1. If the ground state energy of H-atom is 13.6 eV, the energy required to ionize an H-atom from second excited state is :					
A. 1.51 eV	B. 3.4 eV	C. 13.6 eV	D. 12.1 eV		
2. The binding energy A. 2He ⁴	per nucleon is maximum B. ₂₆ Fe ⁵⁶	n in case of: C. ${}_{56}\text{Ba}^{14}$	D. ₉₂ U ²³		
3. The energy of a pho	oton of wavelength λ is :				
A. hc λ	B. hc/ λ	C. λ /hc	D. $h\lambda/c$		
4. Radio waves of con	stant amplitude can be ge				
A. rectifier	B. filter	C. FET	D. oscillator		
5. Great bear is a					
A. Star	B. Galaxy	C. Constellation	D. Planet		
6. Monoclinic crystal A. $\alpha = \beta = \gamma$ C. $\alpha \neq \beta \neq \gamma$	lattice has dimensions	B. $\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$ D. None of these			
7. Which of the follow A. $E^2 = pc^2$	Ving relations is correct ? B. $E^2 = p^2 c$	C. $E^2 = p^2 c^2$	D. $E^2 = p^2/c^2$		
-	ntegration, the following				
A. mass in conserved C. kinetic Energy is co	onserved	B. energy is conserved D. momentum is conserved			
9. The nucleus forces	are				
A. charge-dependent		C. charge-symmetric	D. long range		
10. During radio-activ A. X-rays C. Transmutation of n	e decay, the negative cha eutron into proton	rged particle is emitted b B. β emissions D. None of these	because of		
11. Particle in β - deca	ıv is				
A. Neutron	B. Proton	C. Electron	D. Photon		
12. Energy in stars is j	produced by				
A. fusion	B. fission	C. radioactive decay	D. artificial transmutation		

13. Atomic packing fraction in *bcc* lattice is

A. $1/\sqrt{\pi}$	B. $\sqrt{\pi}$	C. $\pi / \sqrt{2}$	D. None of these				
14. The count of α - paradioactive element with	articles decreases from 2 ill be	8,800 to 1,800 in 48 hou	rs, the half-life of this				
A. 4 hours	B. 8 hours	C. 12 hours	D. 16 hours				
• • •	ll be maximum in the cas						
A. He ³	B. He^2	$C. H^2$	D. He^4				
16. Binding energy per nucleon in heavy nuclei is of the order of							
A. 8 MeV	B. 8 eV	C. 80 eV	D. 80 MeV				
17. Complete the serie	$s He^{6}> e + Li^{6} + ?$						
A. nutrino	B. anti-nutrino	C. proton	D. neutron				
18. Line spectrum can	be obtained from						
A. Sun	B. Candle	C. Mercury Vapour Lamp	D. Electric Bulb				
	st Bohr's orbit in a Hydr						
A. 0.53×10^{-10} cm C. 2.73 x 10^{-10} cm		B. 0.53 x 10 ⁻⁸ cm D. 2.73 x 10 ⁻¹² cm					
20 What is the energy	of an alastron of Hudro	aan in its around state ?					
A13.6 eV	of an electron of Hydrog B. 0	C. infinity	D. 13.6 eV				
21. What is the rest ma	ass of a photon ?						
A. 0	B. 13.6 eV	C. 1 MeV	D. 3.1 x 10 ⁻²⁷ kg				
22. Two lenses of pow	vers 12D and - 2D are pla	ced together, the combin	ned focal length will be				
A. 1 cm	B. 10 cm	C. 100 cm	D. 1000 cm				
23. The critical angle i	s maximum when light t	ravels from					
A. water to air	B. glass to air	C. glass to water	D. air to water				
24. A rider on a horse	back falls forward when	• 1	. This is due to				
A. inertia of horse	homo	B. inertia of rider					
C. large weight of the	norse	D. losing of the balanc	e				
25. Fundamental partic	cle in an electro-magneti	c wave is					
Δ photon	R electron	C phonon	D proton				

A. photon B. electron C. phonon D. proton

For http://isbigdeal.blogspot.com/com/forum

26. The wavelength is	least in case of				
A. γ -rays	B. X-rays	C. infrared	D. ultraviolet		
27. The speed of electr	o-magnetic radiation in	vacuum is			
A. $\mu_0 \epsilon_0$	B. $\sqrt{(\mu_0 \epsilon_0)}$	C. $1/\mu_0 \epsilon_0$	D. $1/\sqrt{(\mu_0 \epsilon_0)}$		
28. Power factor in <i>LC</i>	oscillations is				
A. 0	B. 1	C. 1/4	D. 1/√ 2		
29. 220 V is changed to what is the current in the	o 2,200 V through a step he secondary ?	-up transformer. Th curr	ent in primary is 5 A,		
A. 5 A	B. 50 A	C. 0.5 A	D. 500 A		
30. When a bar is placeA. DimagneticC. Paramagnetic	ed near a strong magnet,	it is repelled, then the m B. Ferromagnetic D. Anti-ferrimagnetic	aterial of the bar is		
31. Electron enters into	a magnetic field at an a	ngle of 60°, its path will	be		
A. straight line	B. circle	C. parabola	D. helix		
32. One electron is mo A. electric field	ving in electric and mag B. magnetic field	netic fields, it will gain e C. both of these	energy from: D. none of these		
	onductor of length 5 m c		es kept perpendicular to		
A. 10 N	B. 100 N	C. 15 N	D. 50 N		
34. If $E = at - bt^3$, the	neutral temperature is				
A2a/b	B2b/a	C. $\sqrt{(a/3b)}$	Db/2a		
35. The charge carriers	•				
A. negative ions	B. positive ions	C. both A and B	D. none of these		
36. When 4 equal resistors are connected in series with a battery and dissipate a power of 10 W, what will be the power dissipated through any of them if it is individually connected across the same battery?					
A. 40 W	B. 10/3 W	C.90W	D.10W		

