1. Let a be a positive number such that the arithmetic mean of a and 2 exceeds their geometric mean by 1. Then the value of a is
(A) 3
(B) 5
(C) 9
(D) 8
(E) 10
2. The coefficient of the middle term in the expansion of $(x+2 y)^{6}$
(A) ${ }^{6} C_{3}$
(B) $8\left({ }^{6} C_{3}\right)$
(C) $8\left({ }^{6} C_{4}\right)$
(D) ${ }^{6} C_{4}$
(E) $8\left({ }^{6} C_{5}\right)$
3. Let $(1+x)^{n}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$. If a_{1}, a_{2} and a_{3} are in A.P., then the value of n is
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
4. The number of positive integers less than 40,000 that can be formed by using all the digits $1,2, \quad 3, \quad 4$ and 5 is equal to
(A) 24
(B) 78
(C) 32
(D) 216
(E) 72
5. If the sum of the coefficients in the expansion of $\left(a^{2} x^{2}-6 a x+11\right)^{10}$, where a is a constant, is then the value of a is
(A) 5
(B) 1
(C) 2
(D) 3
(E) 4
6. If ${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800 \quad$, then the value of r is
(A) 40
(B) 51
(C) 101
(D) 410
(E) 41
7. From 12 books, the difference between number of ways a selection of 5 books when one specified book is always excluded and one specified book is always included is
(A) 64
(B) 118
(C) 132
(D) 330
(E) 462
8. If $A=\left[\begin{array}{cc}x & -2 \\ 3 & 7\end{array}\right]$ and $A^{-1}=\quad$ then $\left[\begin{array}{cc}\frac{7}{34} & \frac{1}{17} \\ \frac{-3}{34} & \frac{2}{17}\end{array}\right]$ the value x is
(A) 2
(B) 3
(C) -4
(D) 4
(E) -2
9. If $\left|\begin{array}{ccc}x^{2}+x & 3 x-1 & -x+3 \\ 2 x+1 & 2+x^{2} & x^{3}-3 \\ x-3 & x^{2}+4 & 3 x\end{array}\right|=a_{0}+a_{1} x-a_{2} x^{2}+\ldots+a_{7} x^{7}$, then the value of a_{0} is
(A) 25
(B) 24
(C) 23
(D) 22
(E) 21

(A) 15 !
$+$
(B) 2
(15!)
(16!)
(C) 15 !
$+16!$
(D) 16 !
$+$
(E) $2(15!+16!)$
10. If A is a non-singular matrix of order 3 , then $\operatorname{adj}(\operatorname{adj} A)$ is equal to (A) A
(B) A^{-1}
(C) $\frac{1}{|A|} A$
(D) $|A| A$
(E) $\frac{1}{|A|} A^{-1}$
11. If $\left|\begin{array}{r}x-y-z \\ -y+z \\ z\end{array}\right|=\left|\begin{array}{l}0 \\ 5 \\ 3\end{array}\right|$,
then the
values
of x, y and z are
respectively
(A) 5,
2,
(B) 1 ,
-2, 3
(C) 0 ,
-3, 3
(D) 11,
8, 3
(E) $4,1,3$
12. Which one of the following is true always for any two non-singular matrices A and B of same order?
(A) $A B=B A$
(B) $(A B)^{\mathrm{t}}=A^{\mathrm{t}} B^{\mathrm{t}}$
(C) $(A+B)$
$(A-B)$
$=A^{2}-B^{2}$
(D) $(A B)^{-1}=B^{-1} A^{-1}$
(E) $A B=-B A$
13. The solution set of the inequation $\frac{x=11}{x-3}>0$ is
(A) $(-\infty$,
-11)
u
(3,
$\infty)$
(B) $(-\infty$,
-10)
u
(2,
$\infty)$
(C) $(-100$,
-11)
u
(1,
$\infty)$
(D) $(0$,
5)

u
(-1,
0)
(E) $(-5,0) \cup(3,7)$
15. If $3 \leq 3 t-18 \leq 18$, then which one of the following is true?
(A) 15
\leq
$2 t+$
1
\leq
20
(B) 8
$\leq t<$ 12
(C) $8 \quad \leq t+$
1
\leq
13
(D) 21
\leq
$3 t \leq$
24
(E) $t \leq 7$ or $t \geq 12$

