BLUE PRINT : SA-II (IX) : MATHEMATICS.

UNIT/TOPIC	1	2	3	4	Total
Algebra (Linear Equations in Two Variables)	$2(2)$		$6(2)$	$8(2)$	$16(6)$
Geometry (Quadrilaterals, Area, Circles, Constructions)	$2(2)$	$4(2)$	$12(4)$	$20(5)$	$38(13)$
Mensuration (Surface Areas and Volumes)	$2(2)$	$2(1)$	$6(2)$	$8(2)$	$18(7)$
Statistics and Probability	$2(2)$	$6(3)$	$6(2)$	$4(1)$	$18(8)$
Total	$8(8)$	$12(6)$	$30(10)$	$40(10)$	$90(34)$

SAMPLE QUESTION PAPER SA-II
 CLASS IX
 (SECTION-A)

TIME 3 HRS.
M.M.:90

Question numbers 1 to 8 carry 1mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. Equation of x-axis is
(A) $x=0$
(B) $x=y$
(C) $y=0$
(D) $x+y=0$
2. The median of a triangle divides it into two
(A) triangles of equal area
(B) equilateral triangles
(C) right triangles
(D) isosceles triangles
3. In Fig.1, $A O B$ is a diameter of the circle and $A C=B C$, then $\angle C A B$ is equal to
(A) 30°
(B) 45°
(C) 90°
(D) 60°

Fig. 1
4. Linear equation of the type $y=m x, m \neq 0$ has
(A) infinitely many solutions
(B) a unique solution
(C) only solution $x=0, y=0$
(D) solution $\mathrm{m}=0$.
5. In a frequency distribution, the mid-value of a class is 20 and the width of the class is 8 . then the lower limit of the class is
(A) 12
(B) 24
(C) 28
(D) 16
6. If the volume of a sphere is numerically equal to its surface area, then radius of the sphere is
(A) 1 unit
(B) 3 units
(C) 2 units
(D) 6 units
7. Which of the following cannot be empirical probability of an event?
(A) $4 / 5$
(B) 1
(C) 0
(D) $5 / 4$
8. The total surface area of a cone of radius $2 r$ and slant height $\ell / 2$ is
(A) $2 \pi r(\ell+r)$
(B) $\pi r\left(\ell+\frac{r}{4}\right)$
(C) $\pi r(4 r+\ell)$
(D) $2 \pi r$

SECTION-B

Question numbers 9 to 14 carry 2 marks each.
9. D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that ar (DBC) $=\operatorname{ar}(E B C)$. Prove that DE\|BC.
10. An edge of a cube is increased by 10%. Find the percentage by which the surface area of the cube has increased.
11. Find the mode of the following data:
$5,7,6,5,9,8,6,7,11,10,5,7,6,8,6,9,10$.
12. In a cricket match, a batsman hits a boundary 4 times out of 30 balls, he plays. Find the probability that he did not hit a boundary.
13. Prove that equal chords of a circle subtend equal angles at the centre.

OR
In Fig. $2, \angle \mathrm{DAB}=70^{\circ}, \angle \mathrm{DBA}=35^{\circ}$.
Find the measure of $\angle A C B$.

Fig. 2
14. If the arithmetic mean of $25,30,32, x, 43$ is 34 , then find the value of x.

SECTION-C

Question numbers 15 to 24 carry 3 marks each.
15. Find three different solutions for the equation

$$
3 x-8 y=27
$$

16. Prove that a diagonal of a parallelogram divides it into two congruent triangles.
17. Draw a line segment $A B=5 \mathrm{~cm}$. From the point A, draw a line segment $A D=6 \mathrm{~cm}$ making $\angle D A B=60^{\circ}$. Draw the perpendicular bisector of AD. Does it pass through B? (Use ruler and compass only).
18. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of the graphite is 1 mm . If the length of the pencil is 14 cm , find the volume of the wood. (use $\pi=22 / 7$)

OR
A heap of wheat is in the form of a cone, the diameter of whose base is 14 m and height is 3 m . Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.
19. Find mean of the following data:

Marks:	10	11	12	13	14	15
Number of students:	6	3	4	5	7	5

The points scored by a basket-ball team in a series of matches are as follows:
$17,2,7,27,25,5,14,18,10,24,10,8,7,10$
Find mean, median and mode for the data.
20. Give the geometrical representation of $x=-3$ as an equation
(i) in one variable
(ii) in two variables.

