Paper-2

Physics

- 1. A block is resting on a piston which is moving vertically with SHM of period 1s. At what amplitude of motion will the block and piston separate?
 - 1) 0.2 m
 - 2) 0.25 m
 - 3) 0.3 m
 - 4) 0.35 m
- 2. Two simple harmonic motions are given by $x = A \sin (\omega t + \delta)$ and $y = A \sin (\omega t + \delta + (\pi/2))$ act on a particle simultaneously, then the motion of particle will be
 - 1) circular anti-clockwise
 - 2) elliptical anti-clockwise
 - 3) elliptical clockwise
 - 4) circular clockwise
- 3. Two sources are at a finite distance apart. They emit sound of wavelength λ . An observer situated between them on line joining the sources, approaches towards one source with speed *u*, then the number of beats heard per second by observer will be
 - 1) 2u/ λ
 - 2) u/ λ
 - 3) u/2 λ
 - 4) λ/u
- 4. A man goes at the top of a smooth inclined plane. He releases a bag to fall freely and himself slides down on inclined plane to reach the bottom. If u_1 and u_2 are the velocities of the man and bag respectively, then
 - 1) u₁ > u₂
 - 2) $u_1 < u_2$
 - 3) $u_1 = u_2$
 - 4) u_1 and u_2 cannot be compared
- 5. Two planets A and B have the same material density. If the radius of A is twice that of B, then the ratio of escape velocity (v_A/v_B) is
 - 1) 2
 - 2) √2

- 3) 1/√2
- 4) 1/2
- 6. The given figure gives electric lines of force due to two charges q_1 and q_2 . What are the signs of the two charges?

- 1) Both are negative
- 2) Both are opsitive
- 3) q_1 is positive but q_2 is negative
- 4) q_1 is negative but q_2 is positive
- 7. Three point charges q, 2q and 2q are placed at the vertices of an equilateral triangle of side *a*. The work done by some external force to increase their separation to 2*a* will be
 - 1) negative

```
2) (1/4πε<sub>0</sub>) (2q<sup>2</sup>/a)
```

- 3) $(1/4\pi\epsilon_0)$ $(3q^2/a)$
- 4) zero
- 8. A radioactive element *x* converts into another stable element *y*. Half-life of *x* is 2 h, initially only *x* is present. After time *t*, the ratio of atoms of *x* and *y* is found to be 1 : 4, then *t* in hour is
 - 1) 2
 - 2) 4
 - 3) between 4 and 6
 - 4) 6
- 9. The shortest wavelength of the Brackett series of hydrogen like atom (atomic number = Z) is the same as the shortest wavelength of the Balmer series of hydrogen atom. The value of Z is
 - 1) 3 2) 4 3) 5 4) 2
- 10. Radius of gyration of disc of mass 50 g and radius 2.5 cm about an axis passing through its centre of gravity and perpendicular to the plane is
 - 1) 6.54 cm
 - 2) 3.64 cm
 - 3) 1.77 cm
 - 4) 0.88 cm
- 11. Ray optics is valid, when characteristic dimensions are
 - 1) of the same order as the wavelength of light

- 2) much smaller than the wavelength of light
- 3) of the order of one millimetre
- 4) much larger than the wavelength of light
- 12. A beam of electrons is moving with constant velocity in a region having electric and magnetic fields of strength 20 Vm⁻¹ and 0.5 T at right angles to the direction of motion of the electrons. What is the velocity of the electrons?
 - 1) 20 ms⁻¹
 - 2) 40 ms⁻¹
 - 3) 8 ms⁻¹
 - 4) 5.5 ms⁻¹
- 13. Gases begin to conduct electricity at low pressure because
 - 1) at low pressure, gases turn into plasma
 - 2) colliding electrons can acquire higher kinetic energy due to increased mean free path leading to ionisation of atoms
 - 3) atom breaks up into electrons and protons
 - 4) the electrons in atoms can move freely at low pressure
- 14. A light of wavelength 5890 ${\rm \AA}$ falls normally on a thin air film. The minimum thickness of the film such that the film appears dark in reflected light is
 - ¹⁾ 2.945×10^{-7} m
 - 2) 3.945×10^{-7} m
 - 3) 4.95×10^{-7} m
 - ⁴⁾ 1.945×10^{-7} m
- 15. For a black body at temperature 727°C its radiating power is 60W and temperature of surrounding is 227°C. If the temperature of the black body is changed to 1227°C, then its radiating power will be
 - 1) 120 W
 - 2) 240 W
 - 3) 304 W
 - 4) 320 W
- 16. An object is moving through the liquid. The viscous damping force acting on it is proportional to the velocity. Then dimensional formula of constant of proportionality is
 - 1) [ML⁻¹ T⁻¹]
 - 2) [MLT⁻¹]
 - 3) [M⁰LT⁻¹]
 - 4) [ML⁰T⁻¹]