17. If $S(p, q, r)=(\sim p) \vee[\sim(q \vee r)]$ is a compound statement, then $S(\sim p, \sim q, \sim r)$ is
(A) $\sim S(p, q, r)$
(B) $S(p, q, r)$
(C) $p \vee(q \wedge r)$
(D) $p \vee$
$(q \vee r)$
(E) $S(p, q, \sim r)$
18. For any two statements p and $q, \sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
(A) p
(B) $\sim p$
(C) q
(D) $\sim q$
(E) $p \vee q$
19. If $\tan \alpha=\frac{b}{2}, \mathrm{a}>\mathrm{b}>0$ and if $0<\alpha<\frac{\pi}{4}$, then $\sqrt{\frac{a+b}{a-b}}-\sqrt{\frac{a-b}{a+b}}$ is equal to (A) $\frac{2 \sin \alpha}{\sqrt{\cos 2 \alpha}}$
(B) $\frac{2 \cos \alpha}{\sqrt{\cos 2 \alpha}}$
(C) $\frac{2 \sin \alpha}{\sqrt{\sin 2 \alpha}}$
(D) $\frac{2 \cos \alpha}{\sqrt{\sin 2 \alpha}}$
(E) $\frac{2 \tan \alpha}{\sqrt{\cos 2 \alpha}}$
20. If $\tan ^{-1}(x+2)+\tan ^{-1}(x-2)-\tan ^{-1}\left(\frac{1}{2}\right)=0$, then one of the values of x is equal
(A) -1
(B) 5
(C)
(D) 1
(E) $\frac{-1}{2}$
21. If $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, $\sin \alpha=\frac{4}{5}$ and $\cos (\alpha+\beta)=\frac{-12}{13}$, then $\sin \beta$ is equal to
(A) $\frac{63}{65}$
(B) $\frac{61}{65}$
(C) $\frac{3}{5}$
(D) $\frac{5}{13}$
(E) $\frac{8}{65}$
22. The number of solutions of $\cos 2 \theta=\sin \theta$ in $(0,2 \pi)$ is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 0
23. The value of $\sin ^{-1}\left(\frac{4}{5}\right)+2 \tan ^{-1}\left(\frac{1}{3}\right)$ is equal to
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{6}$
(E) $\frac{\pi}{12}$
24. The value of $\tan 40^{\circ}+\tan 20^{\circ}+\sqrt{ } 3 \tan 20^{\circ}$ is equal to
(A) $\sqrt{ } 12$
(B) $\frac{\sqrt{3}}{2}$
(C) 1
(D) $\frac{\sqrt{3}}{2}$
(E) $\sqrt{ } 3$
25. The period of the function $f(\theta)=4+4 \sin ^{3} \theta-3 \sin \theta$ is (A) $\frac{2 \pi}{3}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) π
(E) 2π
26. The value of x in $\left(0, \frac{\pi}{2}\right)$ satisfying the equation $\sin x \cos x=\frac{1}{4}$ is (A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{8}$
(D) $\frac{\pi}{4}$
(E) $\frac{\pi}{12}$
27. The value of $\sin ^{-1}\left(\cos \left(4095^{\circ}\right)\right)$ is equal to
(A) $\frac{-\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{-\pi}{4}$
(D) $\frac{\pi}{4}$
(E) $\frac{\pi}{2}$
28. If the distance between $(2,3)$ and $-5,2)$ is equal to the distance between $(x, 2)$ and $(1,3)$ then the values of x are
(A) -6 , 8
(B) 6 , 8
(C) -8 , 6
(D) -7 , 7
(E) $-8,-6$
29. The line segment joining the points $(4,7)$ and $(-2,-1)$ is a diameter of a circle. If the cirle intersects the x - axis at A and B, then $A B$ is equal to
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
30. If the three points $(0,1),(0,-1)$ and $(x, 0)$ are vertices of an equilateral triangle,
then the values of x are
(A) $\sqrt{ } 3$, $\quad \sqrt{ } 2$
(B) $\sqrt{ } 3, \quad-\sqrt{ } 3$
(C) $-\sqrt{ } 5$, $\sqrt{ } 3$
(D) $\sqrt{ } 2, \quad-\sqrt{ } 2$
(E) $\sqrt{ } 5,-\sqrt{ } 5$
31. The area of the triangle formed by the points $(2,2),(5,5),(6,7)$ is equal to (in square
units)
(A) $\frac{9}{2}$
(B) 5
(C) 10
(D) $\frac{3}{2}$
(E) 14
32. If the line $p x-q y=r$ intersects the co-ordinates axes at $(a, 0)$ and $(0, b)$, then the (A) $r\left(\frac{q+p}{p q}\right)$
(B) $r\left(\frac{q-p}{p q}\right)$
(C) $r \frac{(p-q)}{p q}$
(D) $r\left(\frac{p+q}{p-q}\right)$
(E) $r\left(\frac{p-q}{p+q}\right)$
33. The vertices of a triangle are $A(3,7), B(3,4)$ and $C(5,4)$. The equation of the bisector
of
the
angle
$\angle A B C$ is
(A) $y=x+$
(B) $y=x-$
(C) $y=$
$3 x-$
5
(D) $y=x$
(E) $y=-x$
34. The equation of a straight line which passes through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular
to $x \sec \theta+y \operatorname{cosec} \theta=a$ is
(A) $\frac{x}{a}+\frac{y}{a}=a \cos \theta$
(B) $x \cos \theta-y \sin \theta=a \cos 2 \theta$
(C) $x \cos \theta+y \sin \theta=a \cos 2 \theta$
(D) $x \cos \theta+y \sin \theta-a \cos 2 \theta=$
(E) $x \cos \theta-y \sin \theta+a \cos 2 \theta=-1$
35. The slopes of the lines which make an angle 45° with the line $3 x-y=-5$ are (A) 1 ,
(B) ,
(C) 1,
(D) $2,-\frac{1}{2}$
(E) -2 ,
36. The equation of one of the lines parallel to $4 x+3 y=5$ and at a unit distance

