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UNIT 1 

BOOLEAN ALGEBRA AND MINIMIZATION 

1.1 Introduction: 

The English mathematician George Boole (1815-1864) sought to give symbolic form to 

Aristotle‘s system of logic. Boole wrote a treatise on the subject in 1854, titled An Investigation 

of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and 

Probabilities, which codified several rules of relationship between mathematical quantities 

limited to one of two possible values: true or false, 1 or 0. His mathematical system became 

known as Boolean algebra. 

All arithmetic operations performed with Boolean quantities have but one of two possible 

Outcomes: either 1 or 0. There is no such thing as ‖2‖ or ‖-1‖ or ‖1/2‖ in the Boolean world. It is a 

world in which all other possibilities are invalid by fiat. As one might guess, this is not the kind 

of math you want to use when balancing a checkbook or calculating current through a resistor. 

However, Claude Shannon of MIT fame recognized how Boolean algebra could be applied to 

on-and-off circuits, where all signals are characterized as either ‖high‖ (1) or ‖low‖ (0). His1938 

thesis, titled A Symbolic Analysis of Relay and Switching Circuits, put Boole‘s theoretical work 

to use in a way Boole never could have imagined, giving us a powerful mathematical tool for 

designing and analyzing digital circuits. 

Like ‖normal‖ algebra, Boolean algebra uses alphabetical letters to denote variables. 

Unlike ‖normal‖ algebra, though, Boolean variables are always CAPITAL letters, never 

lowercase. 

Because they are allowed to possess only one of two possible values, either 1 or 0, each and 

every variable has a complement: the opposite of its value. For example, if variable ‖A‖ has a 

value of 0, then the complement of A has a value of 1. Boolean notation uses a bar above the 

variable character to denote complementation, like this: 
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In written form, the complement of ‖A‖ denoted as ‖A-not‖ or ‖A-bar‖. Sometimes a ‖prime‖ 

symbol is used to represent complementation. For example, A‘ would be the complement of A, 

much the same as using a prime symbol to denote differentiation in calculus rather than the 

fractional notation dot. Usually, though, the ‖bar‖ symbol finds more widespread use than the 

‖prime‖ symbol, for reasons that will become more apparent later in this chapter. 
 
 

 

1.2 Boolean Arithmetic: 
 
 

 

Let us begin our exploration of Boolean algebra by adding numbers together: 
 
0 + 0 = 0 
 
0 + 1 = 1 
 
1 + 0 = 1 
 
1 + 1 = 1 
 
The first three sums make perfect sense to anyone familiar with elementary addition. The 

 

Last sum, though, is quite possibly responsible for more confusion than any other single 

statement in digital electronics, because it seems to run contrary to the basic principles of 

mathematics. 

 

Well, it does contradict principles of addition for real numbers, but not for Boolean numbers. 

Remember that in the world of Boolean algebra, there are only two possible values for any 

quantity and for any arithmetic operation: 1 or 0. There is no such thing as ‖2‖ within the scope of 

Boolean values. Since the sum ‖1 + 1‖ certainly isn‘t 0, it must be 1 by process of elimination. 
 
 

 

1.2.1 Addition – OR Gate Logic: 
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Boolean addition corresponds to the logical function of an ‖OR‖ gate, 
 
as well as to parallel switch contacts: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There is no such thing as subtraction in the realm of Boolean mathematics. Subtraction 

 

Implies the existence of negative numbers: 5 - 3 is the same thing as 5 + (-3), and in Boolean 

algebra negative quantities are forbidden. There is no such thing as division in Boolean 

mathematics, either, since division is really nothing more than compounded subtraction, in the 

same way that multiplication is compounded addition. 
 
 

 

1.2.2 Multiplication – AND Gate logic 
 
 
 
 

Multiplication is valid in Boolean algebra, and thankfully it is the same as in real-number 
algebra: anything multiplied by 0 is 0, and anything multiplied by 1 remains unchanged: 
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0 × 0 = 0 
 
0 × 1 = 0 
 
1 × 0 = 0 
 
1 × 1 = 1 

 

This set of equations should also look familiar to you: it is the same pattern found in the truth 

table for an AND gate. In other words, Boolean multiplication corresponds to the logical 

function of an ‖AND‖ gate, as well as to series switch contacts: 
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1.2.3 Complementary Function – NOT gate Logic 
 
 
 
 
Boolean complementation finds equivalency in the form of the NOT gate, or a normally closed 
switch or relay contact: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.3 Boolean Algebraic Identities 
 
 
 
 

In mathematics, an identity is a statement true for all possible values of its variable or 

variables. The algebraic identity of x + 0 = x tells us that anything (x) added to zero equals the 

original ‖anything,‖ no matter what value that ‖anything‖ (x) may be. Like ordinary algebra,  
Boolean algebra has its own unique identities based on the bivalent states of Boolean variables. 
 
The first Boolean identity is that the sum of anything and zero is the same as the original 
 
‖anything.‖ This identity is no different from its real-number algebraic equivalent: 
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No matter what the value of A, the output will always be the same: when A=1, the output 

will also be 1; when A=0, the output will also be 0. 

 
 
 
 
 
 
 
 
 
 
 
 

 

The next identity is most definitely different from any seen in normal algebra. Here 

we discover that the sum of anything and one is one: 

 
 
 
 
 
 
 
 
 
 
 
No matter what the value of A, the sum of A and 1 will always be 1. In a sense, the ‖1‖ 

 

signal overrides the effect of A on the logic circuit, leaving the output fixed at a logic level of 1. 

Next, we examine the effect of adding A and A together, which is the same as connecting 

 
both inputs of an OR gate to each other and activating them with the same signal: 
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In real-number algebra, the sum of two identical variables is twice the original variable‘s 

 

value (x + x = 2x), but remember that there is no concept of ‖2‖ in the world of Boolean math, 

only 1 and 0, so we cannot say that A + A = 2A. Thus, when we add a Boolean quantity to itself, 

the sum is equal to the original quantity: 0 + 0 = 0, and 1 + 1 = 1. 