- 17. A car moves on a circular road. It describes equal angles about the centre in equal intervals of time. Which of the following statements about the velocity of the car is true ?
 - 1) Magnitude of velocity is not constant
 - 2) Both magnitude and direction of velocity change
 - 3) Velocity is directed towards the centre of the circle
 - 4) Magnitude of velocity is constant but direction changes
- 18. A stone is attached to one end of a string and rotated in a vertical circle. If string breaks at the position of maximum tension, it will break at

- 19. A sealed container with negligible coefficient of volumetric expansion contains helium (a monoatomic gas). When it is heated from 300 K to 600 K, the average KE of helium atoms is
 - 1) halved
 - 2) unchanged
 - 3) doubled
 - 4) increased by factor $\sqrt{2}$
- 20. A convex lens of focal length 20 cm placed in contact with a plane mirror acts as a
 - 1) convex mirror of focal length 10 cm
 - 2) concave mirror of focal length 40 cm
 - 3) concave mirror of focal length 60 cm
 - 4) concave mirror of focal length 10 cm
- 21. A child is swinging a swing. Minimum and maximum heights of swing from earth's surface are 0.75 m and 2 m respectively. The maximum velocity of this swing is
 - 1) 5 ms⁻¹
 - 2) 10 ms⁻¹
 - 3) 15 ms⁻¹
 - 4) 17 ms⁻¹
- 22. At ordinary temperature, the molecules of an ideal gas have only translational and rotational kinetic energies. At high temperatures they may also have vibrational energy. As a result of this at higher temperatures (C_v = molar heat capacity at constant volume)
 - 1) $C_V = (3/2)R$ for a monoatomic gas
 - 2) $C_v > (3/2)R$ for a monoatomic gas
 - 3) $C_V < (5/2)R$ for a diatomic gas

- 4) $C_v = (5/2)R$ for a diatomic gas
- 23. Work done per mol in an isothermal change is
 - 1) RT log₁₀ (V₂/V₁)
 - 2) RT log₁₀ (V₁/V₂)
 - 3) RT log_e (V₂/V₁)
 - 4) RT log_e (V₁/V₂)
- 24. For a given plate-voltage, the plate current in a triode is maximum when the potential of
 - 1) the grid is positive and plate is negative
 - 2) the grid is positive and plate is positive
 - 3) the grid is zero and plate is positive
 - 4) the grid is negative and plate is positive
- 25. A wire is wound in the form of a solenoid of length *I* and distance *d*. When a strong current is passed through a solenoid, there is a tendency to
 - 1) increase / but decrease d
 - 2) keep both / and d constant
 - 3) decrease / but increase d
 - 4) increase both *I* and *d*
- 26. The seave of a galvanometer of resistance 100 Ω contains 25 divisions. It gives a deflection of one division on passing a current of 4 × 10⁻⁴ A. The resistance in ohm to be added to it, so that it may become a voltmeter of range 2.5 V is
 - 1) 1502) 1703) 1104) 220
- 27. A train is moving with a constant speed along a circular track. The engine of the train emits a sound of frequency *f*. The frequency heard by the guard at rear end of the train is
 - 1) less then f
 - 2) equal to f
 - 3) is greater than f
 - 4) may be greater than, less than or equal to *f* depending on the factors like speed of train, length of train and radius of circular track
- 28. If λ_1 , λ_2 and λ_3 are the wavelengths of the waves giving resonance with the fundamental, first and second overtones respectively of a closed organ pipe. Then the ratio of wavelengths $\lambda_l : \lambda_2 : \lambda_3$ is
 - 1) 1 : 3 : 5
 - 2) 1 : 2 : 3
 - 3) 5 : 3 : 1
 - 4) 1 : (1/3) : (1/5)