37. The equation of family of circles with centre at (h, k) touching the x - aix is given by
(A) $x^{2}+y^{2}-$
$2 h x+h^{2}=$
0
(B) $x^{2}+y^{2}-$
$2 h x-$
$2 k y+h^{2}=$
0
(C) $x^{2}+y^{2}-$
$2 h x-$
$2 k y-h^{2}=$
(D) $x^{2}+y^{2}-$
$2 h x-$
$2 k y=$
0
(E) $x^{2}+y^{2}+2 h x+2 k y=0$
38. If two circles $(x+7)^{2}+(y-3)^{2}=36$ and $(x-5)^{2}+(y+2)^{2}=49$ touch each other externally, then the point of contact is (A) $\left(\frac{-19}{13}, \frac{19}{13}\right)$
(B) $\left(\frac{-19}{13}, \frac{9}{13}\right)$
(C) $\left(\frac{17}{13}, \frac{9}{13}\right)$
(D) $\left(\frac{-17}{13}, \frac{9}{13}\right)$
(E) $\left(\frac{19}{13}, \frac{19}{13}\right)$
39. The equation of the chord of the circle $x^{2}+y^{2}=81$ which is bisected at the point (-2,
3)
is
(A) $3 x-y=$ 13
(B) $3 x-$
$4 y=$ 13
(C) $2 x-$
$3 y=$ 13
(D) $3 x-$
$3 y=$
(E) $2 x-3 y=-13$
40. The distance of the midpoint of line joining two points $(4,0)$ and $(0,4)$ from the centre
of
the
circle $x^{2}+y^{2}=$
16
is
(A) $\sqrt{ } 2$
(B) $2 \sqrt{ } 2$
(C) $3 \sqrt{ } 2$
(D) $2 \sqrt{ } 3$
(E) $\sqrt{ } 3$
41. One of the points on the parabola $y^{2}=12 x$ with focal distance 12 , is
(A) $(3$,
6)
(B) $(9$,
(C) $(7$,
(D) $(8$,
(E) $(1, \sqrt{ } 12)$
42. If the length of the major axis of an ellipse is $\frac{17}{8}$ times the length of the mirror axis, then the eccentricity of the ellipse is (A) $\frac{8}{17}$
(B) $\frac{15}{17}$
(C) $\frac{9}{17}$
(D) $\frac{2 \sqrt{2}}{17}$
(E) $\frac{13}{17}$
43. If a point $P(x, y)$ moves along the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and if C is the centre of the ellipse, then the sum of maximum and minimum values of $C P$ is
(A) 25
(B) 9
(C) 4
(D) 5
(E) 16
44. The distance between the foci of the conic $7 x^{2}-9 y^{2}=63$ is equal to (A) 8
(B) 4
(C) 3
(D) 7
(E) 12
45. If $|\vec{a}|=5,|\vec{b}|=6$ and $\vec{a} \cdot \vec{b}=-25$, then $|\vec{a} \times \vec{b}|$ is equal to (A) 25
(B) $6 \sqrt{ } 11$
(C) $11 \sqrt{ } 5$
(D) $11 \sqrt{ } 6$
(E) $5 \sqrt{ } 11$
46. If \vec{p}, \vec{q} and \vec{r} are perpendicular to $\vec{q}+\vec{r}, \vec{r}+\vec{p}$ and $\vec{p}+\vec{q}$ respectively and if $|\vec{p}+\vec{q}|=6,|\vec{q}+\vec{r}|=4 \sqrt{ } 3 \quad$ and $|\vec{r}+\vec{p}|=4$ then $|\vec{p}+\vec{q}+\vec{r}|$
(A) $5 \sqrt{ } 2$
(B) 10
(C) 15
(D) 5
(E) 25
47. The vectors of magnitude $a, 2 a, 3 a$ meet at a point and their directions are along the diagonals of three adjacent faces of a cube. Then the magnitude of their resultant
(A) $5 a$
(B) $6 a$
(C) $10 a$
(D) $9 a$
(E) $7 a$
48. Which one of the following vectors is of magnitude 6 and perpendicular to both $\vec{a}=2 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
(A) $2 \hat{i}-\hat{j}-2 \hat{k}$
(B)
$2(2 \hat{i}-\hat{j}+2 \hat{k})$
(C)
$3(2 \hat{i}-\hat{j}-2 \hat{k})$
(D) $2(2 \hat{i}+\hat{j}-2 \hat{k})$
(E) $2(2 \hat{i}-\hat{j}-2 \hat{k})$
49. If the vectors $\vec{a}=2 \hat{i}+\hat{j}+4 \hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=2 \hat{i}-3 \hat{j}-\lambda \hat{k}$ are coplanar, then the value of λ is equal to (A) 2
(B) 1
(C) 3
(D) -1
(E) 0
50. Let $A(1,-1,2)$ and $B(2,3,-1)$ be two points. If a point P divides $A B$ internally in the ratio 2:3, then the position vector of P is (A) $\frac{1}{\sqrt{5}}(\hat{i}+\hat{j}+\hat{k})$
(B) $\frac{1}{\sqrt{3}}(\hat{\wedge}+6 \hat{j}+\hat{k})$
(C) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
(D) $\frac{1}{\sqrt{5}}(\hat{i}+\hat{j}+9 \hat{k})$
(E) $\frac{1}{5}(7 \hat{i}+3 \hat{j}+4 \hat{k})$
51. If the scalar product of the vector $\hat{i}+\hat{j}+2 \hat{k}$ with the unit vector $\wedge \wedge \wedge$ along $m i+2 j+3 k$ is equal to 2 , then one of the values of m is (A) 3
(B) 4
(C) 5
(D) 6
(E) 7
52. A plane makes intercepts a, b, c at A, B, \mathbf{C} on the coordinate axes respectively. If the centre of the triangle $A B C$ is at $(3,2,1)$, then the equation of the plane is
(A) $x+$
$2 y+$
$3 z=$
(B) $2 x-$
$2 y-$
$6 z=$ 18
(C) $2 x+$
$2 y+$
$6 z=$ 18
(D) $\quad 2 x+$
$2 y+$ $6 z=$ 18
(E) $2 x+2 y+6 z=9$
53. If the plane $3 x+y+2 z+6=0$ is parallel to the line $\frac{\frac{3 x-1}{2 b}}{2 b}=3-y=\frac{\frac{z-1}{a}}{a}$
(A)
(B) $\frac{3}{2}$
(C) 3
(D) 4
(E) $\frac{5}{2}$
54. The equation of the line passing through the point $(3,0,-4)$ and perpendicular to the plane $2 x-3 y+5 z \quad-\quad 7=0 \quad$ is (A) $\frac{x-2}{3}=\frac{y}{-3}=\frac{z+4}{5}$
(В) $\frac{x-3}{2}=\frac{y}{-3}=\frac{z-4}{5}$
(С) $\frac{x-3}{2}=\frac{-y}{3}=\frac{z+4}{5}$
(D) $\frac{x+3}{2}=\frac{y}{3}=\frac{z-4}{5}$
(E) $\frac{x-2}{3}=\frac{y}{3}=\frac{z+4}{5}$
55. The plane $\vec{r}=s(\hat{i}+2 \hat{j}-4 \hat{k})+t(3 \hat{i}+4 \hat{j}-4 \hat{k})+(1-t)(2 \hat{i}-7 \hat{j}-3 \hat{k})$
is
parallel to
the
line
(A)