OR
Solve the equation $2 x+1=x-3$ and represent the solution(s) (i) on the number line (ii) in the Cartesian plane.
21. The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
22. In Fig.3, $A B C D$ is a parallelogram and E is the mid point of $A D . D L \| B E$ meets $A B$ produced at F. Prove that B is the midpoint of $A F$ and $E B=L F$.

Fig. 3
23. In Fig. $4, A B C D$ is a trapezium in which $A B \| D C$. O is the mid point of $B C$. Through the point O, a line $P Q \| A D$ has been drawn which intersects $A B$ at Q and $D C$ produced at P. Prove that $\operatorname{ar}(A B C D)=\operatorname{ar}(A Q P D)$.

Fig. 4
24. A die is thrown 400 times with the frequencies for the outcomes 1, 2, 3, 4, 5 and 6 as given in the following table.

Outcome:	1	2	3	4	5	6
Frequency:	72	65	70	71	63	59

Find the probability of
(i) getting a number less than 3.
(ii) getting an outcome 6 .
(iii) getting a number more than 4.

SECTION-D

Question numbers 25 to 34 carry 4 marks each.
25. Show that the line segments joining the mid points of the opposite sides of a quadrilateral bisect each other.
26. Construct a triangle $A B C$ in which $B C=8 \mathrm{~cm}, \angle B=30^{\circ}$ and $A B-A C=3.5 \mathrm{~cm}$

OR

Construct a triangle $P Q R$ in which $\angle R=45^{\circ}, \angle Q=60^{\circ}$ and $P Q+Q R+R P=11 \mathrm{~cm}$.
27. Draw the graph of linear equation $x+2 y=8$. From the graph, check whether $(-1,-2)$ is a solution of this equation.
28. A storage tank is in the form of a cube. When it is full of water, the volume of the water is $15.625 \mathrm{~m}^{3}$. If the present depth of the water is 1.3 m , find the volume of water already used from the tank.
29. In Fig.5, $P Q$ is the diameter of the circle with centre O. If $\angle P Q R=65^{\circ}, \angle R P S=40^{\circ}$ and $\angle P Q M=50^{\circ}$, find $\angle Q P R, \angle P R S$ and $\angle Q P M$.

Fig. 5
30. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$. Prove that $A B C D$ is a trapezium.

OR
Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect each other at P. Show that $\operatorname{ar}(\mathrm{APB}) \mathrm{x} \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \mathrm{x} \operatorname{ar}(\mathrm{BPC})$
31. The following table shows the amount received on a certain sum of money invested at simple interest for different periods of time:

Time (in years)	2	5	10	15	20
Amount (in Rs.)	240	300	400	500	600

Plot these points on Cartesian plane, taking Time along x-axis and Amount along y-axis. Join the points. From the graph, write down the amount after 12 years.
32. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
33. The circumference of the base of a cone is $\frac{220}{7} \mathrm{~cm}$ and its slant height is 13 cm . Find the volume of the cone. (Use $\pi=\frac{22}{7}$)
34. Construct a histogram and frequency polygon for the following frequency distribution: $\begin{array}{lllllll}\text { Weight (in kg): } & 40-45 & 45-50 & 50-55 & 55-60 & 60-65 & 65-70\end{array}$ Number of persons: 15 25

28
15
12
5

MARKING SCHEME (SA - II)
 CLASS IX
 SECTION-A

1. (C)
2. (A)
3. (B)
4. (A)
5. (D)
6. (B)
7. (D)
8. (C)
1mark each

SECTION-B

9. Figure, construction.

10. Let the edge of the cube be x units

$$
\text { Increased edge }=\frac{11 \mathrm{x}}{10} \text { units }
$$

Original Surface Area $=6 x^{2}$
New Surface Area $=6 \times \frac{121}{100} x^{2}$, Increase in area $=6 \times \frac{121}{100} x^{2}-6 x^{2}$
\therefore Surface Area increased by $21 \%=\frac{21 \times 6}{100} \mathrm{x}^{2}$
11. Arranging the data (17 terms) in ascending order.
$5,5,5,6,6,6,6,7,7,7,8,8,9,9,10,10,11$
6 is repeated maximum number of times i.e. 4
\therefore mode $=6$
12. Prob. (he hits a boundary) $=4 / 30$
\therefore Prob. (he does not hit a boundary) $=1-\frac{4}{30}=\frac{26}{30}$ or $\frac{13}{15}$
13. Fig.