- 29. By what percent the energy of a satellite has to be increased to shift it from an orbit of radius *r* to (3/2) *r*?
 - 1) 15%
 - 2) 20.3%
 - 3) 66.7%
 - 4) 33.33%
- 30. The slope of plate characteristic of a vacuum diode is 2×10^{-2} mAV ⁻¹. The plate resistance of diode will be
 - 1) 50 Ω
 - 2) 50 k Ω
 - 3) 500 Ω
 - 4) 500 k Ω
- 31. A stone is thrown vertically upwards. When stone is at a height half of its maximum height, its speed is 10 ms⁻¹, then the maximum height attained by the stone is ($g = 10 \text{ ms}^{-2}$)
 - 1) 5 m
 - 2) 150 m
 - 3) 20 m
 - 4) 10 m
- 32. Figures (1) and (2) show the displacement-time graphs of two particles moving along the x-axis. We can say that

- 1) both the particles are having a uniform accelerated motion
- 2) both the particles are having a uniform retarted motion
- 3) particle (1) is having uniform accelerated motion while particle (2) is having a uniform retarted motion
- 4) particle (1) is having a uniformly retarted motion while particle (2) is having a uniformly accelerated motion
- 33. A particle of mass *m* is executing uniform circular motion on a path of radius *r*. If *p* is the magnitude of its linear momentum. The radial force acting on the particle is
 - 1) pmr
 - 2) rm/p
 - 3) mp²/r
 - 4) p²/rm

- 34. Water rises to a height *h* in a capillary tube lowered vertically into a water to a depth *l*. The lower end of the tube is closed inside the water and the tube is taken out of water and opened. If l < h, then the length of water column remaining in the tube is
 - 1) zero
 - 2) / + h
 - 3) 2h
 - 4) h

35. In the circuit, the potential difference across PQ will be nearest to

- 1) 9.6 V
- 2) 6.6 V
- 3) 4.8 V
- 4) 3.2 V

36. A ball hits a vertical wall horizontally at 10 ms⁻¹ and bounces back at 10 ms⁻¹, then

- 1) there is no acceleration because $10 \text{ ms}^{-1} 10 \text{ ms}^{-1} = 0$
- 2) there may be an acceleration because its initial direction is horizontal
- 3) there is an acceleration because there is a momentum change
- 4) even though there is no change in momentum there is a change in direction. Hence it has an acceleration
- 37. Sodium and copper have work functions 2.3 eV and 4.5 eV respectively. Then the ratio of their threshold wavelengths is nearest to
 - 1) 1 : 2
 - 2) 2 : 1
 - 3) 1 : 4
 - 4) 4 : 1
- 38. Water flows along a horizontal pipe whose cross-section is not constant. The pressure is 1 cm of Hg where the velocity is 35 cms⁻¹. At a point where the velocity is 65 cms⁻¹, the pressure will be
 - 1) 0.89 cm of Hg
 - 2) 8.9 cm of Hg
 - 3) 0.5 cm of Hg
 - 4) 1 cm of Hg
- 39. In an inductor of self-inductance L = 2 mH, current changes with time according to relation $I = t^2 e^{-t}$. At what time emf is zero?

