S.E. (Mechanical, Production and S/W) (I Sem.)

EXAMINATION, 2010
ENGINEERING MATHEMATICS-III (2008 COURSE)

Time : Three Hours

N.B. :- (i) Answers to the two Sections should be writte in separate answer-books.
(ii) In Section I, attempt Q. No. 1 or No. 2, Q. No. 3 or Q . No. 4, Q. No. 5 or Q. No. 6.
(iii) In Section II, attempt Q. No. 7 Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
(iv) Neat diagrams must be kawn herever necessary.
(v) Figures to the right indi atesull marks.
(vi) Use of non-programnable electronic pocket calculator is allowed.
(vii) Assume suitable daf necessary.

1. (a) Solve the followins ifferential Equations (any three) : [12]

$$
\begin{equation*}
\left(\mathrm{D}^{4}+5 \mathrm{D}+2\right) y=\cos \frac{x}{2} \cos \frac{3 x}{2} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\text { (iii) } 5+2 x) \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=5 \log (5+2 x) \tag{ii}
\end{equation*}
$$

$$
\text { (D) }\left(\mathrm{D}^{3}-5 \mathrm{D}^{2}+8 \mathrm{D}-4\right) y=2 e^{x}+e^{2 x}
$$

$$
\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{x e^{x^{2}+y^{2}}} .
$$

(b) Solve the simultaneous differential equation :

$$
\frac{d x}{d t}+y=\sin t ; \frac{d y}{d t}+4 x=\cos t
$$

$$
\text { given } x=0, y=1 \text { when } t=0 \text {. }
$$

Or
2. (a) Solve the following differential equations (any three)

$$
\begin{equation*}
\left(\mathrm{D}^{3}-2 \mathrm{D}+4\right) y=3 x^{2}-5 x+2 \tag{i}
\end{equation*}
$$

(ii) $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\mathrm{A}+\mathrm{B} \log x$
(iii) $\left(\mathrm{D}^{2}+1\right) y=\frac{1}{1+\sin x}$ by variation P . rameters
(iv) $\left(\mathrm{D}^{2}+\mathrm{D}-6\right) y=e^{-2 x} \sin 3 x$
(v)
$\left(\mathrm{D}^{2}+13 \mathrm{D}+36\right) y=e^{-4 x}+\sin ?$
(b) A spring stretches 1 cm under trion of 2 kgs and has negligible weight. It is fixed at one end is attached to a weight W kgs at the other. It it found resonance occurs when an axial periodic force $2 \mathrm{k}^{2 t} \mathrm{kgs}$ acts on the weight. Show that when the free vibra have died out, the forced vibrations are given by $x=c-\operatorname{in} 2 v$, and find values of W and C . [5]
3. (a) Find Laplace trans of (any two) :
(i)

$$
\begin{equation*}
\frac{\cos \sqrt{t}}{\sqrt{t}} \tag{6}
\end{equation*}
$$

(ii) $e^{3 t} \int_{0}^{t} \sin 2 t d t$ $\frac{d}{d t}\left(\frac{\sin t}{t}\right)$.

Solve using Laplace transform method :

$$
\begin{equation*}
y^{\prime \prime}+y=t, y(0)=1, \quad y^{\prime}(0)=-2 . \tag{5}
\end{equation*}
$$

(c) Find Fourier sine transform of :

$$
\begin{array}{cc}
f(x)= & 0 \leq x \leq 1 \\
2-x & ; \\
0 ; & 1 \leq x \leq 2 \\
\text { Or }
\end{array}
$$

4. (a) Find Inverse Laplace transform of (any two) :
(i) $\frac{1}{s} \log \left(\frac{s+3}{s+2}\right)$
(ii) $\frac{1}{(s+4)^{3 / 2}}$
(iii) $\frac{1}{(s+1)\left(s^{2}+1\right)}$ by convolution theom.
(b) Evaluate :

$$
\int_{0}^{\infty} t e^{-2 t} \cos t d t
$$

(c) Solve the integral equation

$$
\int_{0}^{\infty} f(x) \cos \lambda x<=e^{\lambda}, \lambda>0
$$ *

5. (a) Solve :

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \text { if : } \tag{8}
\end{equation*}
$$

(i) μ nite for all t
(ii) $=0$ when $x=0, \pi$ for all t
(iii) $=\pi x-x^{2}$ when $t=0,0 \leq x \leq \pi$.
(b) Ar initely long uniform metal plate is enclosed between the 1i.es $y=0$ and $y=l$ for $x>0$. The temperature is zero Fromg the edges $y=0, y=l$ and at infinity. If the edge $x=0$ is kept at constant temperature u_{0}, find the temperature distribution $u(x, y)$.
6. (a) The initial temperature along the length of an infinite bar is given by :

$$
u(x, 0)=\begin{array}{ll}
2 ; & |x|<1 \\
0 & ;
\end{array}|x|>1
$$

If the temperature $u(x, t)$ satisfies the equation :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\infty<x<\infty, t>0
$$

find the temperature at any point of the bar at any time t using Fourier transform.
(b) A string is stretched and fastened to two pints l apart. Motion is started by displacing the string in erm,

$$
u=a \sin \frac{\pi x}{l}
$$

from which it is released at time $t \bigcirc$ Find the displacement $u(x, t)$ from one end.

7. (a) Calculate the first four mets about the mean of the following distribution :

Marks	Number of students
$0-10$	6
$10-20$	26
$20-30$	47
$30-40$	15
$1-50$	6

(b) A group of 20 aeroplanes are sent on an operational flight. TK \&ances that an aeroplane fails to return from the flight is percent. Determine the probability that :

No plane returns
(ii) At most 3 planes do not return.
(c) The two lines of regression are $9 x+y-\lambda=0$ and $4 x+y=\mu$ and the means of x and y are 2 and -3 respectively. Find the values of λ and μ. Also find the regression coefficients $b_{x y}$ and $b_{y x}$.