37. Cell of emf 1 volt is connected across a potentiometer, balancing length is 600 cm. What will be the balancing length for 2.5 volts ?

A. 400 cm B. 600 cm C. 1500 cm D. 1200 cm

38. A Wire of resista	nce R is stretched to tw	ice its original length, v	what is its new resistance?
A. 4 R	B. R /9	C. 3 R	D. R/3
39. The charge carrieA. electronsC. phonons	ers in super-conductors	are B. protons D. photons	
-	ry are combined to forn ingle small drop will be		The capacitance of a single
A. 2 : 1	B. 1 : 8	C . 8 : 1	D. 1 : 2
41. A dipole is place angle between its axi		ïeld, its potential energ	y will be minimum when the
A. 0	Β. π	C. π /2	D. 2π
42. Charge of 2 c is p through one face ?	placed at the centre of a	cube of volume 8 cc, v	what is electric flux passing
A. $1/(3\epsilon_0)$	B. (1/2) ε ₀	C. 2/ε ₀	D. $3/\epsilon_0$
43. 1 MeV is A. 1.6 x 10 ⁻ B. 1.6 x ¹⁹ J ¹³ J	10^{-} C. 1.6 x 10^{-} D. 1.6 x 10^{-9} J	κ 10 ⁻	
	quency of a sonometer v increased 3 times, what		is made 3 times and length ?
A. $n/3\sqrt{3}$	B. 3n	C. √ 3 n	D. 3√3 n
	per of beats heard by the emitting a sound of freq		is approaching a wall at a ty of sound = 330 m/s.
-	he can hear? Given wa		ching, what is the maximum 1 m; speed of sound in air =
A. 1 m	B. 32/33 m	C. 33/32 m	D. 12/13 m
-	d in open-ended tube is m, which harmonic wil	1 1	of waves is 1.1 kHz and the
A. 2nd	B. 3rd	C. 4th	D. 5th
	nstants K_1 and K_2 are K_2 respectively, what v	vill	
	, if f was the original	· ·	

frequency?

For more files visit www.educationobserver.com/forum

A.f	B. 2f	K1 K2
C. (1/2) f	D. 4 <i>f</i>	

49. The radii of two drops are in the ratio 3 : 2, their terminal velocities are						
A. 9 : 4	B. 2 : 3	C. 3 : 2	D. 2 : 9			

50. When a body is raised to a height R (which is the radius of earth), the change in its P.E. will be

A. mgR B. 2 mgR C. mgR/2 D. 4 mgR

51. If the length of a simple pendulum is tripled, what will be its new time period? (T =original time period)

A. 0.7 *T* B. 1.7 *T* C. *T*/2 D. *T*

52. A pendulum of length 2m left at P. When it reaches Q, it looses 10% of its total energy due to air resistance. The velocity at Q is

A. 6m/s B. 1m/s **P**O C. 2m/s D. 8m/s

53. A lift is falling freely under gravity, what is the time period of a pendulum attached to its ceiling ?

A. zero B. infinity C. one D. two second second

54. What is the ratio of the moment of inertia of two rings of radius *r* and *nr* respectively about an axis perpendicular to their plane and passing through their centres? A. $1: n^2$ B. 1: n C. 1: 2n D. $n^2: 1$

55. Beta-particle is emitted from the nucleus of mass number A, with velocity V, what is the recoil speed of the nucleus?

A. $M_e V/(A - M_e)$ B. 4V/(A + 4) C. V D. V/(A - 4)

56. If an alpha particle collides head-on with the nucleus, what is the impact parameter ?A. zeroB. infinityC. 10^{-10} mD. 10^{10} m

57. If momentum decreases by 20%, kinetic energy will decreaseA. 40%B. 36%C. 18%D. 8%

58. If two balls are projected at angles 60° and 45° and the total heights reached are same, what is the ratio of their initial velocities ?

