rm \ is}$
(A) <i>acx</i> ² ·	- bx +		1		=	0
(B) x ² - ä	acx + bc +		1		=	0
(C) <i>acx</i> ² ·	+ bx -		1		=	0
(D) x ² +	acx – bc +		11		=	0
(E) acx^2	-bx - 11 = 0					

115.	If <i>a</i> and <i>b</i> are the roots of the equation $x^2 + ax + b = 0$, $a \neq 0$, $b \neq 0$, then				
the	values	of aand b are	respectively		
(A) 2		and	-2		
(B) 2		and	-1		
(C) 1		and	-2		
(D) 1		and	2		
(E) –1	and 2				

116.	If $x^2 + px + q = 0$, has the roots α and β , then the value of $(\alpha - \beta)^2$	
is	equal to	
(A) <i>p</i> ²	² – 4q	
(B) (<i>p</i>	$(4q)^2$ – 4q) ²	
(C) <i>p</i> ²	4 <i>q</i>	
(D) (p	$(4q)^2 + (4q)^2$	
(E) q ²	- 4p	

117. If the sum to first *n* terms of the A.P. 2, 4, 6, ... is 240, then the value of *n* is
(A) 14
(B) 15
(C) 16

- (D) 17
- (E) 18

An A.P. consists of 23 terms. If the sum of the three terms in the middle is
141 and the sum of the last three terms is 261, then the first term is
(A) 6
(B) 5
(C) 4

- (D) 3
- (E) 2

120. If $a_1, a_2, a_3, ..., a_n$ are in A.P. with common difference 5 and if $a_i a_j \neq -1$ for i,j = 1,2,...,n,

$$\tan^{-1} \left(\frac{5}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{5}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left(\frac{5}{1 + a_{n-1} a_n} \right)$$

is equal to

(A)

$$\tan^{-1}\left(\frac{5}{1+a_{n}a_{n-1}}\right)$$
(A)

$$\tan^{-1}\left(\frac{5a_{1}}{1+a_{n}a_{1}}\right)$$
(B)

$$\tan^{-1}\left(\frac{5n-5}{1+a_{n}a_{1}}\right)$$
(C)

$$\tan^{-1}\left(\frac{5n-5}{1+a_{1}a_{n+1}}\right)$$
(D)

$$\tan^{-1}\left(\frac{5n}{1+a_{1}a_{n}}\right)$$
(E)

The sum of all two digit natural numbers which leave a remainder 5 when 121.

they	are	divided	by	7	is	equal	to
(A) 715							
(B) 702							
(C) 615							
(D) 602							
(E) 589							