 

Introducing the uniquely Boolean concept of complementation into an additive identity, we find 

an interesting effect. Since there must be one ‖1‖ value between any variable and its complement, 

and since the sum of any Boolean quantity and 1 is 1, the sum of a variable and its complement 

must be 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Four multiplicative identities: Ax0, Ax1, AxA, and AxA‘. Of these, the first two are no 
 
different from their equivalent expressions in regular algebra: 
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The third multiplicative identity expresses the result of a Boolean quantity multiplied by 
 
itself. In normal algebra, the product of a variable and itself is the square of that variable (3x 3 =  
32 = 9). However, the concept of ‖square‖ implies a quantity of 2, which has no meaning in 
 
Boolean algebra, so we cannot say that A x A = A2. Instead, we find that the product of a 
Boolean quantity and itself is the original quantity, since 0 x 0 = 0 and 
 
1 x 1 = 1: 
 
 
 
 
 
 
 
 
 
The fourth multiplicative identity has no equivalent in regular algebra because it uses the 
 
complement of a variable, a concept unique to Boolean mathematics. Since there must be 

 
one ‖0‖ value between any variable and its complement, and since the product of any Boolean 
quantity and 0 is 0, the product of a variable and its complement must be 0: 
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1.4 Principle of Duality: 
 
 
 
 

It states that every algebraic expression is deducible from the postulates of Boolean 

algebra, and it remains valid if the operators & identity elements are interchanged. If the inputs 

of a NOR gate are inverted we get a AND equivalent circuit. Similarly when the inputs of a 

NAND gate are inverted, we get a OR equivalent circuit. 
 
This property is called DUALITY. 
 
 

 

1.5 Theorems of Boolean algebra: 
 
 
 
 

The theorems of Boolean algebra can be used to simplify many a complex Boolean 

expression and also to transform the given expression into a more useful and meaningful 

equivalent expression. The theorems are presented as pairs, with the two theorems in a given pair 

being the dual of each other. These theorems can be very easily verified by the method of 
 
‗perfect induction‘. According to this method, the validity of the expression is tested for all 

possible combinations of values of the variables involved. Also, since the validity of the theorem 

is based on its being true for all possible combinations of values of variables, there is no reason 

why a variable cannot be replaced with its complement, or vice versa, without disturbing the 

validity. Another important point is that, if a given expression is valid, its dual will also be valid 
 
 

 

1.5.1 Theorem 1 (Operations with ‗0‘ and ‗1‘) 
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(a) 0.X = 0 and (b) 1+X= 1 
 
Where X is not necessarily a single variable – it could be a term or even a large expression. 
 
 
 
 
Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into the 
given expression and checking whether the LHS equals the RHS: 
 
 

 

• For X = 0, LHS = 0.X = 0.0 = 0 = RHS.  
 
• For X= 1, LHS = 0.1 = 0 = RHS.  
 
 

 

Thus, 0.X =0 irrespective of the value of X, and hence the proof. 
 
 

 

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1, 
 
 

 

0. (Boolean expression) = 0 and 1+ (Boolean expression) =1. 
 
 
 
 
For example: 0. (A.B+B.C +C.D) = 0 and 1+ (A.B+B.C +C.D) = 1, where A, B and C are 
Boolean variables. 
 
 
 
 
 
 
 

 

1.5.2 Theorem 2 (Operations with ‗0‘ and ‗1‘)  
 
 

 

(a) 1.X = X and (b) 0+X = X  
 

 

where X could be a variable, a term or even a large expression. According to this theorem, 
ANDing a Boolean expression to ‗1‘ or ORing ‗0‘ to it makes no difference to the expression: 
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• For X = 0,   LHS = 1.0 = 0 = RHS.  
 
• For X = 1,   LHS = 1.1 = 1 = RHS.  
 
 

 

Also, 

 
1. (Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean 
expression. 
 
 

 

For example, 
 

1.(A+B.C +C.D) = 0+(A+B.C +C.D) = A+B.C +C.D 
 
 

 

1.5.3 Theorem 3 (Idempotent or Identity Laws) 
 
 

 

(a) X.X.X……X = X and (b) X+X+X +···+X = X 
 
 

 

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity laws. 
 
 
 
 
Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents an 

OR gate operation when all the inputs of the gate have been tied together. The scope of 

idempotent laws can be expanded further by considering X to be a term or an expression. For 

example, let us apply idempotent laws to simplify the following Boolean expression: 
 
 
 
 
 
 
 

 

1.5.4 Theorem 4 (Complementation Law) 
 
 

 

(a) X_X = 0   and (b) X+X = 1 
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According to this theorem, in general, any Boolean expression when ANDed to its complement 

yields a ‗0‘ and when ORed to its complement yields a ‗1‘, irrespective of the complexity of the 

expression: 
 
 
 
 
 
 
 
 
 
 
Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is 
implied. 
 
The example below further illustrates the application of complementation laws: 
 
 
 
 
 
 
 
1.5.5 Theorem 5 (Commutative property) 
 
 

 

Mathematical identity, called a ‖property‖ or a ‖law,‖ describes how differing 
 
variables relate to each other in a system of numbers. One of these properties is known as 

 

the commutative property, and it applies equally to addition and multiplication. In essence, the 

commutative property tells us we can reverse the order of variables that are either added together 

or multiplied together without changing the truth of the expression: 
 
 

 

Commutative property of addition 
 
A + B = B + A 
 
 

 

Commutative property of multiplication 
 
AB = BA 
 
 

 

1.5.6 Theorem 6 (Associative Property) 
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The Associative Property, again applying equally well to addition and multiplication. 

This property tells us we can associate groups of added or multiplied variables together with 

parentheses without altering the truth of the equations. 
 