A. $\sqrt{3}: \sqrt{2}$ B. $\sqrt{2}: \sqrt{3}$ C. 3:2D. 2:359. Which one is a vector quantity ?

A. heat B. couple C. energy D. volume 60. Gravel is dropped on to a conveyor belt at a rate of 0.5Kg s⁻². The extra force in Newton required to keep the belt moving at 2 ms^{-2} is A. 1 C. 4 **B**. 2 D. 5 61. An element with atomic number 20 is B. an A. an alkali C. a D. a noble alkaline metal halogen gas earth metal 62. When supercooled water suddenly freezes, the free energy of the system A. increases B. decreases C. remains same D. becomes zero 63. The density of neon is highest at A. STP B. 0° C, 2 atm C. 273°C, 1 atm D. 273°C, 2 atm 64. Cadmium in a nuclear reactor acts as A. nuclear fuel B. neutron absorber C. a moderator D. neutron liberator to start the chain 65. The end product of 4π series D. 82Bi²⁰⁴ A. 82Pb²⁰³ B. 92Pb²⁰⁷ C. 82Pb²⁰⁸ 66. Haemoglobin is a co-ordination compound in which the central metal atom is A. iron B. cobalt C. sodium D. manganese 67. The element californium belongs to the family of D. alkali B. alkaline C. A. actinide earth lanthanide metal series family series family 68. The coloured discharge tube for advertisements contain C. helium A. argon B. xenon D. neon 69. Which of the following is the strongest base? B. AsH₃ A. PH₃ C. NH₃ D. SbH₃ 70. Canizzaro reaction is not given by A. B. Acetaldehyde C. Benzaldehyde D. Formaldehyde Triethylacetaldehyde 71. Which of the following statements is not true for alcohols? A. Lower alcohols have fiery pungent and strong smell

B. As molecular mass increases, boiling point also increases

C. Lower alcohols are water insoluble and their solubility increases with molecular weight

D. Lower alcohols are water insoluble and their solubility decreases with molecular weight

72. Formaldehyde when heated w A. Primary alcohol B. Secon 73. A compound of molecular for compound of formula $C_3H_6O_2$. The A. Primary B. Secondary alcohol C. Aldehyde	dary alcohol rmula C ₃ H ₈ O he original co D. Tertiary	C. Tertiary alcohol on oxidation gives a mpound is	D. Acetone		
74. The increasing order of size o	of F ⁻ , Cl ⁻ , Br ⁻	, I ⁻ is			
A. $I^{-} < Br^{-} < Cl^{-} < F^{-}$ B. $I^{-} < C$	$ l^- < Br^- < F^- $	C. $F^- < Cl^- < Br^- < I^-$	D. Br $^{-} < Cl ^{-} < F ^{-} < I ^{-}$		
75. Which of the following series	contains only	v nucleophiles?			
A. NH_3 , H_2O , $AlCl_3$ B. NH_3 , H_2O , $AlCl_3$ B. NH_3 , H_2O , H_3O , H_3O , H_2O , H	ROH, H ₂ O	C. H_2O , H_3O^+ , SO_3	D. None of these		
76. The formula of acetonitrite is					
A. CH ₃ COCH B. CH ₃ C	Ν	C. CH ₃ CH ₂ CN	D. CH ₃ CONH ₂		
77. The IUPAC name of CH ₃ CO A. Propionaldehyde B. Aceta		C. Ethanamide	D. Ethylamine		
78. The rate of reaction increases	with tempera	ture because			
A. threshold energy increases C. effective collision increases		B. kinetic energy of molecules increases D. none of the above			
79. If the graph of concentration of	of A versus	D. none of the above			
time for completion of reaction is then the order of the reaction is	a straight line	2,			
A. zero B. second C. first	D. third				
80. The decomposition of hydrog	en peroxide ?	$H_2\Omega_2 \rightarrow 2H_2\Omega + \Omega_2$ is			
A. zero order reaction B. first o	1	C. second order reaction	D. third order reaction		
81. The half-life period of a first	order process	is 1.6 min ⁻¹ . It will be 9	0% complete in		
A. 0.8 min B. 3.2 mi	in	C. 5.3 min	D. 1.6 min		
82. Which of the following is an A . AlCl ₃ B. CN ⁻	electrophile?	C. NH ₃	D. CH ₃ OH		
83. Molarity of a solution is the number ofA. moles of solute per litre of solutionB. moles of solute per 100 gm of the solutionC. gram molecular weight of solute dissolved per litre of the solution					

D. gram equivalents of solute dissolved per litre of solution 84. The hybridisation in PF₃ is D. d^2sp^3 A. sp^3 C. dsp^3 **B**. sp^2 85. Which of the following is present in DNA? A. C. D. None of Deoxyribose^{B. Starch} Riboflavin these 86. Propyne when treated with H_2SO_4 in presence of $HgSO_4$ gives B. Propionaldehyde C. Acetaldehyde A. Acetone D. Propanoic acid 87. The general formula for alkyne is A. $C_n H_{2n+2}$ B. CnH_{2n} C. $C_n H_{2n-2}$ D. C_nH_n 88. Mesotartaric acid is optically inactive due to the presence of A. molecular symmetry B. molecular asymmetry C. external compensation D. two asymmetric carbon atoms 89. Which of the following electronic configuration in the outermost shell is characteristic of alkali metals? B. $(n - 1) s^2 p^6 d^{10} n s^1$ C. $(n - 1) s^2 p^6 n s^1$ D. $ns^2p^6d^1$ A. $(n - 1) s^2 p^6 n s^2 s^1$ 90. Lead chloride is soluble in A. cold water C. HCl D. acetic acid B. hot water 91. When a copper wire is placed in a solution of silver nitrate, the solution acquires blue colour. This is due to the formation of A. a soluble complex of B. Cu⁺ ions copper with AgNO₃ D. Cu^{2+} by C. Cu^{2+} reduction ions of Cu 92. The pyrites are heated with hydrochloric acid. The solution so obtained will give blood red colour with A. $K_4Fe(CN)_6$ C. K₃Fe(CN)₆ D. KSNC B. KCN 93 The ignition mixture in alumino thermite process contains a mixture of B. magnesium powder, aluminium powder and