$$
\vec{r}=(-\hat{i}+\hat{j}-\hat{k})+t(-\hat{i}-2 \hat{j}+4 \hat{k})
$$

(B)

$$
\vec{r}=(-\hat{i}+\hat{j}-\hat{k})+t(\hat{i}-2 \hat{j}+4 \hat{k})
$$

(С) $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+t(-\hat{i}-4 \hat{j}+7 \hat{k})$
(D) $\vec{r}=(-\hat{i}+\hat{j}-\hat{k})+t(-2 \hat{i}+2 \hat{j}+4 \hat{k})$
(E)
$\vec{r}=(-\hat{i}+\hat{j}-3 \hat{k})+t(2 \hat{i}+6 \hat{j}-8 \hat{k})$
56. The distance between the line $\vec{r}=(2 \hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+2 \hat{k})=$

10
is
equal
to
(A) 5
(B) 4
(C) 3
(D) 2
(E) 1
57. Equation of the plane passing through the intersection of the planes $x+y+z=$ 6 and $2 x+3 y+4 z+5=0$ and the point $(1,1,1)$ is

(A) $20 x+$	$23 y+$	$26 z-$	69	$=$	0
(B) $31 x+$	$45 y+$	$49 z+$	52	$=$	0
(C) $8 x+$	$5 y+$	$2 z-$	69	$=$	0
(D) $4 x+$	$5 y+$	$6 z-$	7	$=$	0

(E) $x+y+2 z+17=0$
58. The equation of the plane containing the lines $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x}{2}=\frac{y-2}{-1}=\frac{z+1}{3}$ is
(A) $8 x-y+$
$5 z-$
8
=
0
(B) $8 x+y-5 z-\quad 7+$
$=$
(C) $x-8 y+$
$3 z+$
6 $=$
(D) $8 x+y-5 z+$
7
$=$
(E) $x+y+z-6=0$
59. The vector equation of the straight line $\frac{1-x}{3}=\frac{y+1}{-2}=\frac{3-z}{-1}$
(A)
(B) $\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}-\hat{k})$
$\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}-\hat{k})$
(C) $\vec{r}=(3 \hat{i}-2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+3 \hat{k})$
(D)
$\vec{r}=(3 \hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+3 \hat{k})$
(E)

$$
\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}+\hat{k})
$$

60. The arithmetic mean of 7 consecutive integers starting with ' a ' is m. Then the arithmetic mean of 11 consecutive integers starting with 'a+2' is
(A) $2 a$
(B) $2 m$
(C) $a+$
(D) $m+$
(E) $a+m+2$
61. The probability distribution of a random variable X is given by

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$P(X=x)$	p	$2 p$	$3 p$	$4 p$	$5 p$	$7 p$	$8 p$	$9 p$	$10 p$	$11 p$	$12 p$

62.