 

 

Associative property of addition 
 
A + (B + C) = (A + B) + C 
 
 

 

Associative property of multiplication 
 
A (BC) = (AB) C 
 
 

 

1.5.7 Theorem 7 (Distributive Property) 
 
 
 
 

The Distributive Property, illustrating how to expand a Boolean expression formed by the 

product of a sum, and in reverse shows us how terms may be factored out of Boolean sums-of-

products: 
 
 

 

Distributive property 
 

A (B + C) = AB + AC 
 
 
 
 
 
 

1.5.8 Theorem 8 (Absorption Law or Redundancy Law) 
 
 

 

(a) X+X.Y = X    and    (b) X.(X+Y) = X 
 

 

The proof of absorption law is straightforward: 
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X+X.Y = X. (1+Y) = X.1 = X 
 
 

 

Theorem 8(b) is the dual of theorem 8(a) and hence stands proved. 

 

The crux of this simplification theorem is that, if a smaller term appears in a larger term, then the 
larger term is redundant. The following examples further illustrate the underlying concept: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.5.9 Demorgan‘s Theorem 
 
 
 
 

De-Morgan was a great logician and mathematician. He had contributed much to logic. 
Among his contribution the following two theorems are important 
 
 

 

1.5.9.1 De-Morgan‘s First Theorem 
 
 
 
 
It States that ―The complement of the sum of the variables is equal to the product of the 

complement of each variable‖. This theorem may be expressed by the following Boolean 

expression. 
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1.5.9.2 De-Morgan‘s Second Theorem  
 
 
 
 
It states that the ―Complement of the product of variables is equal to the sum of complements 
of each individual variables‖. Boolean expression for this theorem is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.6 Boolean Function 
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Z=AB‘+A‘C+A‘B‘C‘ 
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1.7 Canonical Form of Boolean Expressions 

 

An expanded form of Boolean expression, where each term contains all Boolean variables in 

their true or complemented form, is also known as the canonical form of the expression. As an 

illustration,  is a Boolean function of three variables expressed 

in canonical form. This function after simplification reduces to  and loses its 

canonical form. 
 
 

 

1.7.1 MIN TERMS AND MAX TERMS   
Any boolean expression may be expressed in terms of either minterms or maxterms. To do this 
we must first define the concept of a literal. A literal is a single variable within a term which 
may or may not be complemented. For an expression with N variables, minterms and 
maxterms are defined as follows : 
 
 
 

• A minterm is the product of N distinct literals where each literal occurs exactly once.  

 

• A maxterm is the sum of N distinct literals where each literal occurs exactly 

once. Product-of-Sums Expressions  

 

 

1.7.2 Standard Forms 

 

A product-of-sums expression contains the product of different terms, with each term 

being either a single literal or a sum of more than one literal. It can be obtained from the truth 

table by considering those input combinations that produce a logic ‗0‘ at the output. Each such 

input combination gives a term, and the product of all such terms gives the expression. Different 

terms are obtained by taking the sum of the corresponding literals. Here, ‗0‘ and ‗1‘ respectively 

mean the uncomplemented and complemented variables, unlike sum-of-products expressions 

where ‗0‘ and ‗1‘ respectively mean complemented and uncomplemented variables. 

 
Since each term in the case of the product-of-sums expression is going to be the sum of literals, 

this implies that it is going to be implemented using an OR operation. Now, an OR gate produces 

a logic ‗0‘ only when all its inputs are in the logic ‗0‘ state, which means that the first term 

corresponding to the second row of the truth table will be A+B+C. The product-of-sums Boolean 

expression for this truth table is given by Transforming the given product-of-sums expression 

into an equivalent sum-of-products expression is a straightforward process. Multiplying out the 
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given expression and carrying out the obvious simplification provides the equivalent sum-of-
products expression: 

 

A given sum-of-products expression can be transformed into an equivalent product-of-sums 

expression by (a) taking the dual of the given expression, (b) multiplying out different terms to 

get the sum-of products form, (c) removing redundancy and (d) taking a dual to get the 

equivalent product-of-sums expression. As an illustration, let us find the equivalent product-of-

sums expression of the sum-of products expression 
 
 

 

The dual of the given expression =  
 
 
 
 
 
 
 
 
 
 
 
 
1.8 Minimization Technique 
 
 
 
 

The primary objective of all simplification procedures is to obtain an expression that has 

the minimum number of terms. Obtaining an expression with the minimum number of literals is 

usually the secondary objective. If there is more than one possible solution with the same number 

of terms, the one having the minimum number of literals is the choice. 
 
 

 

There are several methods for simplification of Boolean logic expressions. The process is usually 

called logic minimization‖ and the goal is to form a result which is efficient. Two methods we 

will discuss are algebraic minimization and Karnaugh maps. For very complicated problems the 

former method can be done using special software analysis programs. Karnaugh maps are also 

limited to problems with up to 4 binary inputs. The Quine–McCluskey tabular method is used for 

more than 4 binary inputs. 
 
 

 

1.9 Karnaugh Map Method 
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Maurice Karnaugh, a telecommunications engineer, developed the Karnaugh map at Bell 

Labs in 1953 while designing digital logic based telephone switching circuits. 
 
Karnaugh maps reduce logic functions more quickly and easily compared to Boolean 

 

algebra. By reduce we mean simplify, reducing the number of gates and inputs. We like to 

simplify logic to a lowest cost form to save costs by elimination of components. We define 

lowest cost as being the lowest number of gates with the lowest number of inputs per gate. 

 

A Karnaugh map is a graphical representation of the logic system. It can be drawn directly from 

either minterm (sum-of-products) or maxterm (product-of-sums) Boolean expressions. Drawing 

a Karnaugh map from the truth table involves an additional step of writing the minterm or 

maxterm expression depending upon whether it is desired to have a minimized sum-of-products 

or a minimized product of-sums expression 
 
 

 

1.9.1 Construction of a Karnaugh Map 
 
 

 

An n-variable Karnaugh map has 2n squares, and each possible input is allotted a square. 
 