A. magnesium powder and BaO2B. magnesium powder, autimitum powder and
BaO2C. magnesium and aluminium powdersD. magnesium and aluminium oxides

94. One of the most in A. as a purgative	nportant use of quick lim B. drying gases and alcohols	e is C. in bleaching silk	D. dyeing cotton		
95. In preparing Cl ₂ fr A. dehydrating agent	om HCl, MnO ₂ acts as a/ B. reducing agent	an C. catalytic agent	D. oxidising agent		
96. Seaweed is an impA. chlorine97. Nitrates of all metaA. unstable B. stable	B. iodine	C. fluorine	D. bromine		
98. Ostwald's method A. HNO ₃	is used for manufacture B. NO ₂	of C. NO	D. P ₂ O ₅		
99. Magnesium reactssuch reactions, magneA. oxidationC. neither oxidation no	-	drogen and correspondin B. reduction D. simple dissolution	ig magnesium salts. In		
100. An acidic buffer solution can be prepared by mixing solution ofA. ammonium chloride and HClB. H2SO4 and Na2SO4C. acetic acid and sulphuric acidD. ammonium acetate and acetic acid					
101. Which of the foll A. BF_3	owing is not a Lewis acio B. AlCl ₃	1? C. SnCl ₄	D. CCl ₄		
1 0	methane and oxygen are re exerted by oxygen is	mixed in an empty conta	ainer at 25°C. The		
A. 1/2 103. HI was heated in	B. 1/3 a sealed tube at 440°C til to be 22% decomposed. C. 0.0199 D. 0.0796	-	D. 1/3 x (273/298)		
104. The molar heat of condensation of water A. $+$ 2079 cal mol ⁻¹		water is 2079 cal mol ⁻¹ , B 2079 cal mol ⁻¹	therefore, molar heat of		
C. greater than 2079 c	al mol ⁻¹	D. smaller than 2079 c	cal mol ⁻¹		
105. Which of the foll A. Diamond	owing is an insulator? B. Graphite	C. Aluminium	D. Silicon		
106. The purest coal is	2				

A. Anthracite	B. Bituminous	C. Peat	D. Lignite
107. Among N ³⁻ , O ²⁻ , A. N ³⁻	F ⁻ , and Na ⁺ , which one B. O ²⁻	has largest size? C. F ⁻	D. Na ⁺
A. 12th 109. A mixture of 200 proportion at STP is ex	udiometer immediately a	C. 8th oxygen in equal . What will be the nature	D. 10th
110. If 9.8 gm of hexar A. 6	ne bums completely in o B. 0.6	xygen, how many moles C. 0.9	of CO ₂ is produced? D. 1.2
111. Which one of the A. NaNO ₃	following nitrates does n B. Pb(NO ₃) ₂	not give NO ₂ on heating? C. AgNO ₃	D. Cu(NO ₃) ₂
112. Which has lowest A. N	: 1st I.P.? B. Be	С. В	D. C
113. The oxidation stat A 3 to $+ 5$	tes of phosphorus vary fr B 1 to + 1	com C 3 to + 3	D 5 to + 1
114. The molecular verse A. proportional to the assolute temperature 115. Which of the follor reaction? A. $2H_2$ + $O_2 \rightarrow$ $2H_2O$ C. $2NaOH$ D. C_2H_5OH + $H_2SO_4 \rightarrow$ + $3O_2 \rightarrow$ Na ₂ SO ₄ 2CO ₂ +	absolute temperature square root of the owing is an endothermic	B. proportional to the stemperatureD. independent of the stemperation of the stepperature	-