Then
the
(A) $\frac{1}{72}$
(B) $\frac{3}{73}$
(C) $\frac{5}{72}$
(D) $\frac{1}{74}$
(E) $\frac{1}{73}$
63. The mean and variance of n observations $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are 5 and 0 respectively. If $\sum_{i=1}^{n} x_{i}^{2}=400$, then the value of n is equal to
(A) 80
(B) 25
(C) 20
(D) 16
(E) 4
64. If A and B are mutually exclusive events and if $P(B)=\frac{1}{3}, P(A \cup B)=\frac{13}{21}$, then $P(A)$
is
equal to
(A) $\frac{1}{7}$
(B) $\frac{4}{7}$
(C) $\frac{2}{7}$
(D) $\frac{5}{7}$
(E) $\frac{6}{7}$
65. If f is a real valued function such that $f(x+y)=f(x)+f(y)$ and $f(1)=5$, then the
value
of $f(100)$
is
(A) 200
(B) 300
(C) 350
(D) 400
(E) 500
66. Let $f(x)=\frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x}{4}\right)}$ for $x \neq 0$, and $f(0)=12$. If f is continuous at $x=0$ then the value of a is equal to (A) 1
(B) -1
(C) 2
(D) -2
(E) 3
67. $\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt{1+x}-\sqrt{1-x}}\right)$ is
equal
to
(A) 0
(B) 1
(C) 2
(D) -1
(E) -2
$\lim _{x \rightarrow 0}\left(\frac{x^{3}}{3 x^{2}-4}-\frac{x^{2}}{3 x+2}\right)$ is
equal
to
(A) $-\frac{1}{4}$
(B) $-\frac{1}{2}$
(C) 0
(D) $\frac{2}{9}$
(E) $\frac{-6}{5}$
69. If $x^{y}=\quad e^{2(x-y)}$, then $\frac{d y}{d x}$ is
equal to (A) $\frac{2(1+\log x)}{(2+\log x)^{2}}$
(B) $\frac{1+\log x}{(2+\log x)^{2}}$
(C) $\frac{2}{2+\log x}$
(D) $\frac{2(1-\log x)}{(2+\log x)^{2}}$
(E) $\frac{2+\log x}{(2-\log x)^{2}}$
70. If $y=\quad \sin ^{-1} \sqrt{1-x}, \quad$ then $\frac{d y}{d x}$ is equal to
(A) $\frac{1}{\sqrt{1-x}}$
(B) $\frac{-1}{2 \sqrt{1-x}}$
(C) $\frac{1}{\sqrt{x}}$
(D) $\frac{-1}{2 \sqrt{x} \sqrt{1-x}}$
(E) $\frac{1}{\sqrt{x} \sqrt{1-x}}$
71. The derivative of $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ with respect to $\sin ^{-1}\left(3 x-4 x^{3}\right)$ is (A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C)
(D) 1
(E) 0
72. If $y=\quad \tan ^{-1} x+\quad \sec ^{-1} x+\quad \cot ^{-1} x+\quad \operatorname{cosec}^{-1} x, \quad$ then $\frac{d y}{d x}=$ (A) $\frac{x^{2}-1}{x^{2}+1}$
(B) π
(C) 0
(D) 1
(E) $\frac{1}{x \sqrt{x^{2}+1}}$
73. If $\quad f(x)=|x-2|+|x+1|-x \quad$ then $\quad f^{-1}(-10) \quad$ is equal to
(A) -3
(B) -2
(C) -1
(D)
(E) 1
74. If $x=a(1+\cos \theta), y=a(\theta+\sin \theta)$, then $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{2}$ is (A) $\frac{-1}{a}$
(B) $\frac{1}{a}$
(C) -1
(D) -2
(E) $\frac{-2}{a}$
75. If $y=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right), \quad$ then $\frac{d y}{d x}$ is equal to
(A)
(B) 2
(C) -2
(D) $\frac{-1}{2}$
(E) -1
76. The distance between the origin and the normal to the curve $y=e^{2 x}+x^{2}$ at $x=0$ is
(A) 2
(B) $\frac{2}{\sqrt{3}}$
(C) $\frac{2}{\sqrt{5}}$
(D)
(E) $\frac{1}{\sqrt{5}}$
77. The value of c in $(0,2)$ satisfying the mean value theorem for the function $f(x)=x(x-1)^{2}, x \in[0,2]$ is equal to (A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$
(E) $\frac{5}{3}$
78. The point on the curve $x^{2}+y^{2}=a^{2}, y \geq 0$ at which the tangent is parallel to $x-$ axis
(A) (a,
(B) $(-a$,
(C)
$\left(\frac{a}{2}, \frac{\sqrt{3}}{2} a\right)$
(D) $(0, a)$
(E) $\left(0, a^{2}\right)$
79. The angle between the curves, $y=x^{2}$ and $y^{2}-x=0$ at the point $(1,1)$, is (A) $\frac{\pi}{2}$
(B) $\tan ^{-1} \frac{4}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$
(E) $\tan ^{-1} \frac{3}{4}$
80. An edge of a variable cube is increasing at the rate of $10 \mathrm{~cm} / \mathrm{sec}$. How fast the volume of the cube will increase when the edge is 5 cm long?
(A) 750 $\mathrm{cm}^{3} / \mathrm{sec}$
(B) 75
$\mathrm{cm}^{3} / \mathrm{sec}$
(C) 300
$\mathrm{cm}^{3} / \mathrm{sec}$
(D) 150
$\mathrm{cm}^{3} / \mathrm{sec}$
(E) $25 \mathrm{~cm}^{3} / \mathrm{sec}$
81. The \quad minimum \quad value $\quad f(x)=|3-x|+7$ is
(A) 0
(B) 6
(C) 7
(D) 8
(E) 10
82. If the error committed in measuring the radius of the circle is 0.05%, then the corresponding error in calculating the area is
(A) 0.05%
(B) 0.0025%
(C) 0.25%
(D) 0.1%
(E) 0.2%
83. If $\int \frac{x+2}{2 x^{2}+6 x+5} d x=P \int \frac{4 x+6}{2 x^{2}+6 x+5} d x+\frac{1}{2} \int \frac{d x}{2 x^{2}+6 x+5}$,
then the valus of P is
(A) $\frac{1}{3}$
(B)
(C) $\frac{1}{4}$
(D) 2
(E) 1
84. $\int(x+1)(x+2)^{7}(x+3) d x$ is
equal
(A) $\frac{(x+2)^{10}}{10}-\frac{(x+2)^{8}}{8}+C$
(B) $\frac{(x+1)^{2}}{2}-\frac{(x+2)^{8}}{8}-\frac{(x+3)^{2}}{2}+C$
(C) $\frac{(x+2)^{10}}{10}+C$
(D) $\frac{(x+1)^{2}}{2}+\frac{(x+2)^{8}}{8}-\frac{(x+3)^{2}}{2}+C$
(E) $\frac{(x+2)^{9}}{9}-\frac{(x+2)^{7}}{7}+C$
85. $\int\left(x^{2}+1\right) \sqrt{x+1} d x$ is
(A) $\frac{(x+1)^{\frac{7}{2}}}{7}-2 \frac{(x+1)^{\frac{5}{2}}}{5}+2 \frac{(x+1)^{\frac{3}{2}}}{3}+C$
(B) $2\left[\frac{(x+1)^{\frac{7}{2}}}{7}-2 \frac{(x+1)^{\frac{5}{2}}}{5}+2 \frac{(x+1)^{\frac{3}{2}}}{3}\right]+C$
(C) $\frac{(x+1)^{\frac{7}{2}}}{7}-2 \frac{(x+1)^{\frac{5}{2}}}{5}+C$