Or
8. (a) The following marks have been obtained by a class o sty lents in two papers of Mathematics :

Paper I	Paper II
45	56
55	50
56	48
58	60
60	64
65	65
68	70
70	74
75	82
80	90
85	

Calculate the sefficient of correlation for the above data. [6]
(b) 5,000 candidates aspeared in a certain paper carrying a maximum of 100 marks. was found that marks were normally distributed with mef 39.5 and standard deviation 12.5. Determine appromately the number of candidates who secured a first cla for which minimum of 60 marks is necessary.

$$
z=1.64
$$

$$
\begin{equation*}
\text { Area }=0.4495 . \tag{5}
\end{equation*}
$$

(c) The demand for a particular spare part in a factory was found to vary from day to day. In a sample study, the following information was obtained :

Days	Number of parts demanded
Mon.	1124
Tues.	1125
Wed.	1110
Thurs.	1120
Fri.	1126
Sat.	1115

Test the hypothesis that the number of pots demanded does not depend on the day of the week. Given $\chi \frac{0}{5} 0.05=11.07$. [5]
9. (a) If

$$
\bar{r}=\bar{a} \sinh t+\bar{b} \cosh t
$$

Coors,
where \bar{a} and \bar{b} are constant actors, prove that:

$$
\begin{equation*}
\frac{d \bar{r}}{d t} \times \frac{d^{2} \bar{r}}{d t^{2}}=\text { constant } \tag{4}
\end{equation*}
$$

(b) Prove the following vect r entities (any two) :
(i) $\nabla^{2}\left[\nabla \cdot\left(\frac{\bar{r}}{r^{2}}\right)\right]=\frac{2}{4}$
(ii) $\nabla\left(\frac{\bar{a} \cdot \bar{r}}{r^{n}}\right) \frac{n \cdot \bar{a} \cdot \bar{r})}{r^{n+2}} \bar{r}$
(iii) $\nabla \times[\bar{a} \times(\bar{b} \times \bar{r})]=\bar{a} \times \bar{b}$.
(c) If direct derivative of

$$
\mathcal{N}=a x^{2} y+b y^{2} z+c z^{2} x \quad \text { at }(1,1,1)
$$

has ximum magnitude 15 in the direction parallel to :

$$
\begin{equation*}
\frac{x-1}{2}=\frac{y-3}{-2}=\frac{z}{1} \tag{5}
\end{equation*}
$$

find the values of $a ; b, c$.
10. (a) Show that :

$$
\overline{\mathrm{F}}=\left(2 x z^{3}+6 y\right) \hat{i}+(6 x-2 y z) \hat{j}+\left(3 x^{2} z^{2}-y^{2}\right) \hat{k}
$$

is irrotational. Find scalar potential ϕ such that

$$
\overline{\mathrm{F}}=\nabla \phi .
$$

[6]
(b) Find the directional derivative of

$$
\phi=4 x z^{3}-3 x^{2} y^{2} z \text { at }(2,-1,2)
$$

along tangent to the curve

$$
\begin{equation*}
x=e^{t} \cos t, y=e^{t} \sin t, z=e^{t} \quad t=0 \tag{6}
\end{equation*}
$$

(c) For a solenoidal vector field $\overline{\mathrm{E}}$, show that curl curl curl curl

$$
\begin{equation*}
\overline{\mathrm{E}}=-\nabla^{4} \overline{\mathrm{E}} \tag{5}
\end{equation*}
$$

11. (a) If

$$
\begin{aligned}
& \left.\qquad \overline{\mathrm{F}}=\left(2 x y+3 z^{2}\right) \hat{i}()^{2}+4 y z\right) \hat{j}+\left(2 y^{2}+6 x z\right) \hat{k} \text {, } \\
& \text { evaluate : } \\
& \text { where } c \text { is curve : } \\
& x, y=t^{2}, z=t^{3}
\end{aligned}
$$

$$
\begin{equation*}
\text { joining the oints }(0,0,0) \text { and }(1,1,1) \text {. } \tag{5}
\end{equation*}
$$

(b) Evalu

$$
\iint_{s}\left(x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}\right) \cdot d \bar{s}
$$

yhere s is the surface of the sphere ;

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=9 \tag{6}
\end{equation*}
$$

(c) Verify Stokes theorem for

$$
\overline{\mathrm{F}}=x y^{2} \hat{i}+y \hat{j}+x z^{2} \hat{k}
$$

for the surface of rectangular lamina bounded by :

$$
x=0, y=0, x=1, y=2, z=0
$$

Or
12. (a) Find the work done in moving a particle once round the ellipse:

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0
$$

under the field of force given by :
(b) Evaluate :
where

$$
\begin{equation*}
\left.\overline{\mathrm{F}}=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+(3) 2 y+4 z\right) \hat{k} \tag{5}
\end{equation*}
$$

where

and s is the surface $+4 y^{2}+z^{2}-2 x=4$ above the plane
$x=0$.
(c) Use divergeneereorem to evaluate :

$$
\underbrace{}_{s}\left(y^{2} z^{2} \hat{i}+z^{2} x^{2} \hat{j}+x^{2} y^{2} \hat{k}\right) \cdot d \bar{s}
$$

wee s is the upper part of the sphere $x^{2}+y^{2}+z^{2}=16$ above x or plane.