$+2H_2O$ $3H_2O$

at the cathode and ano	-	lectrolysed between iner	rt electrodes. The product
A. H ₂ , O ₂	B. O ₂ , H ₂	C. H ₂ , Na	D. O ₂ , SO ₂
117. Bauxite mineral of A. Baeyer's process	containing iron as impurit B. Electrolytic process		D. Serpeck's process
118. Butter of tin is rep	•		
A. SnCl ₂ .3H ₂ O	B. SnCl ₂ .5H ₂ O	C. SnCl ₂ .6H ₂ O	D. SnCl ₂ .8H ₂ O
119. Which group acti A. bezo group	vates the benzene ring to B. amino group	wards electrophilic subst C. acetyl group	itution? D. carbyl group
	dic than B. propenol + 4 = 0 and $6x - 8y - 7 =ne circle. The radius ofC. 3/4 D. 2$	C. p-nitrophenol 0	D. none of the above
122. The three dice are	thrown simultaneously	then the probability of g	atting a sacro of 7 is
A. 1/6	B. 5/216	C. 1/36	D. none of the above
A. 1/6123. Set A has 3 elements	B. 5/216 ents and set B has 4 eleme	C. 1/36	D. none of the above
A. 1/6	B. 5/216 ents and set B has 4 eleme	C. 1/36	D. none of the above
 A. 1/6 123. Set A has 3 elements mapping) that can define A. 24 124. If θ is the angle be 	B. 5/216 ents and set B has 4 elemend ned from A to B is B. 144 etween vectors a and b an	C. $1/36$ ents. This number of injection C. 12 nd a x b = a.b , then 6	D. none of the above ections (one to one D. none of the above is equal to
A. 1/6 123. Set A has 3 eleme mapping) that can defi A. 24	B. 5/216 ents and set B has 4 elemend ned from A to B is B. 144	C. 1/36 ents. This number of inje C. 12	D. none of the above ections (one to one D. none of the above
 A. 1/6 123. Set A has 3 elements mapping) that can define A. 24 124. If θ is the angle be 	B. 5/216 ents and set B has 4 elemend ned from A to B is B. 144 etween vectors a and b ar B. 180° o 3 lies in	C. $1/36$ ents. This number of injection C. 12 nd a x b = a.b , then 6	D. none of the above ections (one to one D. none of the above is equal to D. 45°
A. 1/6 123. Set A has 3 eleme mapping) that can defi A. 24 124. If θ is the angle b A. 0° 125. The number \log_{20} A. (3/4, 4/5)	B. 5/216 ents and set B has 4 elements ned from A to B is B. 144 etween vectors a and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_3 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_3 = 3$ and b an B. 180° $x_1 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_3 = 3$ and b an B. 180° $x_4 = 3$ and b an B. 180° $x_2 = 3$ and b an B. 180° $x_3 = 3$ and b an B. 180° $x_4 = 3$ and b an B. 180° $x_5 = 3$ and b an B. 180° $x_5 = 3$ an B. 180° $x_5 = 3$ an B. 180° $x_5 = 3$ an B	C. $1/36$ ents. This number of injection C. 12 nd a x b = a.b , then 6 C. 135° C. $(1/2, 3/4)$	D. none of the above ections (one to one D. none of the above is equal to D. 45° D. (1/4, 1/3)
A. 1/6 123. Set A has 3 elements mapping) that can defind A. 24 124. If θ is the angle b A. 0° 125. The number \log_{20} A. (3/4, 4/5) 126. For x ₁ , x ₂ , y ₁ , y ₂ e z ₂), then z ₁ , z ₂ , and z ₃ e A. z ₁ < z ₃ < z ₂	B. 5/216 ents and set B has 4 elements ned from A to B is B. 144 etween vectors a and b an B. 180° a^{3} lies in B. (1/3, 1/2) $a = R$, if $0 < x_{1} < x_{2}$, $y_{1} = y_{2}$ satisfy B. $ z_{1} > z_{2} > z_{3} $ aber which satisfies the +i = 0 is	C. 1/36 ents. This number of injection C. 12 nd a x b = a.b , then 6 C. 135° C. (1/2, 3/4) and $z_1 = x_1 + i y_1, z_2 = x_1$	D. none of the above ections (one to one D. none of the above) is equal to D. 45° D. $(1/4, 1/3)$ $_2 + i y_2$ and $z_3 = 1/2(z_1 + 1/2)$

128. The equation of the line with slope -3/2 and which is concurrent with lines 4x + 3y - 7 = 0 and 8x + 5y - 1 = 0 is

A. 2y - 3x - 2 = 0 B. 3x + 2y - 2 = 0 C. 3x + 2y - 63 = 0 D. none of the above

129. The parabola $y^2 = 4ax$ passes through the point (2, -6), then the length of its latus rectum is A. 9 B. 16 C. 18 D. 6

130. The equation of the conic with focus at (1, -1) directrix along x - y + 1 = 0 and with eccentricity $\sqrt{2}$ is

A.
$$xy = 1$$

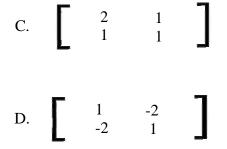
B. $2xy + 4x - 4y - 1 = 0$ C. $x^2 - y^2$
D. $2xy - 4x + 4y + 1 = 0$

131. If the radical axis of the circles $x^2 - y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle $x^2 + y^2 + 2x + 2y + 1 = 0$, then A. g = 3/4 or f = 2 B. g \neq 3/4 and f = 2 C. g = 3/4 or f \neq 2 D. none of the above

132. If $\tan \theta + \sec \theta = \sqrt{3}$, $\theta < \pi$, then θ is equal to or least positive value of θ is A. $5\pi/6$ B. $2\pi/3$ C. $\pi/6$ D. $\pi/3$ 133. The roots of the equation $4x^2 + 2\sqrt{5x} + 1 =$ 0 are A. $\cos 18^\circ$, B. $\sin 18^\circ$, C. $\sin 18^\circ$, D. $\sin 36^\circ$, $\cos 36^\circ$ $\cos 18^\circ$ $\cos 36^\circ$ $\sin 18^\circ$