(D) $\frac{(x+1)^{\frac{7}{2}}}{7}-3 \frac{(x+1)^{\frac{5}{2}}}{5}+11(x+1)^{\frac{1}{2}}+C$

(E) $(x+1)^{\frac{7}{2}}+(x+1)^{\frac{5}{2}}+(x+1)^{\frac{3}{2}}+C$
86. $\int \frac{1+x}{x+e^{-x}} d x$
(A) $\log \left|\left(x-e^{-x}\right)\right|+C$
(B) $\log \left|\left(x+e^{-x}\right)\right|+C$
(C) $\log \left|\left(1+x e^{x}\right)\right|+C$
(D) $\left(1+x e^{x}\right)^{2}+C$
(E) $\log \left|\left(1-x e^{x}\right)\right|+C$
$\int \frac{\log \left(x+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}} d x$ is
equal
to
(A) $\left[\log \left(x+\sqrt{1+x^{2}}\right)\right]^{2}+C$
(B) $x \log \left(x+\sqrt{1+x^{2}}\right)+C$
(C) $\frac{1}{2} \log \left(x+\sqrt{1+x^{2}}\right)+C$
(D) $\frac{1}{2}\left[\log \left(x+\sqrt{1+x^{2}}\right)\right]^{2}+C$
(E) $\frac{x}{2} \log \left(x+\sqrt{1+x^{2}}\right)+C$
88. $\int \frac{d x}{\sqrt{1-e^{2 x}}}$ is
(A)

$$
\log \left|e^{-x}+\sqrt{e^{-2 x}-1}\right|+C
$$

(B)

$$
\log \left|e^{x}+\sqrt{e^{2 x}-1}\right|+C
$$

(C) $-\log \left|e^{-x}+\sqrt{e^{-2 x}-1}\right|+C$
(D) $-\log \left|e^{-2 x}+\sqrt{e^{-2 x}-1}\right|+C$
(E) $\log \left|e^{-2 x}+\sqrt{e^{-2 x}-1}\right|+C$
89. $\int \frac{\cos x+x \sin x}{x^{2}+x \cos x} d x$ is
(A)

$$
\log \left|\frac{\sin x}{1+\cos x}\right|+C
$$

$$
\begin{equation*}
\log \left|\frac{\sin x}{x+\cos x}\right|+C \tag{B}
\end{equation*}
$$

(C)

$$
\log \left|\frac{2 \sin x}{x+\cos x}\right|+C
$$

$$
\begin{equation*}
\log \left|\frac{x \sin x}{x+\cos x}\right|+C \tag{D}
\end{equation*}
$$

$$
\begin{equation*}
\log \left|\frac{x}{x+\cos x}\right|+C \tag{E}
\end{equation*}
$$

