

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 DATABASE MANAGEMENT SYSTEM SEMESTER - 6

Time: 3	Hours.]			[Full Marks : 70

GROUP - A

(Multiple Choice Type Questions)

Cho	ose the	correct alternatives for the following	lowing	: 10 × 1 = 10				
1)	Overall logical structure of a database can be expressed graphically by							
	a) l	CR diagram	b)	Records				
	c) 1	Relations	d)	Hierarchy.				
ii)	A norn	A normal form in which every determinant is a key is						
*	a) 2	enf	b)	3NF				
	c) l	BCNF	d)	4NF.				
mi)	involves the view of data?							
r _{ga} v	a) 1	External level	b)	Conceptual level				
*	c) l	Physical level	d)	None of these.				
iv)	One of	the shortcomings of file systematical	em is					
	a) (lata availability	b)	fixed records				
	c) s	sequential records	d)	lack of security.				
v)	The ability to modify the internal schema without causing any change to external							
	schem	a is						
	a)]	physical data independence	b)	logical data independence				
	c) (external data independence	d)	none of these.				

V1)	The	information about	data in a da	itabase i	s called	
	a)	meta data		b)	tera data	
	c)	hyper data		d)	none of these.	
vii)	Whi	ch of the following	features is s	upporte	d in the relational databa	se model ?
	a)	Complex data typ	oes	b)	Multi-valued attributes	
	c)	Associations with	ı multipliciti	es d)	Generalization relations	hips.
viii)	Four	r DML commands	are			
	a)	CREATE, UPDAT	E, DELETE,	SELECT		
	b)	INSERT, UPDATI	E, DROP, SE	LECT		
	c)	CREATE, ALTER	, DELETE, S	ELECT		
	d)	INSERT, MODIFY	Y, DELETE,	SELECT		
	e)	INSERT, UPDATE	E, DELETE,	SELECT		
ix)		n the relation sch	ema Bank (BankID	, AccountNumb, Balanc	e, Customer)
	-	ankID, AccountNucomer -> BankID }.	ımb -> Bal	lance; E	BankID, AccounNumb	> Customer;
1.4	Wha	t is the highest nor	rmal form for	r the rela	ation schema Bank?	
	a)	First		b)	Second	
	c)	Third		d)	Boyce Codde.	
x)	A rela	ation is considered	i to be in se	cond no	rmal form if it is in first	normal form
	and i	t has no	dependenci	les.		
	a)	referential		b)	functional	
	c)	partial key		d)	transitive.	

GROUP - B

:83LD	(Short Answer Type Questions)	
	Answer any three of the following questions. $3 \times 5 =$	15
2.	a) What do you mean by functional dependency?	2
. E &	b) What are the main characteristics of functional dependencies?	3
3.	Define BCNF. How does it differ from 3NF ? Why is it considered a stronger th	an
3.	3 NF ?	- 2
4.	What are ACID properties of a database transaction? How are they selected to t	he
	concurrency control?	+ 2
		2

- What is the difference between a database and a table? 2 5. a)
 - Why are entity integrity and referential integrity important in a database? 3 b)
- Give an example of supertype/subtype relationship where the overlap rule a) 3 applies.
 - What is inheritance in generalization hierarchies? b)

GROUP - C

nta tiame a subject taught by Roger

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

2

Given a database schema named PLANE_INFO (flight_no, date, plane, airline, a) from, to, miles), the functional dependency diagram is given below:

Decompose it up to Boyce-Codd Normal Form (BCNF).

- b) Consider the relation R (A, B, C) and a set of functional dependencies $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$. Compute the canonical cover for F.
- c) Given $F = \{A \to B, B \to C\}$. Find an instance of a relation that satisfies F but does not satisfy $B \to A$. Can you find an instance that satisfies F but not $A \to C$? 6 + 6 + 3
- 8. a) Consider the relation schemas given below:

STUDENT (student_id, name)

ENROLLEDIN (student id, subject code)

SUBJECTS (subject_code, lecturer)

Write relational algebra for the following:

- i) Who teaches CP1500 or CP3020
- ii) Who teaches at least two different subjects?
- iii) What are the names of the students taking a subject taught by Roger?
- b) Write down the differences between DBMS and Traditional File Processing System.
- c) Describe ACID properties in DBMS.
- d) Give an example of derived attribute.

(2+2+2)+3+4+2

- 9. a) Explain the roles of a database administrator (DBA).
 - b) Write a row trigger (in SQL) to insert the existing values of the table SALARY (employee_no, basic_salary, commission, deduction, department) into a table named OLDINFO when the SALARY table is updated.
 - c) What is aggregation? Discuss with an example.
 - d) Draw a functional dependency diagram (FD diagram) that is in 3 NF but not in BCNF. Decompose that FD diagram into BCNF.

 5+4+3+3

10. a) Draw an E-R diagram for the following:

A department store operates in several cities. In a city there is one headquarters coordinating the local operations. A city may have several stores. Stores hold any amount of items. Customers place their orders for any number of items to a given store.

- b) Why we need query optimization?
- Consider the relation R (A, B, C, D, E) with the set of $F = \{A \rightarrow C, B \rightarrow C, C \rightarrow D, DC \rightarrow C, CE \rightarrow A\}$. Suppose the relation has been decomposed by the relations R1 (A, D) R2 (A, B) R3 (B, E) R4 (C, D, E), R5 (A, E). Is this decomposition lossy or lossless? Justify your answer.
- 11. Write short notes on any three of the following:

 3×5

- a) Vertical and Horizontal Fragmentation
- b) Armstrong's axioms
- c) Two-phase locking protocol
- d) Conflict serializability
- e) Theta (θ) join.

END