134. From the bottom of a pole of height h, the angle of elevation of the top of a tower is α . The pole subtends an angle β at the top of a tower. The height of the tower is

A. $[h \sin \alpha \sin(\alpha - \beta)]/\sin \beta$ B. $[h \sin \alpha \cos(\alpha + \beta)]/\sin \beta$ C. $[h \sin \alpha \cos(\alpha - \beta)]/\cos \beta$ D. $[h \sin \alpha \sin(\alpha + \beta)]/\cos \beta$


135. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$, then the value of $\cos(\theta + \pi/4)$ is A. $2/\sqrt{2}$ B. $1/\sqrt{2}$ C. $-1/\sqrt{2}$ D. $1/2/\sqrt{2}$

136. If $4 \le x \le 9$, then A. $(x - 4) (x - 9) \le 0$ B. $(x - 4) (x - 9) \ge 0$ C. (x - 4) (x - 9) < 0 D. (x - 4) (x - 9) > 0

137. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$ cuts an intercept on y-axis equal to A. 7 B. 4 C. 3 D. 1

138. If α and β are the roots of the equation $x^2 - p(x + 1) - q = 0$, then the value of $[(α^2 + 2α + 1)/(α^2 + 2αv + q)] + [(β^2 + 2β + 1)/(β^2 + 2β + q)]$ is A. 1 B. 0 C. 3 D. 2 139. For $x \in R$, if $mx^2 - 9mx + 5m + 1 > 0$, then m lies in the interval A. [-61/4, B. [4/61, C. [0, 4/61] D. - [-4/61, 0] 0]

140. If a, b, c are positive real numbers, then the number of real roots of the equation $ax^2 + b|x|$ + c = 0 is A. 0 **B**. 2 C. 4 D. none of the above 141. If $a^x = b^y = c^z$ and a, b, c are in G.P., then x, y, z are D. none of the above A. G.P. B. A.P. C. H.P. 142. Let $\cos x = b$. For what b do the roots of the equation form an A.P.? A. $\sqrt{3/2}$ B. 1/2 C. -1 D. none of the above 143. Coefficient of x^4 in the expansion of $(1 - 3x - x^2)/e^x$ is A. 5/24 B. 4/25 C. 24/25 D. 25/24 144. If C (10, 4) + C (10, 5) = C (11, r), then r equals A. 6 B. 5 C. 4 D. 3 145. In a steamer, there are stalls for 12 animals and there are cows, horses, and calves (not less than 12 of each) ready to be shipped. The total number of ways in which the shipload can be made is A. ${}^{12}C_3$ C_{3}^{12} B. ${}^{12}P_3$ D. 12^3 146. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$ is A. $2^{n}/2!$ B. n + 1 C. n D. 2n 147. The largest coefficient in the expansion of $(1 + x)^{24}$ is D. ²⁴C₁₂ A. ${}^{24}C_{13}$ B. ${}^{24}C_{11}$ $C_{1}^{24}C_{24}$ 148. The sum of first n terms of two A.P. are 3n + 8, 7n + 15, then the ratio of their 12th term is C. 4/9 A. 7/16 B. 8/15 D. 3/7 12, then Adj. A is 21 equal to If A 2 -1 -1 A. 2 1 -2 -2 -1 B.

150. If a, b, c are different, then the value of x satisfying the determinant

$$\begin{vmatrix} 0 & x^{2} - x^{3} - \\ x^{2} + a & b \\ a & 0 & x^{2} + \\ a & 0 & c \\ x^{4} + \\ b & x - c & 0 \end{vmatrix} = 0$$
 is

151. If the system of equations x = a(y + z), y = b(z + x), z = c(x + y) (a, b, $c \neq -1$) has a non-zero solution, then the value of [a/(1 + a)] + [b/(1 + b)] + [c/(1 + c)] is A. -1 B. 0 C. 1 D. 2

152. Two lines with direction cosines $< l_1, m_1, n_1 > and < l_2, m_2, n_2 > are at right angles if$ B. $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$ A. $l_1 l_2 + m_1 m_2 + n_1 n_2 = 1$ D. $l_1 = l_2$, $m_1 = m_2$, $n_1 = n_2$ C. $l_1/l_2 = m_1/m_2 = n_1/n_2$ 153. Given the line L : [(x - 1)/3] = [(y + 1)/2] =[(z - 3)/-1] and the plane $\pi : x - 2y = 0$. Of the following assertions, the only one that is always true is A. L is A. L is perpendicular $\stackrel{B. L \text{ lies in }}{\overset{-}{\underset{-}}}$ $\stackrel{C. L \text{ is parallel to }}{\overset{-}{\underset{-}}}$ D. none of the above to π π 154. Quartile deviation for a frequency distribution A. $Q = 1/4 (Q_2 - Q_1)$ B. $Q = 1/3 (Q_3 - Q_1)$ C. $Q = 1/2 (Q_3 - Q_1)$ D. $Q = (Q_3 - Q_1)$

