Loads and Load Combinations for NBCC

Prepared by

Dr Michael Bartlett, P.Eng University of Western Ontario

Presented with minor modifications by Dr Robert Sexsmith, P.Eng. University of British Columbia

CSCE Workshop – NBCC Loads and Seismic Design 2004 June 10, Calgary AB

Outline

- Companion Action Principle
- Review of NBCC 1995
 - Snow Load Factor
 - Return Period on Environmental Loads
- NBCC 2004 Provisions
 - Dead Loads & Load Effects
 - Load Combinations
 - Impact on Design Load Effects
- Summary

NBCC 1995 Format

 $\phi \mathbf{R} > \alpha_{\mathbf{D}} \mathbf{D} + \psi \gamma \{ \alpha_{\mathbf{L}} \mathbf{L} + \alpha_{\mathbf{Q}} \mathbf{Q} + \alpha_{\mathbf{T}} \mathbf{T} \}$ where ψ = load combination factor γ = importance factor

NBCC 1995 Load Combinations:
1.25 D + 1.5 L
1.25 D + 1.5 Q (wind)
1.25 D + 0.7 {1.5 L + 1.5 Q (wind)}
= 1.25 D + 1.05 L + 1.05 Q (wind)

note that snow is (was!) included with live

Companion Action Format

 $\phi \mathbf{R} > \alpha_{\mathbf{D}} \mathbf{D} + \alpha_{\mathbf{i}} \mathbf{S}_{\mathbf{i}} + \Sigma \alpha_{\mathbf{ik}} \mathbf{S}_{\mathbf{k}}$, $\mathbf{i} \neq \mathbf{k}$

where $S_i = principal action$ $S_k = companion actions$

Typical Load Combinations: 1.25 D + 1.5 L + 0.4 W (wind) 1.25 D + 1.4 W (wind) + 0.5 L

Companion Action Format

- Better represents the situation of one extreme event with the other loads that may be acting
- Permits logical extensions for special cases

Designer can Envisage Hazards

- Correlation of transient loads explicitly considered
- Can you imagine a structure where simultaneous maximum values of transient loads are:
 - unlikely?
 - expected?

2000/2001 Failures: Sarnia Mall

Source: Globe and Mail 2000 December 09

Return Period for Environmental Loads

- NBCC 1995 specifies:
 - 30 years for specified Snow, Wind
 - 10 years for Wind for Deflections
 - 100 years for wind on Important Structures
- Use 50 year or 500 year return periods (<u>only</u>) for 2004 NBCC?
- Ratio n-yr/30-yr depends coefficient of variation of annual maximum load

NBCC 2004 Calibration Process

- 1. Reliability indices for 1995 NBCC
- 2. Preliminary load combinations for 50-yr, 500yr loads by Bartlett, Hong & Zhou
 - review by Part 4 Task Group on Snow & Wind Loads
 - review by Part 4 Standing Committee
- 3. Revised load combinations, 50-yr loads
 - review by Task Group and Part 4
 committee
 - public review

Proposed 1.2 D Criticized

- History: 1.3 proposed for 1975 NBCC reduced to 1.25 to maintain same ratio of dead/live load factor as in ACI 318-71
- Specific concerns:
 - floor thickness variability
 - dead load of soil & landscaping
 - tributary area computation

2000 Survey: Concrete Floor Thickness

- Marked variability for
 - Cast-in-place toppings on precast
 - Cover slabs in unshored composite construction (no specified tolerances?)
- "Uncertain D" with load factor of 1.5 considered but not adopted
- Make allowances for extra dead load
- Consider deflections of supporting members

Tributary Areas in NBCC

2004 NBCC Combinations

1.4 D
1.25 D + 1.5 L + (0.4 W or 0.5 S)
1.25 D + 1.4 W + (0.5 L or 0.5 S)
1.25 D + 1.5 S + (0.5 L or 0.4 W)
0.9 D + (1.5 L or 1.4 W or 1.5 S)
Add to all combinations:
P = prestress
H = horizontal earth pressures
T = restrained deformations (safety)

50-yr Wind & Snow Specified

- typically ~10% greater than 30-yr values
- snow load factor initially 1.7, implies a 25% increase in factored load, deemed too big.
- modify for importance categories based on use & occupancy
- reduce for SLS checks

Importance Factors for S, W

Importance	Ultimate (Snow or Wind)	Serviceability	
Category		Snow	Wind
Low	0.8	0.9	0.75
Normal	1.0		
High	1.15		
Post Disaste	r 1.25	0.9	0.75

Uncoupling Snow & Live

- Members resisting low D, high L (use + occupancy), high S require less resistance.
- Logical consequence of considering Live and Snow as independent
- Similar format adopted in ASCE-7 based on load combinations derived in 1980

Summary

- 1. Companion action load combination format proposed for NBCC 2004:
 - more realistic representation
 - permits logical decisions for unusual cases
 - little difference for many members
 - consistent with other international standards (ACI 318, AISC LRFD, etc.)

2. Dead loads:

- make allowance for extra thickness of thin toppings
- tributary areas for first interior columns
- **3.** Snow loads are no longer classified with live loads due to use and occupancy.
 - less resistance needed for members carrying snow and live loads

4. Only 50 year environmental loads specified:

- increases specified loads by ~ 10%
- additional increases for important and post-disaster buildings
- load factors less than 1.0 reduce specified loads for serviceability checks.
- 5. New load combinations give similar demands to NBCC 1995:
 - less demand due to snow & live loads
 - more demand due to snow only

- 6. New load combinations have been reviewed by various committees
- Additional references: papers by Bartlett, Hong & Zhou in Canadian Journal of Civil Engineering

Acknowledgements

- National Research Council of Canada
- Natural Sciences & Engineering Research Council of Canada
- NBC Part 4 Task Group on Snow and Wind Loads (D. E. Allen, Chair)
- Canadian Meteorological Centre
- Steel Structures Education Foundation
- J. G. MacGregor
- Michael Bartlett (who prepared this presentation and permitted its use for this CSCE short course)