1

1

OR
$\angle A D B=180^{\circ}-(70+35)^{\circ}=75^{\circ}$
$\therefore \angle A C B=75^{\circ}$ (angles in the same segment)

14. $\frac{25+30+32+x+43}{5}=34$
$\Rightarrow x=40$

SECTION-C

15. $3 x-8 y=27$: Some of the solution are $(9,0),(1,-3),(-7,-6)$.

For each correct solution one mark
[These may be different also]
16. Given, To prove, Figure

Correct Proof of the theorem
17. For constructing $\angle B A D=60^{\circ}$ correctly

For drawing perpendicular bisector of AD
No, it does not pass through the point B.

18. Inner radius of the cylinder $=0.5 \mathrm{~mm}\left(r_{1}\right)$

Outer radius of the cylinder $=3.5 \mathrm{~mm} .\left(r_{2}\right)$
\therefore Volume of the wood $\quad=\pi\left(r^{2}{ }_{2}-\mathrm{r}_{1}{ }^{2}\right) \mathrm{h}$

$$
=\frac{22}{7}(12.25-.25) \times 140
$$

$$
=5280 \mathrm{~mm}^{3} .
$$

OR
Volume of the wheat $\quad=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 3
$$

$$
=154 \mathrm{~m}^{3}
$$

$\mathrm{r}=7 \mathrm{~m}, \mathrm{~h}=3 \mathrm{~m} \quad \therefore \ell \quad=\sqrt{h^{2}+r^{2}}=\sqrt{58} \mathrm{~m}$.
\therefore Area of the canvas required $=\pi r \ell$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \times \sqrt{58} \\
& =22 \sqrt{58} \mathrm{~m}^{2}
\end{aligned}
$$

19. Marks (x)

10
11
12
13
14
15

$$
\Sigma f=30
$$

Mean $(\bar{x})=\frac{\sum f x}{\sum f}=\frac{379}{30}$
fxx
60
33
4
5

7

$$
5
$$

$=12.63$
Number of students (f)

5

$$
\sum f x=379
$$

Arranging the data in ascending order
$2,5,7,7,8,10,10,10,14,17,18,24,25,27$
$\mathrm{n}=14, \quad$ median $=\frac{7^{\text {th }}+8^{\text {th }} \text { term }}{2}$

$$
=\frac{10+10}{2}=10
$$

$$
\text { Mode }=10
$$

$$
\text { Mean }=\frac{184}{14}
$$

$$
=13.14
$$

20. (i) In one variable: $x=-3$, is represented on number line.

(ii) in two variables: Equation is $x+0 . y=-3$

$A B$ is the required line parallel to y-axis.
OR

(i)
(ii)

1

21. initial radius $\left(r_{1}\right)=7 \mathrm{~cm}$

Present radius $\left(r_{2}\right)=14 \mathrm{~cm}$
Initial surface area $\left(\mathrm{S}_{1}\right)=4 \pi \times 7 \times 7 \mathrm{~cm}^{2}$
Present surface area $\left(S_{2}\right)=4 \pi \times 14 \times 14 \mathrm{~cm}^{2}$

$$
\frac{S_{2}}{S_{1}}=\frac{4}{1} \text { or } 4: 1
$$

Now ar (ABCD) $=\operatorname{ar}(A Q O C D)+\operatorname{ar}(O Q B)$

$$
=\operatorname{Ar}(\mathrm{AQOCD})+\operatorname{ar}(\mathrm{OPC})
$$

$$
=\operatorname{Ar}(\mathrm{AQPD})
$$

24. (i) Prob. (getting a number less than 3) $=\frac{72+65}{400}=\frac{137}{400}$
(iii) Prob. (getting a number more than 4$)=\frac{63+59}{400}=\frac{61}{200}$

SECTION-D

25. Let $A B C D$ be a quadrilateral. P, Q, R, S are mid points of $A B, B C, C D$ and $D A$ respectively. Join $P Q, Q R, R S$ and $S P$.

Join AC
In $\triangle \mathrm{DAC}, \mathrm{SR} \| \mathrm{AC} \& \mathrm{SR}=\frac{1}{2} \mathrm{AC}$ (Mid point theorem) In $\triangle \mathrm{BAC}, \mathrm{PQ} \| \mathrm{AC} \& \mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
\Rightarrow PQRS is a parallelogram

$\therefore P R$ and $S Q$ are diagonals of PQRS, therefore PR \& SQ bisect each other.
26. Correct construction of \triangle CBD

Correct construction of $\triangle A B C$

OR
Correct construction of $\triangle \mathrm{PAB} 2$
Correct construction of $\triangle P Q R \quad 2$

27. Equation is $x+2 y=8 \Rightarrow y=\frac{1}{2}(8-x)$

x	-2	0	2
y	5	4	3

Correct graph $2 \frac{1}{2}$
$(-1,-2)$ does not lie on the line, therefore not a solution
1
28. Let the edge of the cube be xm .