155. For a symmetrical distribution, $Q_1 = 20$ and $Q_3 = 40$. The value of 50th percentile is A. 20 B. 30 C. 40 D. none of the above

156. The area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

157. A random variable X has the following probability distribution: X: 0 1 2 3 4 5 6 7 8 p(X = a 3a 5a 7a 9a 11a 13a 15a 17a) then the value of a is A. 7/81 B. 5/81 C. 2/81 D. 1/81 158. Dialing a telephone number, an old man forgets the last two digits remembering only that these are different, dialed at random. The probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of n \in I for which the function f(x) = sin nx/[sin(x/n)] has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. ∞ D. none of the above 162. Lt [$e^{s} - (1 + x)$] x^{2} is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. ∞ D. none of the above 163. The function f(x) = $xi^{3} - 9x^{2} + 9x + 3$ is monotonically increasing in each interval, then A. $t = 1/\sqrt{3}$ B. $t < 3$ C. $t = 0$ D. $1/2$ 164. The function f(x) = $Kx^{3} - 9x^{2} + 9x + 3$ is monotonically increasing in each interval, then A. K > 3 B. K < 3 C. K \leq 3 D. none of the above 165. The area of the region bounded by the curve $y = x - x^{2}$ between $x = 0$ and $x = 1$ is A. 5/6 B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{a} f(x) dx = 1$, $\int_{0}^{a} x f(x) dx = a$, $\int_{0}^{b} x^{2} f(x) dx = a^{2}$, then $\int_{0}^{a} (a - x)^{2} f(x) dx$ equals A. 4a ² B. 0 C. 2a ² D. none of the above	A9			B.	-15/4			C. 1	5/4		D. 17/4
x): a 3a 3a 7a 9a 11a 13a 13a 17a then the value of a is A. 7/81 B. 5/81 C. 2/81 D. 1/81 158. Dialing a telephone number, an old man forgets the last two digits remembering only that these are different, dialed at random. The probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of n ∈ I for which the function f(x) = sin nx/[sin(x/n)] has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt [e ^x - (1 + x)]/x ² is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. ∞ D. none of the above 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $t < 3$ C. $t \leq 0$ D. 1/2 164. The function f(x) = Kx ³ - 9x ² + 9x + 3 is monotonically increasing in each interval, then A. K > 3 B. K < 3 C. K ≤ 3 D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. 1/2 C. 1/3 D. 1/6									-	-	
then the value of a is A. 7/81 B. 5/81 C. 2/81 D. 1/81 158. Dialing a telephone number, an old man forgets the last two digits remembering only that these are different, dialed at random. The probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. ∞ D. none of the above 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. $1/2$ C. $1/3$ D. $1/6$	-	а	3a	5a	7a	9a	11a	13a	15a	17a	
158. Dialing a telephone number, an old man forgets the last two digits remembering only that these are different, dialed at random. The probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$	then the	value	of a is								
forgets the last two digits remembering only that these are different, dialed at random. The probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. ∞ D. none of the above 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. $1/2$ C. $1/3$ D. $1/6$		ling a	telenh			an old	d man	C. 2	/81		D. 1/81
probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. 1/2 C. 1/3 D. 1/6	forgets th	ne last	two d	igits re	mem	bering	only th	nat			
A. 1/90 B. 1/100 C. 1/45 D. none of the above 159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. ∞ D. none of the above 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. 1/2 C. 1/3 D. 1/6											
159. Three identical dice are rolled. The probability that the same number will appear on each of them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. K > 3 B. K < 3 C. K ≤ 3 D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. 1/2 C. 1/3 D. $-1/6$	-	•				D.	none c				
them is A. 1/18 B. 3/28 C. 1/36 D. 1/6 160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals	111 1/20	2.	1,100	0.	1, 10	the	e above	•			
160. The value of $n \in I$ for which the function $f(x) = \sin nx/[\sin(x/n)]$ has 4π as its period is A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \to 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \to 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_0^{\pi} f(x) dx = 1$, $\int_0^{\pi} x f(x) dx = a$, $\int_0^{\pi} x^2 f(x) dx = a^2$, then $\int_0^{\pi} (a - x)^2 f(x) dx$ equals		ee ide	ntical	dice ar	e roll	ed. The	e proba	bility t	hat the	same num	ber will appear on each of
A. 5 B. 4 C. 3 D. 2 161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt [e ^x - (1 + x)]/x ² is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals	A. 1/18			B.	3/28			C. 1	/36		D. 1/6
161. Lt (log cosx)/x is equal to $x \rightarrow 0$ A. 0 B. 1 C. ∞ D. none of the above 162. Lt [e ^x - (1 + x)]/x ² is equal to $x \rightarrow 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^{2} - 1$, $y = t^{2} - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^{3} - 9x^{2} + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^{2}$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^{2} f(x) dx = a^{2}$, then $\int_{0}^{1} (a - x)^{2} f(x) dx$ equals		value	e of n e			n the fu	unction			/[sin(x/n)] ł	_
A. 0 B. 1 C. ∞ D. none of the above 162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \to 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals	A. 3			В.	4			C. 3			D. 2
162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \to 0$ A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals			osx)/x	is equ	al to						
$x \rightarrow 0$ A. $1/2$ B. 1C. 0D. $1/4$ 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis whereD. $1/2$ A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ D. none of the above165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals	A. 0			В.	1			C. ¤	C		D. none of the above
A. 1/2 B. 1 C. 0 D. 1/4 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. 1/2 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. $5/6$ B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals			1 + x)]	$ /x^2$ is e	equal	to					
parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. K > 3 B. K < 3 C. K ≤ 3 D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals	A. 1/2					2			1		D. 1/4
A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$ 164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in each interval, then A. K > 3 B. K < 3 C. K ≤ 3 D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. $1/2$ C. $1/3$ D. $1/6$ 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals					, y =	t^2 - t, ta	angent	is			
A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. 1/2 C. 1/3 D. 1/6 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals					t = 0	D.	1/2				
A. $K > 3$ B. $K < 3$ C. $K \le 3$ D. none of the above 165. The area of the region bounded by the curve $y = x - x^2$ between $x = 0$ and $x = 1$ is A. 5/6 B. 1/2 C. 1/3 D. 1/6 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^2 f(x) dx = a^2$, then $\int_{0}^{1} (a - x)^2 f(x) dx$ equals	164 The	funct	tion f(x	$() - \mathbf{K}_{\mathbf{x}}$	³ - 0x	$r^2 \perp \mathbf{0v}$	$\perp 3$ is	monot	onically	v increasing	t in each interval then
A. 5/6 B. 1/2 C. 1/3 D. 1/6 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^{2} f(x) dx = a^{2}$, then $\int_{0}^{1} (a - x)^{2} f(x) dx$ equals							5 15			y mercasing	
A. 5/6 B. 1/2 C. 1/3 D. 1/6 166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^{2} f(x) dx = a^{2}$, then $\int_{0}^{1} (a - x)^{2} f(x) dx$ equals	165 The	oran	of the	ragion	boun	ded by	the cu	r uo u –	v v ²	batwaan y	-0 and $x - 1$ is
		arca				ucu oy	the eu			between x	
		i.		ļ	_		1 (2 -		2	2
	166. If	J f(x	dx =	1, 1	x f(2	x) dx =	a, I	x ² f(x	dx =	a ⁻ , then	$(a - x)^2 f(x) dx$ equals