- 1) 3 s
- 2) 4 s
- 3) 1 s
- 4) 2 s
- 40. A capacitor of 10 μ F is charged to a potential 50 V with a battery. The battery is now disconnected and an additional charge 200 μ C is given to the positive plate of the capacitor. The potential difference across the capacitor will be
 - 1) 100 V
 - 2) 60 V
 - 3) 80 V
 - 4) 50 V
- 41. A lump of clay of mass 10 g travelling with a velocity of 10 cms⁻¹ towards east collides head on with another lump of clay of mass 10 g travelling with velocity of 20 cms⁻¹ towards west. If the two lumps coalesce after collision, what is its velocity, if no external force acts on the system?
 - 1) 15 cms⁻¹ towards west
 - 2) 15 cms⁻¹ towards east
 - 3) 5 cms⁻¹ towards west
 - 4) 5 cms⁻¹ towards east
- 42. A particle is fired with a speed of 2 kmh⁻¹. The speed with which it will move in intersteller space is ($v_e = 8\sqrt{2}$ kmh⁻¹)
 - 1) 16.5 kmh⁻¹
 - 2) 11.2 kmh⁻¹
 - 3) 10 kmh⁻¹
 - 4) 8.8 kmh⁻¹
- 43. A car of mass 1500 kg is moving with a speed of 12.5 ms⁻¹ on a circular path of radius 20 m on a level road. The value of coefficient of friction between the tyres and road, so that the car does not slip, is
 - 1) 0.8 2) 0.6 3) 0.4 4) 0.2

44. If \vec{a}_1 and \vec{a}_2 are two non-collinear unit vectors and if $|\vec{a}_1 + \vec{a}_2| = \sqrt{3}$, then the value of $(\vec{a}_1 - \vec{a}_2)(2\vec{a}_1 + \vec{a}_2)$ is

- 1) 2
 2) 3/2
 3) 1/2
 4) 1
- 45. The energy of photon of light is 3 eV. Then the wavelength of photon must be
 - 1) 4125 nm
 - 2) 412.5 nm

- 3) 41.250 nm
- 4) 4 nm
- 46. The half-life of radioactive material is 3 h. If the initial amount is 300 g. Then after 18 h, it will remain
 - 1) 4.69 g
 - 2) 46.8 g
 - 3) 9.375 g
 - 4) 93.75 g
- 47. The wavelength of K_a X-rays for lead isotopes Pb²⁰⁸, Pb²⁰⁶ and Pb²⁰⁴ are λ_1 , λ_2 and λ_3 respectively. Then
 - 1) $\lambda_1 = \lambda_2 = \lambda_3$
 - 2) $\lambda_1 > \lambda_2 > \lambda_3$
 - 3) $\lambda_1 < \lambda_2 < \lambda_3$
 - 4) $\lambda_1 = \lambda_2 > \lambda_3$
- 48. A wire 50 cm long and 1 mm^2 in cross-section carries a current of 4 A when connected to a 2 V battery. The resistivity of the wire is
 - ¹⁾ $_{2} \times 10^{-7} \Omega m$ ²⁾ $_{5} \times 10^{-7} \Omega m$ ³⁾ $_{4} \times 10^{-6} \Omega m$
 - 4) 1 x 10⁻⁶ Ω m
- 49. A magnet 10 cm long and having a pole strength 2 Am is deflected through 30° from the magnetic meridian. The horizontal component of earth's induction is 0.32×10^{-4} T, then the value of deflecting couple is
 - ¹⁾ 16×10^{-7} Nm
 - ²⁾ $_{64} \times 10^{-7}$ Nm
 - ³⁾ 48×10^{-7} Nm
 - 4) $32 \times 10^{-7} \text{ Nm}$
- 50. A closely wound flat circular coil of 25 turns of wire has diameter of 10 cm which carries current of 4 A, the flux density at the centre of a coil will be
 - ¹⁾ $2.28 \times 10^{-6} \text{ T}$
 - ²⁾ 1.679 × 10⁻⁶ T
 - ³⁾ 1.256 × 10^{-3} T
 - ⁴⁾ $1.572 \times 10^{-5} \text{ T}$

Chemistry

- 51. Benzene reacts with CH₃COCI in the presence of AICI₃ and gives
 - 1) C₆H₅COCH₃
 - 2) C₆H₅CH₃
 - 3) C₆H₅OCH₃
 - 4) C₇H₁₄
- 52. Lucas test is given fastly by
 - 1) butanol-2
 - 2) butanol-1
 - 3) *iso*-butanol
 - 4) 2-methyl-2-propanol