90. The
(A)
$\int_{0}^{\frac{\pi}{6}} \frac{x d x}{\tan x}$
(B) $\int_{0}^{\frac{\pi}{6}} \frac{2 x}{\tan x} d x$
(C) $\int_{0}^{\frac{\pi}{2}} \frac{2 x d x}{\tan x}$
(D) $\int_{0}^{\frac{\pi}{6}} \frac{x d x}{\sin x}$
(E) $\int_{0}^{\frac{\pi}{6}} \frac{2 x}{\sin x} d x$
91. The area of the plane region bounded by the curve $x=y^{2}-2$ and the line $y=-$ x is
(in
square
units)
(A) $\frac{13}{3}$
(B) $\frac{2}{5}$
(C) $\frac{9}{2}$
(D) $\frac{5}{2}$
(E) $\frac{13}{2}$

$$
\int_{0}^{a} f(2 a-x) d x=m \quad \int_{0}^{a} f(x) d x=n \quad \int_{0}^{2 a} f(x) d x
$$

is equal to
(A) $2 m+n$
(B) $m+$
(C) $m-n$
(D) $n-m$
(E) $m+n$

$$
\int_{-100}^{100} f(x) d x
$$

93. -100 is
equal
to

(B) $\int_{-100}^{100} f\left(-x^{2}\right) d x$
(C) $\int_{-100}^{100} f\left(\frac{1}{x}\right) d x$
(D) $\int_{-100}^{100} f(-x) d x$
(E) $\int_{-100}^{100}[f(x)+f(-x)] d x$

$$
\int_{-1}^{1}\left(e^{x^{3}}+e^{-x^{3}}\right)\left(e^{x}-e^{-x}\right) d x
$$

(A) $\frac{e^{2}}{2}-2 e$
(B) $e^{2}-$
(C) $2\left(e^{2}-e\right)$
(D) $2 e^{-2}-$
(E) 0
95. The family of curves $y=e^{\text {asinx }}$, where a is an arbitrary constant, is represented by the differential
equation $\tan _{x} \frac{d y}{d x}$
(A) $\log y=$
(B) $y \log y=$ $\tan x \frac{d y}{d x}$
(C) $y \log y=$
(D) $\log y=$ $\sin x \frac{d y}{d x}$
(E) $y \log y=\cos x \frac{d y}{d x}$
96. The
integrating
of $x \frac{d y}{d x}+(1+x) y=x_{\text {is }}$
(A) x
(B) $2 x$
(C) $e^{x \log x}$
(D) e^{x}
(E) $x e^{x}$
97. The degree and order of the differential equation $y=p x+\sqrt[3]{a^{2} p^{2}+b^{2}}$, where

$$
\mathrm{p}=\frac{d y}{d x},
$$

(A) 3,1
(B) 1,
(C) 1 ,
(D) 3,
(E) 3,2
98. The solution of the differential equation $\frac{d y}{d x}+1=e^{x+y}$
(A) $x+e^{x+y}=C$
(B) $x-e^{x+y}=C$
(C) $x+e^{-(x+y)}=C$
(D) $x-e^{-(x+y)}=C$
(E) $x e^{x+y}+y=C$
99. Let $f(x)=\frac{\alpha x^{2}}{x+1}, x \neq-1$. The value of α for which $f(a)=a,(a \neq 0)$ is (A) $1-\frac{1}{a}$
(B) $\frac{1}{a}$
(C) $1+\frac{1}{a}$
(D) $\frac{1}{a}-1$
(E) $\frac{-1}{a}$
100. For $a, b \in R$, define $a^{*} b=\frac{a}{a+b}$, where $a+b \neq 0$. If $a * b=5$, then the value of $b^{*} a$ is
(A) 5
(B) -5
(C) 4
(D) -7
(E) -4
101. Let $A=\{x, y, z\}$ and $B=\{a, b, c, d\}$. Which one of the following is not a relation
from A to B ?
(A) $\{(x, a)$,
$(x, c)\}$
(B) $\{(y, c)$,
$(y, d)\}$
(C) $\{(z, a)$,
$(z, d)\}$
(D) $\{(z, b)$,
(y, b),
$(a, d)\}$
(E) $\{(x, c)\}$
102. The
domain
of $\sin ^{-1}\left[\log _{2}\left(\frac{x}{12}\right)\right]$ is
(A) $[2$,
(B) $[-1$,
(C) $\left[\frac{1}{3}, 24\right]$
(D) $\left[\frac{2}{3}, 24\right]$
(E) $[6,24]$
103. If $f(x)=x^{2}-1$ and $g(x)=(x+1)^{2}$, then $(g \circ f)(x)$ is
(A) $(x+1)^{4}-1$
(B) $x^{4}-1$
(C) x^{4}
(D) $(x+1)^{4}$
(E) $(x-1)^{4}-1$
104. The shaded region in the figure represents