In the case of a minterm Karnaugh map, ‗1‘ is placed in all those squares for which the output is 

‗1‘, and ‗0‘ is placed in all those squares for which the output is ‗0‘. 0s are omitted for 

simplicity. An ‗X‘ is placed in squares corresponding to ‗don‘t care‘ conditions. In the case of a 

maxterm Karnaugh map, a ‗1‘ is placed in all those squares for which the output is ‗0‘, and a 

‗0‘ is placed for input entries corresponding to a ‗1‘ output. Again, 0s are omitted for simplicity, 

and an ‗X‘ is placed in squares corresponding to ‗don‘t care‘ conditions. The choice of terms 

identifying different rows and columns of a Karnaugh map is not unique for a given number of 

variables. The only condition to be satisfied is that the designation of adjacent rows and adjacent 

columns should be the same except for one of the literals being complemented. Also, the extreme 

rows and extreme columns are considered adjacent. 
 
 

 

Some of the possible designation styles for two-, three- and four-variable minterm Karnaugh 
maps are shown in the figure below. 

 

The style of row identification need not be the same as that of column identification as long as it 

meets the basic requirement with respect to adjacent terms. It is, however, accepted practice to 

adopt a uniform style of row and column identification. Also, the style shown in the figure below 

is more commonly used. A similar discussion applies for maxterm Karnaugh maps. Having 

drawn the Karnaugh map, the next step is to form groups of 1s as per the following guidelines: 
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1. Each square containing a ‗1‘ must be considered at least once, although it can be 

considered as often as desired.  
 

 
2. The objective should be to account for all the marked squares in the minimum number of 

groups.  
 

 
3. The number of squares in a group must always be a power of 2, i.e. groups can have 1,2, 

4_ 8, 16, squares.  
 
 
 
 

 
4. Each group should be as large as possible, which means that a square should not be 

accounted for by itself if it can be accounted for by a group of two squares; a group of 
two squares should not be made if the involved squares can be included in a group of four 
squares and so on.  

 

 

5. ‗Don‘t care‘ entries can be used in accounting for all of 1-squares to make optimum 
groups. They are marked ‗X‘ in the corresponding squares. It is, however, not necessary 
to account for all ‗don‘t care‘ entries. Only such entries that can be used to advantage 
should be used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1.9.1 Two variable K Map 
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Fig 1.9.2 Three variable K Map 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1.9.3 Four variable K Map 
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Fig 1.9.4 Different Styles of row and column identification 

 

Having accounted for groups with all 1s, the minimum ‗sum-of-products‘ or ‗product-of-sums‘ 

expressions can be written directly from the Karnaugh map. Minterm Karnaugh map and 

Maxterm Karnaugh map of the Boolean function of a two-input OR gate. The Minterm and 

Maxterm Boolean expressions for the two-input OR gate are as follows: 
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Minterm Karnaugh map and Maxterm Karnaugh map of the three variable Boolean function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The truth table, Minterm Karnaugh map and Maxterm Karnaugh map of the four 

variable Boolean function 
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To illustrate the process of forming groups and then writing the corresponding minimized 

Boolean expression, The below figures respectively show minterm and maxterm Karnaugh maps 

for the Boolean functions expressed by the below equations. The minimized expressions as 

deduced from Karnaugh maps in the two cases are given by Equation in the case of the minterm 

Karnaugh map and Equation in the case of the maxterm Karnaugh map: 
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1.10 Quine–McCluskey Tabular Method 
 
 
 
 

The Quine–McCluskey tabular method of simplification is based on the complementation 
theorem, which says that 
 
 
 

 

where X represents either a variable or a term or an expression and Y is a variable. This theorem 

implies that, if a Boolean expression contains two terms that differ only in one variable, then 

they can be combined together and replaced with a term that is smaller by one literal. The same 

procedure is applied for the other pairs of terms wherever such a reduction is possible. All these 

terms reduced by one literal are further examined to see if they can be reduced further. The 

process continues until the terms become irreducible. The irreducible terms are called prime 

implicants. An optimum set of prime implicants that can account for all the original terms then 

constitutes the minimized expression. The technique can be applied equally well for minimizing 

sum-of-products and product of- 

 
sums expressions and is particularly useful for Boolean functions having more than six variables 

as it can be mechanized and run on a computer. On the other hand, the Karnaugh mapping 

method, to be discussed later, is a graphical method and becomes very cumbersome when the 

number of variables exceeds six. The step-by-step procedure for application of the tabular 

method for minimizing Boolean expressions,both sum-of-products and product-of-sums, is 

outlined as follows: 
 
1. The Boolean expression to be simplified is expanded if it is not in expanded form.  

 
2. Different terms in the expression are divided into groups depending upon the number of 1s 
they have.  
 
True and complemented variables in a sum-of-products expression mean ‗1‘ and ‗0‘ respectively. 
 
 
 
 
The reverse is true in the case of a product-of-sums expression. The groups are then arranged, 

beginning with the group having the least number of 1s in its included terms. Terms within the 

same group are arranged in ascending order of the decimal numbers represented by these terms. 

As an illustration, consider the expression 
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As another illustration, consider a product-of-sums expression given by 
 
 
 
 
 
 
 
 
 
 

 

The formation of groups and the arrangement of terms within different groups for the product-of 
sums expression are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It may be mentioned here that the Boolean expressions that we have considered above did not 

contain any optional terms. If there are any, they are also considered while forming groups. This 

completes the first table. 
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3. The terms of the first group are successively matched with those in the next adjacent higher order 
group to look for any possible matching and consequent reduction. The terms are considered matched 
when all literals except for one match. The pairs of matched terms are replaced with a single term where 
the position of the unmatched literals is replaced with a dash (—). These new terms formed as a result of 
the matching process find a place in the second table. The terms in the first table that do not find a match 
are called the prime implicants and are marked with an asterisk (∗). The matched terms are ticked (_).  