53. NH_3 gas is passed over heated copper oxide. It oxidises to

- 1) N₂
- 2) NO₂
- 3) NO
- 4) HNO₂

54. Which of the following compounds shows optical isomerism?

- 1) CH₃—CH—BrCOOH
- 2) CH₂OHCH₂—COOH
- 3) COOHCHBr—COOH
- 4) CH₂Br—CH₂—COOH

55. $CH_2 = CH_2 \xrightarrow{HBr} X \xrightarrow{Aq. KOH} Y \xrightarrow{Na_2CO_3} Z$

In the above reaction sequence, Z is

- 1) C₂H₅OH
- 2) C₂H₅I
- 3) CH₃CHO
- 4) CHI₃

56. $C_6H_5CI + CH_3CI \xrightarrow{Na/dry ether} C_6H_5CH_3 + 2NaCI$

This reaction is an example of

- 1) Wurtz reaction
- 2) Fittig reaction
- 3) Wurtz-Fittig reaction

- 4) Frankland reaction
- 57. The main difference between formic acid and acetic acid is that formic acid is
 - 1) less acidic
 - 2) dehydrating agent
 - 3) reducing agent
 - 4) bleaching agent

58. Hinsberg reagent, C₆H₅SO₂Cl does not react with

- 1) 1° amine
- 2) 2° amine
- 3) 3° amine
- 4) NH₃
- 59. Ordinary glass is formed by mixing of
 - 1) Na₂CO₃ + CaCO₃
 - 2) $Na_2CO_3 + CaCO_3 + silica$
 - 3) silica + Na₂CO₃
 - 4) silica + borax
- 60. Correct order of freezing point of 1 M solution of sucrose, KCI, BaCl₂ and AlCl₃ is
 - 1) Sucrose > KCl > $BaCl_2 > AlCl_3$
 - 2) $AICI_3 > BaCI_2 > KCI > Sucrose$
 - 3) $BaCl_2 > KCl > AlCl_3 > Sucrose$
 - 4) KCl > $BaCl_2 > AlCl_3 > Sucrose$
- 61. Table sugar is
 - 1) sucrose
 - 2) glucose
 - 3) fructose
 - 4) maltose

62. If (3/4) quantity of a radioactive substance disintegrates in 60 min, its half-life period will be

- 1) 15 min
- 2) half an hour
- 3) one hour
- 4) one day
- 63. Element with atomic number 81, is present in which block?
 - 1) *s*-block

- 2) p-block
- 3) d-block
- 4) f-block
- 64. Correct order of basic strength is
 - 1) $Mg(OH)_2 > NaOH > AI(OH)_3$
 - 2) $Mg(OH)_2 > AI(OH)_3 > NaOH$
 - 3) NaOH > Mg(OH)₂ > Al(OH)₃
 - 4) $AI(OH)_3 > Mg(OH)_2 > NaOH$
- 65. Which of the following will give carbylamine test ?
 - 1) N, N-dimethyl aniline
 - 2) 2, 4-dimethyl aniline
 - 3) N-methyl-2-methylaniline
 - 4) N-methyl benzylamine
- 66. Consider following reactions
 - I : C(s) + (1/2) O₂(g) → CO(g); $\Delta H_1 = a$ (b) CO(g) + (1/2) O₂ (g) → CO₂ (g); $\Delta H_2 = b$ (c) C(s) + CO₂(g) → 2CO(g); $\Delta H_3 = c$ Select correct statement
 - 1) Heat of formation of CO_2 is (a + b)
 - 2) Heat of combustion of C is (a + b)
 - 3) $\Delta H_3 = \Delta H_1 \Delta H_2$
 - 4) All the above are correct statements
- 67. Following reaction is catalysed by $Br^{-}(aq)$. $2H_2O_2(aq) \rightarrow 2H_2O(\it{l}) + O_2(g)$ This is an example of
 - 1) homogeneous catalysis
 - 2) heterogeneous catalysis
 - 3) autocatalysis
 - 4) enzyme catalysis
- 68. Ethylidene dibromide \xrightarrow{A} CH = CH A is
 - 1) aq. KOH
 - 2) alc. KOH
 - 3) conc. H_2SO_4
 - 4) All of these