167. The area between A. 1/3	the curve $y = 1 - x $ an B. 2	d x-axis is C. 1/2	D. 1			
-	+ by $+$ c $=$ 0 and dx $+$ ey	y + f = 0 represents the same	ame straight line if and			
then the angle between		C. $a/d = b/e = c/f$	D. a = d, b = e, c = f			
A. π/6 B. 2π/3	C. 5π/3 D. π/3					
	oefficient of log tan x is	~ •				
A. $2 \sec^3 2x$	B. $2 \operatorname{cosec}^3 2x$	C. 2 sec x	D. 2 cosec x			
171. The differential c A. x/(log x)	oefficient of $f(\log x)$ who B. $(\log x)/x$	ere $f(x) = \log x$ is C. $(x \log x)^{-1}$	D. none of the above			
172. The number of so	olutions of the equation ta	an $x + \sec x = 2 \cos x$ lyi	ng in the interval $[0, 2\pi]$			
A. 0	B. 1	C. 2	D. 3			
173. In a triangle ABC B satisfy the equation	C, the angle B is greater to $3 \sin x - 4 \sin^3 x - k = 0, 0$	han the angle A. If the value $0 < k < 1$, then the value	alues of the angles A and of C is			
Α. π/3	Β. π/2	C. 2π/3	D. 5π/6			
174. If one root of $5x^2$	+13x + k = 0 is reciprod	cal of the other, then				
A. k = 0	B. k = 5	C. $k = 1/6$	D. k = 6			
175. The number of quare unchanged by squa	adratic equations, which uring their roots is	l				
A. 2 B. 4	C. 6 D. none of the above	f				
176. If $x^2 - 3xy + \lambda y^2 + A$. 1	-3x - 5y + 2 = 0 represented B. 4	nts a pair of straight lines C. 3	then the value of λ is D. 2			
177. If each element of a determinant of third order with value A is multiplied by 3, then the						
value of newly formed A. 3A	B. 9A	C. 27A	D. none of the above			
178. If A, B, and C are	e non-empty set subsets o	of the sets, then (A - B)	\cup (B - A) equals			
) B. $(A \cup B) - (A \cap B)$		D. $(A \cup B) - B$			
179 Δ and R are two	170 A and B are two independent events. The probability that both A and B occur is 1/6 and the					

179. A and B are two independent events. The probability that both A and B occur is 1/6 and the probability that neither of them occurs is 1/3. The probability of the occurence of the event A is

For more files visit www.educationobserver.com/forum

A. 2/3	B. 5/6	C. 1/2	D. none of the above
180. The number of divisors of 9600 including 1 and 9600 is			
A. 60	B. 58	C. 48	D. 46