 

4. Terms in the second group are compared with those in the third group to look for a possible 
match.  
 
Again, terms in the second group that do not find a match become the prime implicants. 

 
5. The process continues until we reach the last group. This completes the first round of 
matching. 
 
The terms resulting from the matching in the first round are recorded in the second table. 

 

6. The next step is to perform matching operations in the second table. While comparing the 

terms for a match, it is important that a dash (—) is also treated like any other literal, that is, the 

dash signs also need to match. The process continues on to the third table, the fourth table and so 

on until the terms become irreducible any further.  

 

7. An optimum selection of prime implicants to account for all the original terms constitutes the 

terms for the minimized expression. Although optional (also called ‗don‘t care‘) terms are 

considered for matching, they do not have to be accounted for once prime implicants have been 

identified.  
 
Let us consider an example. Consider the following sum-of-products expression: 
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The second round of matching begins with the table shown on the previous page. Each term in 

the first group is compared with every term in the second group. For instance, the first term in 

the first group 00−1 matches with the second term in the second group 01−1 to yield 0−−1, 

which is recorded in the table shown below. The process continues until all terms have been 

compared for a possible match. Since this new table has only one group, the terms contained 

therein are all prime implicants. In the present example, the terms in the first and second tables 

have all found a match. But that is not always the case. 
 
 
 
 
 
 
 
 
 

 

The next table is what is known as the prime implicant table. The prime implicant table contains 

all the original terms in different columns and all the prime implicants recorded in different rows 

as shown below: 
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Each prime implicant is identified by a letter. Each prime implicant is then examined one by one 

and the terms it can account for are ticked as shown. The next step is to write a product-of-sums 

expression using the prime implicants to account for all the terms. In the present illustration, it is 

given as follows. 
 
 
 
 
Obvious simplification reduces this expression to PQRS which can be interpreted to mean that 
all prime implicants, that is, P, Q, R and S, are needed to account for all the original terms.  

Therefore, the minimized expression =  

 

What has been described above is the formal method of determining the optimum set of prime 

implicants. In most of the cases where the prime implicant table is not too complex, the exercise 

can be done even intuitively. The exercise begins with identification of those terms that can be 

accounted for by only a single prime implicant. In the present example, 0011, 0110, 1001 and 

1100 are such terms. As a result, P, Q, R and S become the essential prime implicants. The next 

step is to find out if any terms have not been covered by the essential prime implicants. In the 

present case, all terms have been covered by essential prime implicants. In fact, all prime 

implicants are essential prime implicants in the present example. As another illustration, let us 

consider a product-of-sums expression given by 
 
 
 

 

The procedure is similar to that described for the case of simplification of sum-of-products 
expressions. 
 
The resulting tables leading to identification of prime implicants are as follows: 
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The prime implicant table is constructed after all prime implicants have been identified to look 

for the optimum set of prime implicants needed to account for all the original terms. The prime 

implicant table shows that both the prime implicants are the essential ones: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.11 Universal Gates 
 
 
 
 

OR, AND and NOT gates are the three basic logic gates as they together can be used to 

construct the logic circuit for any given Boolean expression. NOR and NAND gates have the 

property that they individually can be used to hardware-implement a logic circuit corresponding 

to any given Boolean expression. That is, it is possible to use either only NAND gates or only 

NOR gates to implement any Boolean expression. This is so because a combination of NAND 

gates or a combination of NOR gates can be used to perform functions of any of the basic logic 

gates. It is for this reason that NAND and 

 

NOR gates are universal gates. As an illustration, Fig. 4.24 shows how two-input NAND gates 

can be used to construct a NOT circuit, a two-input AND gate and a two-input OR gate. Figure 

shows the same using NOR gates. Understanding the conversion of NAND to OR and NOR to 
 
AND requires the use of DeMorgan‘s theorem, which is discussed in Chapter 6 on Boolean 
algebra. 
 
 
 
 
These are gates where we need to connect an external resistor, called the pull-up resistor, 

between the output and the DC power supply to make the logic gate perform the intended logic 

function. Depending on the logic family used to construct the logic gate, they are referred to as 

gates with open collector output (in the case of the TTL logic family) or open drain output (in the 

case of the MOS logic family). Logic families are discussed in detail in Chapter 5. The 

advantage of using open collector/open drain gates lies in their capability of providing an 
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ANDing operation when outputs of several gates are tied together through a common pull-up 
resistor, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1.11.1 Implementation of basic logic gates using only NAND gates. 
 
 
 
 
 

 

without having to use an AND gate for the purpose. This connection is also referred to as WIRE-

AND connection. Figure shows such a connection for open collector NAND gates. The output in 

this case would be 
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WIRE-AND connection with open collector/drain devices. 
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The disadvantage is that they are relatively slower and noisier. Open collector/drain devices are 
therefore not recommended for applications where speed is an important consideration. 
 
 

 

The Exclusive-OR function 
 
 
 
 
One element conspicuously missing from the set of Boolean operations is that of Exclusive-OR. 

Whereas the OR function is equivalent to Boolean addition, the AND function to Boolean 

multiplication, and the NOT function (inverter) to Boolean complementation, there is no direct 

Boolean equivalent for Exclusive-OR. This hasn‘t stopped people from developing a symbol to 

represent it, though: 
 
 
 
 

 

This symbol is seldom used in Boolean expressions because the identities, laws, and rules 

 

of simplification involving addition, multiplication, and complementation do not apply to it. 

However, there is a way to represent the Exclusive-OR function in terms of OR and AND, as has 

been shown in previous chapters: AB‘ + A‘B. 
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Important Questions: Unit – I 

 

PART-A (2 Marks) 

 

1) Define binary logic.  

2) State the different classification of binary codes.  

3) State the steps involved in Gray to binary conversion.  

4) What is meant by bit & byte?  

5) What is the use of don‘t care conditions?   
6) List the different number systems   
7) State the abbreviations of ASCII and EBCDIC code  

8) What are the different types of number complements  

9) State De Morgan's theorem.  