69. $\mathsf{I}_2 + 2\mathsf{S}_2\mathsf{O}_3{}^{2^-} \to \mathsf{S}_4\mathsf{O}_6{}^{2^-} + 2\mathsf{I}^-$

In the above reaction

- 1) iodine is reduced; sulphur is reduced
- 2) iodine is reduced; sulphur is oxidised
- 3) iodine is oxidised; sulphur is reduced
- 4) iodine is oxidised; sulphur is oxidised

70. Which is the strongest acid?

- 1) C₂H₆
- 2) C₆H₆
- 3) $CH \equiv CH$
- 4) CH₃OH
- 71. Number of spectral lines of Lyman series of electron when it jumps from 6 to first level (in Lyman series), is
 - 1) 92) 123) 154) 18
- 72. Which of the following compounds does liberate CO₂ from NaHCO₃?
 - 1) CH₃OH
 - 2) CH₃NH₂
 - 3) (CH₃)₄N⁺OH⁻
 - 4) CH₃ № H₃Cl⁻
- 73. $H_3C CH = C CH_2 CH_3$

 $CH_3 - CH_2 - CH_2$

Correct IUPAC name is

- 1) 3-ethylhex-2-ene
- 2) 3-ethylpent-2-ene
- 3) 3-ethylpent-3-ene
- 4) 3-propylpent-2-ene
- 74. In an organic compound, C = 68.5% and H = 4.91% . Which empirical formula is correct for it?
 - 1) C₆H₁₀
 - 2) C₇H₆O₂
 - 3) C₅H₈O
 - 4) C₉H₃O
- 75. E $^\circ$ for Mg^2+/Mg = 2.37 V, Zn^2+/Zn = 0.76 V and Fe^2+/Fe = 0.44 V. Which statement is correct?

1) Zn reduces Fe²⁺

- 2) Zn reduces Mg²⁺
- 3) Mg oxidises Fe
- 4) Zn oxidises Fe
- 76. Enolic form of acetone has
 - 1) 8σ, 1π; 2 lone pairs
 - 2) 9σ, 2π; 1 lone pair
 - 3) 8σ, 2π; 1 lone pair
 - 4) 9 σ , 1 π ; 2 lone pairs
- 77. 0.126 g of an acid is titrated with 0.1 N 20 mL of an base. The equivalent weight of the acid is
 - 1) 63 2) 50 3) 53 4) 23
- 78. Darking of surfaces painted with white lead is due to
 - 1) H₂S
 - 2) CO₂
 - 3) Cu
 - 4) O₂
- 79. Which of the following will give H_2 gas with dilute HNO_3 ?
 - 1) Mg 2) Zn 3) Cu 4) Hg
- 80. When alkyl aryl ether is heated with HI, it gives
 - 1) alcohol and phenol
 - 2) alcohol and aryl halide
 - 3) phenol and alkyl halide
 - 4) alkyl halide and aryl halide
- 81. Which of the following is the purest commercial form of iron?
 - 1) Cast iron
 - 2) Steel
 - 3) Wrought iron
 - 4) Pig iron

82. What is the oxidation number of Fe in $Fe(CO)_5$?

- 1) +3 2) zero 3) +2 4) +5
- 83. Fog is a colloidal solution of
 - 1) gaseous particles dispersed in liquid
 - 2) liquid dispersed in gas

- 3) gaseous particles dispersed in gas
- 4) solid dispersed in gas
- 84. A petrol pump hose pipe for delivery of petrol is made up of
 - 1) natural rubber
 - 2) vulcanised rubber
 - 3) neoprene
 - 4) butadiene rubber
- 85. German silver is an alloy of
 - 1) Cu and Zn
 - 2) Cu and Ag
 - 3) Cu and Sn
 - 4) Cu, Zn and Ni