(A) $A \cap B$
(B) $A \cup B$
(C) $B-A$
(D) $A-B$
(E) $(A-B) \cup(B-A)$
105. If $(x+i y)^{\frac{1}{3}}=2+3 i$, then $3 x+2 y$ is equal to
(A) -20
(B) -60
(C) -120
(D) 60
(E) 156
106. The modulus of the complex number z such that $|z+3-i|=1$ and $\arg z=\pi$
is
equal
to
(A) 1
(B) 2
(C) 9
(D) 4
(E) 3
107. If $z_{1}, z_{2}, \ldots, z_{n}$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, then $\left|z_{1}+z_{2}+\ldots+z_{n}\right|$ is equal to (A) $\left|z_{1} z_{2} z_{3} \ldots z_{n}\right|$
(B) $\left|z_{1}\right|+\left|z_{2}\right|+\ldots+\left|z_{n}\right|$
(C) $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right|$
(D) n
(E) \sqrt{n}
108. The value of $\frac{\cos 30^{\circ}+i \sin 30^{\circ}}{\cos 60^{\circ}-i \sin 60^{\circ}}$ is equal to
(A) i
(B) $-i$
(C) $\frac{1+\sqrt{3} i}{2}$
(D) $\frac{1-\sqrt{3} i}{2}$
(E) $1+i$
109. If $z=r(\cos \theta+i \sin \theta)$, then the value of $z z$
(A) \cos
2θ
(B) 2
cos
(C) 2
(D) 2
(E) $2 \sin 2 \theta$
110. If $z_{1}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)_{\text {and }} z_{2}=\sqrt{3}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$, then $\left|z_{1} z_{2}\right|$ is
(A) 6
(B) $\sqrt{ } 2$
(C) $\sqrt{ } 6$
(D) $\sqrt{ } 3$
(E) $\sqrt{ } 2+\sqrt{ } 3$
111. The value of a for which the equation $2 x^{2}+2 \sqrt{6} x+a=0$ has equal roots,
(A) 3
(B) 4
(C) 2
(D) $\sqrt{ } 3$
(E) $\sqrt{ } 2$
112. If $\frac{3}{2}+\frac{7}{2} i$ is a solution of the equation $a x^{2}-6 x+b=0$ where a and b are real numbers, then the value of $a+b$ is equal to (A) 10
(B) 22
(C) 30
(D) 29
(E) 31
113. If the roots of the equation $x^{2}-b x+c=0$ are two consecutive integers, then $b^{2}-$ $4 c$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) 3
114. If α and β are the roots of the equation $a x^{2}+b x+c=0,(c \neq 0)$, then the equation whose roots are $\frac{1}{a \alpha+b}$ and $\frac{1}{a \beta+b}$ is
(A) $a c x^{2}-b x+$
1
$=$
(B) $x^{2}-a c x+b c+$ 1
=
(C) $a c x^{2}+b x-$
1
$=$
(D) $x^{2}+a c x-b c+$
11
=
0
(E) $a c x^{2}-b x-11=0$
115. If a and b are the roots of the equation $x^{2}+a x+b=0, a \neq 0, b \neq 0$, then the values of aand b are
respectively
(A) 2
and
(B) 2
and -1
(C) 1
and
(D) 1
and
(E) -1 and 2
116. If $x^{2}+p x+q=0$, has the roots α and β, then the value of $(\alpha-\beta)^{2}$
is equal
to
(A) $p^{2}-$ $4 q$
(B) $\left(p^{2}-\right.$ $4 q)^{2}$
(C) $p^{2}+$
(D) $\left(p^{2}+\right.$
(E) $q^{2}-4 p$
117. If the sum to first n terms of the A.P. $2,4,6, \ldots$ is 240 , then the value of n is
(A) 14
(B) 15
(C) 16
(D) 17
(E) 18
118. The
value
of
$\frac{1}{\sqrt{10}-\sqrt{9}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\ldots-\frac{1}{\sqrt{121}-\sqrt{120}}$
is
equal
to
(A) -10
(B) 11
(C) 14
(D) 13
(E) -8
119. An A.P. consists of 23 terms. If the sum of the three terms in the middle is 141 and the sum of the last three terms is 261 , then the first term is (A) 6
(B) 5
(C) 4
(D) 3
(E) 2
120. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in A.P. with common difference 5 and if $a_{i} a_{j} \neq-1$

$$
\text { for } i, j=
$$

is

$$
\tan ^{-1}\left(\frac{5}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{5}{1+a_{2} a_{3}}\right)+\ldots+\tan ^{-1}\left(\frac{5}{1+a_{n-1} a_{n}}\right)
$$

equal
to
(A)

$$
\tan ^{-1}\left(\frac{5}{1+a_{n} a_{n-1}}\right)
$$

(B)

$$
\tan ^{-1}\left(\frac{5 a_{1}}{1+a_{n} a_{1}}\right)
$$

(C)

$$
\tan ^{-1}\left(\frac{5 n-5}{1+a_{n} a_{1}}\right)
$$

(D)
$\tan ^{-1}\left(\frac{5 n-5}{1+a_{1} a_{n+1}}\right)$
(E)

$$
\tan ^{-1}\left(\frac{5 n}{1+a_{1} a_{n}}\right)
$$

121. The sum of all two digit natural numbers which leave a remainder 5 when they are divided by 7 is equal to
(A) 715
(B) 702
(C) 615
(D) 602
(E) 589