 

PART-B 

 

1.Simplify the following Boolean function by using Tabulation 
method (16) 

F (w, x, y, z) =_ (0, 1, 2, 8, 10, 11, 14,15) 

 

2.Simplify the following Boolean functions by using K‘Map in SOP 

& POS.  
F (w, x, y, z) =_ (1, 3, 4, 6, 9, 11, 12, 14) (16) 

 

3.Simplify the following Boolean functions by using K‘Map in SOP 

& POS.  
F (w, x, y, z) =_ (1, 3, 7, 11, 15) + d (0 , 2, 5) (16) 

 

4.Reduce the given expression. (16)  
[(AB)‘ + A‘ +AB‘] 

 

5.Reduce the following function using k-map technique 
(16) f(A,B,C,D)= _ M(0, 3, 4, 7, 8, 10, 12, 14)+d (2, 6) 
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UNIT II COMBINATIONAL LOGIC 

 

SYLLABUS : 

 

 Combinational Circuits  

 Analysis and Design Procedures  

 Circuits for Arithmetic Operations 

 Code Conversion 

 Hardware Description Language (HDL) 
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Unit 2 
 

COMBINATIONAL LOGIC 
 
 
 
 

3.0 Introduction 

 

The term ‖combinational‖ comes to us from mathematics. In mathematics a 

combination is an unordered set, which is a formal way to say that nobody cares 

which order the items came in. Most games work this way, if you rolled dice one at 

a time and get a 2 followed by a 3 it is the same as if you had rolled a 3 followed 

by a 2. With combinational logic, the circuit produces 

 

the same output regardless of the order the inputs are changed. There are circuits 

which depend on the when the inputs change, these circuits are called sequential 

logic. Even though you will not find the term ‖sequential logic‖ in the chapter titles, 

the next several chapters will discuss sequential logic. Practical circuits will have a 

mix of combinational and sequential logic, with sequential logic making sure 

everything happens in order and combinational logic performing functions like 

arithmetic, logic, or conversion. 
 
 

 

3.1 Design Using Gates 
 
 
 
 

A combinational circuit is one where the output at any time depends only on 

the present combination of inputs at that point of time with total disregard to the 

past state of the inputs. The logic gate is the most basic building block of 

combinational logic. The logical function performed by a combinational circuit is 

fully defined by a set of Boolean expressions. The other category of logic circuits, 

called sequential logic circuits, comprises both logic gates and memory elements 

such as flip-flops. Owing to the presence of memory elements, the output in a 

sequential circuit depends upon not only the present but also the past state of 

inputs. 
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The Fig 3.1 shows the block schematic representation of a generalized 

combinational circuit having n input variables and m output variables or simply 

outputs. Since the number of input variables is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.1 Generalized Combinational Circuit 
 
 
 
 

n, there are 2n possible combinations of bits at the input. Each output can be 

expressed in terms of input variables by a Boolean expression, with the result that 

the generalized system of above fig can be expressed by m Boolean expressions. 

As an illustration, Boolean expressions describing the function of a four-input 

OR/NOR gate are given as 

 

….. Eq – 1 
 
 
 
 

3.2 BCD Arithmetic Circuits 
 
 
 
 

Addition and subtraction are the two most commonly used arithmetic 

operations, as the other two, namely multiplication and division, are respectively 

the processes of repeated addition and repeated subtraction, as was outlined in 

Chapter 2 dealing with binary arithmetic. We will begin with the basic building 

blocks that form the basis of all hardware used to perform the aforesaid arithmetic 

operations on binary numbers. These include half-adder, full adder, half-subtractor, 

full subtractor and controlled inverter. 
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3.3 Binary Adder 
 
 
 
 

3.3.1 Half-Adder 
 
 
 
 

A half-adder is an arithmetic circuit block that can be used to add two bits. 

Such a circuit thus has two inputs that represent the two bits to be added and two 

outputs, with one producing the SUM output and the other producing the CARRY. 

Figure 3.2 shows the truth table of a half-adder, showing all possible input 

combinations and the corresponding outputs. 

 

The Boolean expressions for the SUM and CARRY outputs are given by the 
equations below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.2 Truth Table of Half Adder 
 
 
 
 

An examination of the two expressions tells that there is no scope for further 

simplification. While the first one representing the SUM output is that of an EX-

OR gate, the second one representing the CARRY output is that of an AND gate. 

However, these two expressions can certainly be represented in different forms 

using various laws and theorems of Boolean algebra to illustrate the flexibility that 

the designer has in hardware-implementing as simple a combinational function as 

that of a half-adder. 
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Fig 3.3 Logic Implementation of Half Adder 

 

Although the simplest way to hardware-implement a half-adder would be to use a 

two-input EX-OR gate for the SUM output and a two-input AND gate for the 

CARRY output, as shown in Fig. 3.3, it could also be implemented by using an 

appropriate arrangement of either NAND or NOR gates. 
 
 

 

3.3.2 Full Adder 
 
 
 
 

A full adder circuit is an arithmetic circuit block that can be used to add three bits 

to produce a SUM and a CARRY output. Such a building block becomes a 

necessity when it comes to adding binary numbers with a large number of bits. The 

full adder circuit overcomes the limitation of the half-adder, which can be used to 

add two bits only. Let us recall the procedure for adding larger binary numbers. 

We begin with the addition of LSBs of the two numbers. We record the sum under 

the LSB column and take the carry, if any, forward to the next higher column bits. 

As a result, when we add the next adjacent higher column bits, we would be 

required to add three bits if there were a carry from the previous addition. We have 

a similar situation for the other higher column bits. Also until we reach the MSB. 