86. On increasing pressure, melting point of ice

- 1) decreases
- 2) increases
- 3) remains unchanged
- 4) changes in regular manner
- 87. Identify 'Z' in the following sequence of reactions. $CH_3COOH \xrightarrow{NH_{\sharp}} X \xrightarrow{\Delta} Y \xrightarrow{P_2O_{\sharp}} Z$
 - 1) CH₄
 - 2) CH₃CHO
 - 3) CH₃CN
 - 4) $CH_3COO^-NH_4^+$
- 88. Which of the following is the most stable carbocation?
 - 1) C₆H₅CH₂⁺
 - 2) CH₃CH₂+
 - 3) (CH₃)₂ ⁺_CH
 - 4) (CH₃)₃C⁺
- 89. Dehydration of methyl alcohol with concentrated H_2SO_4 yields
 - 1) methane
 - 2) ethane
 - 3) dimethyl ether
 - 4) acetone

90. 60 mL of (N/5) H_2SO_4 , 10 mL of (N/2) HNO_3 and 30 mL of (N/10) HCl are mixed together. The strength of the resulting mixture is

- 1) 0.1 N
- 2) 0.2 N
- 3) 0.3 N
- 4) 0.4 N
- 91. A gas can be liquified
 - 1) at its critical temperature
 - 2) above its critical temperature
 - 3) below its critical temperature
 - 4) at 0°C
- 92. The compound that is considered as a true peroxide, is
 - 1) PbO₂
 - 2) BaO₂
 - 3) MnO ₂
 - 4) NO₂
- 93. Which of the following oxides of nitrogen does react with FeSO₄ to form a brown compound in the test of nitrate?
 - 1) N₂O
 - 2) NO
 - 3) NO₂
 - 4) N₂O₅
- 94. For the equilibrium,

 $2NO_2(g) \rightleftharpoons N_2O_4(g) + 14.6$ kcal, increase in temperature

- 1) favours the formation of N_2O_4
- 2) favours the decomposition of N_2O_4
- 3) does not affect equilibrium
- 4) stop the reaction
- 95. A certain mass of the oxygen gas occupies 7 L volume under a pressure of 380 mm Hg. The volume of the same mass of the gas at standard pressure, with temperature remaining constant, shall be
 - 1) 26.60 L
 - 2) 54.28 L
 - 3) 3.5 L
 - 4) 7 L

96. Peroxide bond is absent in

- 1) (S₂O₇)²⁻
- 2) (S₂O₈)²⁻
- 3) CrO₅
- 4) BaO₂

97. Two acids A and B have pK_a 4 and 6, then

- 1) A is 4/6 times stronger than B
- 2) A is 10 times stronger than B
- 3) A is 6/4 times stronger than B
- 4) B is 10 times stronger than A

98. Which compound is expected to be coloured?

- 1) CuCl
- 2) CuF₂
- 3) Ag₂SO₄
- 4) MgF₂

99. Which compound is insoluble in dilute HNO_3 and dissolved in aqua regia?

- 1) HgS
- 2) CuS
- 3) Bi₂S₃
- 4) PbS

100. The process of converting hydrated alumina into anhydrous alumina is called

- 1) roasting
- 2) smelting
- 3) dressing
- 4) calcination

Answer Key

1) 2	2) 4	3) 1	4) 3	5) 1	6) 1	7) 4	8) 3	9) 4	10) 3
11) 4	12) 2	13) 2	14) 1	15) 4	16) 4	17) 4	18) 2	19) 3	20) 1
21) 1	22) 1	23) 3	24) 2	25) 2	26) 1	27) 2	28) 4	29) 4	30) 2
31) 4	32) 3	33) 4	34) 2	35) 4	36) 3	37) 2	38) 1	39) 4	40) 2
41) 3	42) 1	43) 1	44) 1	45) 2	46) 1	47) 1	48) 4	49) 4	50) 3
51) 1	52) 4	53) 1	54) 1	55) 4	56) 3	57) 3	58) 3	59) 2	60) 1
61) 1	62) 2	63) 2	64) 3	65) 2	66) 4	67) 1	68) 2	69) 2	70) 4
71) 3	72) 4	73) 1	74) 2	75) 1	76) 4	77) 1	78) 1	79) 1	80) 3
81) 3	82) 2	83) 2	84) 4	85) 4	86) 1	87) 3	88) 4	89) 3	90) 2
91) 3	92) 2	93) 2	94) 2	95) 3	96) 1	97) 2	98) 2	99) 1	100) 4