Volume of water when tank is full $=15.625 \mathrm{~m}^{3}$
1
$\Rightarrow x^{3}=15.625 \mathrm{~m}^{3} \Rightarrow \mathrm{x}=2.5 \mathrm{~m}$.
Volume of water remained in tank $=(2.5)^{2} \times 1.3 \mathrm{~m}^{3}$

$$
=8.125 \mathrm{~m}^{3}
$$

\therefore Volume of water already used $=(15.625-8.125) \mathrm{m}^{3}$

$$
=7.500 \mathrm{~m}^{3}
$$

29. $\angle \mathrm{QRP}=90^{\circ}$ (angle in a semi circle)
$\therefore \angle \mathrm{QPR}=90^{\circ}-65^{\circ}=25^{\circ}$
\therefore PQRS is a cyclic quadrilateral
$\therefore \quad \angle \mathrm{PSR}=(180-65)^{\circ}=115^{\circ}$
$\Rightarrow \angle \mathrm{PRS}=180^{\circ}-(115+40)^{\circ}=25^{\circ}$
$\angle \mathrm{M}=90^{\circ} \therefore \angle \mathrm{QPM}=90^{\circ}-50^{\circ}=40^{\circ}$
30. Draw perpendicular $D E$ ad $C F$ on $A B$ from D and C respectively
$\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$
$\Rightarrow \operatorname{ar}(A O D)+\operatorname{ar}(A O B)=\operatorname{ar}(B O C)+\operatorname{ar}(A O B)$

$$
\begin{aligned}
& \Rightarrow \operatorname{ar}(\mathrm{DAB}=\operatorname{ar}(\mathrm{CAB}) \\
& \Rightarrow \frac{1}{2} \mathrm{AB} \times \mathrm{DE}=\frac{1}{2} \mathrm{AB} \times \mathrm{CF} \\
& \Rightarrow \mathrm{DE}=\mathrm{CF} \\
& \Rightarrow \mathrm{AB} \| \mathrm{DC} \\
& \Rightarrow \mathrm{ABCD} \text { is a trapezium. }
\end{aligned}
$$

Draw perpendiculars CN and AM on BD from C and A respectively

$$
\begin{array}{rlr}
\operatorname{ar} & (\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD}) & 1 \\
& =\frac{1}{2}(\mathrm{~PB} \times \mathrm{AM}) \times \frac{1}{2}(\mathrm{PD} \times \mathrm{CN}) & 1
\end{array}
$$

$=\operatorname{ar}(\mathrm{BPC}) \times \operatorname{ar}(\mathrm{APD})$

31. Plotting the points correctly

$$
\frac{1}{2} \times 5=21 / 2
$$

Joining the points

32. $\mathrm{AB}=\mathrm{CD}$

Draw $O P \perp A B, O Q \perp C D$.
$O P=O Q \quad$ (equal chords are equidistant from centre)
$O M=O M$
$\angle \mathrm{OPM}=\angle \mathrm{OQM} \quad\left(90^{\circ}\right.$ each $)$
$\therefore \triangle \mathrm{OPM} \cong \triangle \mathrm{OQM}(\mathrm{RHS})$
$\Rightarrow \angle 1=\angle 2$ (cpct)
Or $\angle O M P=\angle O M Q$

33. Let the radius of the cone be r, slant height be ℓ, height be h.

$$
\begin{aligned}
& 2 \pi r=\frac{220}{7} \mathrm{~cm} \\
& \Rightarrow r=5 \mathrm{~cm} \\
& \begin{array}{rl}
\therefore \ell=13 \mathrm{~cm} \\
\therefore \mathrm{~h}=\sqrt{13^{2}-5^{2}}=12 \mathrm{~cm} & 1 \\
\therefore \text { Volume of the cone }=\frac{1}{3} \pi r^{2} \mathrm{~h} \\
& =\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 12 \\
& =\frac{2200}{7} \mathrm{~cm}^{3}
\end{array}
\end{aligned}
$$

Frequency polygon