A full adder is therefore essential for the hardware implementation of an adder 

circuit capable of adding larger binary numbers. A half-adder can be used for 

addition of LSBs only. 
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Fig 3.4 Truth Table of Full Adder 
 
 
 
 

Figure 3.4 shows the truth table of a full adder circuit showing all possible input 

combinations and corresponding outputs. In order to arrive at the logic circuit for 

hardware implementation of a full adder, we will firstly write the Boolean 

expressions for the two output variables, that is, the SUM and CARRY outputs, in 

terms of input variables. These expressions are then simplified by using any of the 

simplification techniques described in the previous chapter. The Boolean 

expressions for the two output variables are given in Equation below for the SUM 

output (S) and in above Equation for the CARRY output (Cout): 
 
 
 
 
 

 

The next step is to simplify the two expressions. We will do so with the help of the 

Karnaugh mapping technique. Karnaugh maps for the two expressions are given in 

Fig. 3.5(a) for the SUM output and Fig. 3.5(b) for the CARRY output. As is clear 

from the two maps, the expression for the SUM (S) output cannot be simplified 

any further, whereas the simplified Boolean expression for Cout is given by the 

equation 
 
 
 
 
 
 
 

Figure 3.6 shows the logic circuit diagram of the full adder. A full adder can also 

be seen to comprise two half-adders and an OR gate. The expressions for SUM and 

CARRY outputs can be rewritten as follows: 
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Similarly, the expression for CARRY output can be rewritten as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.5   Karnaugh Map for the sum and carry out of a full adder 
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Fig 3.6 Logic circuit diagram of full adder 
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Boolean expression above can be implemented with a two-input EX-OR gate 

provided that one of the inputs is Cin and the other input is the output of another 

two-input EX-OR gate with A and B as its inputs. Similarly, Boolean expression 

above can be implemented by ORing two minterms. One of them is the AND 

output of A and B. The other is also the output of an AND gate whose inputs are 

Cin and the output of an EX-OR operation on A and B. The whole idea of writing 

the Boolean expressions in this modified form was to demonstrate the use of a 

half-adder circuit in building a full adder. Figure 3.7(a) shows logic 

implementation of Equations above. Figure 3.7(b) is nothing but Fig. 3.7(a) 

redrawn with the portion of the circuit representing a half-adder replaced with a 

block. The full adder of the type described above forms the basic building block of 

binary adders. However, a single full adder circuit can be used to add one-bit 

binary numbers only. A cascade arrangement of these adders can be used to 

construct adders capable of adding binary numbers with a larger number of bits. 

For example, a four-bit binary adder would require four full adders of the type 

shown in Fig. 3.7 to be connected in cascade. Figure 3.8 shows such an 

arrangement. (A3A2A1A0) and (B3B2B1B0) are the two binary numbers to be 

added, with A0 and B0 representing LSBs and A3 and B3 representing MSBs of 

the two numbers. 
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Fig 3.7 Logic Implementation of a full adder with Half Adders 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.8 Four Bit Binary Adder 
 
 
 
 
 

 

3.4 Half-Subtractor 
 
 
 
 

We will study the use of adder circuits for subtraction operations in the following 

pages. Before we do that, we will briefly look at the counterparts of half-adder and 

full adder circuits in the half-subtractor and full subtractor for direct 

implementation of subtraction operations using logic gates. 

 

A half-subtractor is a combinational circuit that can be used to subtract one binary 
digit from another to produce a DIFFERENCE output and a BORROW output. 
 

The BORROW output here specifies whether a ‗1‘ has been borrowed to perform 

the subtraction. The truth table of a half-subtractor, as shown in Fig. 3.9, explains 

this further. The Boolean expressions for the two outputs are given by the 

equations 
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Fig 3.9 Half Subtractor 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.10 Logic Diagram of a Half Subtractor 
 
 
 
 

It is obvious that there is no further scope for any simplification of the Boolean 
expressions given by above equations. While the expression for the DIFFERENCE  
(D) output is that of 

 

an EX-OR gate, the expression for the BORROW output (Bo) is that of an AND 
gate with input 
 

A complemented before it is fed to the gate. Figure 3.10 shows the logic 

implementation of a half-subtractor. Comparing a half-subtractor with a half-adder, 

we find that the expressions for the SUM and DIFFERENCE outputs are just the 

same. The expression for BORROW in the case of the half-subtractor is also 

similar to what we have for CARRY in the case of the half-adder. If 

 

the input A, that is, the minuend, is complemented, an AND gate can be used to 
implement the 

 

BORROW output. Note the similarities between the logic diagrams of Fig. 3.3 
(half-adder) and Fig. 3.10 (half-subtractor). 
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3.4.1 Full Subtractor 
 
 
 
 

A full subtractor performs subtraction operation on two bits, a minuend and a 

subtrahend, and also takes into consideration whether a ‗1‘ has already been 

borrowed by the previous adjacent lower minuend bit or not. As a result, there are 

three bits to be handled at the input of a full subtractor, namely the two bits to be 

subtracted and a borrow bit designated as Bin . There are two outputs, namely the 

DIFFERENCE output D and the BORROW output Bo. The BORROW output bit 

tells whether the minuend bit needs to borrow a ‗1‘ from the next possible higher 

minuend bit. Figure 3.11 shows the truth table of a full subtractor. 
 

The Boolean expressions for the two output variables are given by the equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.11 Truth Table of Full Subtractor 
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Fig 3.12 K Maps for Difference and Borrow outputs 
 
 
 
 

The Karnaugh maps for the two expressions are given in Fig. 3.12(a) for 

DIFFERENCE output D and in Fig. 3.12(b) for BORROW output Bo. As is clear 

from the two Karnaugh maps, no simplification is possible for the difference 

output D. The simplified expression for Bo is given by the equation 
 
 
 

 

If we compare these expressions with those derived earlier in the case of a full 

adder, we find that the expression for DIFFERENCE output D is the same as that 

for the SUM output. Also, the expression for BORROW output Bo is similar to the 

expression for CARRY-OUT Co. In the case of a half-subtractor, the A input is 

complemented. By a similar analysis it can be shown that a full subtractor can be 

implemented with half-subtractors in the same way as a full adder was constructed 

using half-adders. Relevant logic diagrams are shown in Figs 3.7(a) and (b) 
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corresponding to Figs 3.7(a) and (b) respectively for a full adder. Again, more than 

one full subtractor can be connected in cascade to perform subtraction on two 

larger binary numbers. As an illustration, Fig. 3.13 shows a four-bit subtractor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.13 Four Bit Subtractor 
 
 
 
 
 
 
 
 

 

3.5 Multipliers 
 
 
 
 

Multiplication of binary numbers is usually implemented in microprocessors 

and microcomputers by using repeated addition and shift operations. Since the 

binary adders are designed to add only two binary numbers at a time, instead of 

adding all the partial products at the end, they are added two at a time and their 

sum is accumulated in a register called the accumulator register. Also, when the 

multiplier bit is ‗0‘, that very partial product is ignored, as an all ‗0‘ line does not 

affect the final result. The basic hardware arrangement of such a binary multiplier 

would comprise shift registers for the multiplicand and multiplier bits, an 

accumulator register for storing partial products, a binary parallel adder and a clock 

pulse generator to time various operations. 

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

www.R
eji

np
au

l.in
fo



 
Binary multipliers are also available in IC form. Some of the popular type 

numbers in the TTL family include 74261 which is a 2 × 4 bit multiplier (a four-bit 

multiplicand designated as B0,B1,B2,B3 and B4, and a two-bit multiplier 

designated as M0, M1 and M2. The MSBs B4 and M2 are used to represent signs. 

74284 and 74285 are 4 × 4 bit multipliers. They can be used together to perform 

high-speed multiplication of two four-bit numbers. Figure 3.14 shows the 

arrangement. The result of multiplication is often required to be stored in a register. 

The size of 

 

this register (accumulator) depends upon the number of bits in the result, which at 

the most can be equal to the sum of the number of bits in the multiplier and 

multiplicand. Some multipliers ICs have an in-built register. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.14 4 x 4 Multiplier 
 
 
 
 

Many microprocessors do not have in their ALU the hardware that can perform 

multiplication or other complex arithmetic operations such as division, determining 

the square root, trigonometric functions, etc. These operations in these 
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microprocessors are executed through software. For example, a multiplication 

operation may be accomplished by using a software program that does 

multiplication through repeated execution of addition and shift instructions. Other 

complex operations mentioned above can also be executed with similar programs. 

Although the use of software reduces the hardware needed in the microprocessor, 

the computation time in general is higher in the case of software-executed 

operations when compared with the use of hardware to perform those operations. 
 
 

 

HDL (HARDWARE DESCRIPTION LANGUAGE) 

 

In electronics, a hardware description language or HDL is any language 
from a class of computer languages and/or programming languages for formal 
description of digital logic and electronic circuits. It can describe the circuit's 
operation, its design and organization, and tests to verify its operation by means of 
simulation. 

 

HDLs are standard text-based expressions of the spatial and temporal structure and 
behaviour of electronic systems. In contrast to a software programming language, 
HDL syntax and semantics include explicit notations for expressing time and 
concurrency, which are the primary attributes of hardware. Languages whose only 
characteristic is to express circuit connectivity between hierarchies of blocks are 
properly classified as netlist languages used on electric computer-aided design 
(CAD). 

 

HDLs are used to write executable specifications of some piece of hardware. A 
simulation program, designed to implement the underlying semantics of the 
language statements, coupled with simulating the progress of time, provides the 
hardware designer with the ability to model a piece of hardware before it is created 
physically. It is this executability that gives HDLs the illusion of being 
programming languages. Simulators capable of supporting discrete-event (digital) 
and continuous-time (analog) modeling exist, and HDLs targeted for each are 
available. 
 

Design using HDL 

 

The vast majority of modern digital circuit design revolves around an HDL 
description of the desired circuit, device, or subsystem. 
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Most designs begin as a written set of requirements or a high-level architectural 
diagram. The process of writing the HDL description is highly dependent on the 
designer's background and the circuit's nature. The HDL is merely the 'capture 
language'—often begin with a high-level algorithmic description such as 
MATLAB or a C++ mathematical model. Control and decision structures are often 
prototyped in flowchart applications, or entered in a state-diagram editor. 
Designers even use scripting languages (such as Perl) to automatically generate 
repetitive circuit structures in the HDL language. Advanced text editors (such as 
Emacs) offer editor templates for automatic indentation, syntax-dependent 
coloration, and macro-based expansion of entity/architecture/signal declaration. 

 

As the design's implementation is fleshed out, the HDL code invariably must 
undergo code review, or auditing. In preparation for synthesis, the HDL 
description is subject to an array of automated checkers. The checkers enforce 
standardized code a guideline, identifying ambiguous code constructs before they 
can cause misinterpretation by downstream synthesis, and check for common 
logical coding errors, such as dangling ports or shorted outputs.In industry 
parlance, HDL design generally ends at the synthesis stage. Once the synthesis tool 
has mapped the HDL description into a gate netlist, this netlist is passed off to the 
back-end stage. Depending on the physical technology (FPGA, ASIC gate-array, 
ASIC standard-cell), HDLs may or may not play a significant role in the back-end 
flow. In general, as the design flow progresses toward a physically realizable form, 
the design database becomes progressively more laden with technology-specific 
information, which cannot be stored in a generic HDL-description. Finally, a 
silicon chip is manufactured in a fab. 
 
 
 

 

HDL and programming languages 

 

A HDL is analogous to a software programming language, but with major 
differences. Programming languages are inherently procedural (single-threaded), 
with limited syntactical and semantic support to handle concurrency. HDLs, on the 
other hand, can model multiple parallel processes (such as flipflops, adders, etc.) 
that automatically execute independently of one another. Any change to the 
process's input automatically triggers an update in the simulator's process stack. 
Both programming languages and HDLs are processed by a compiler (usually 
called a synthesizer in the HDL case), but with different goals. For HDLs, 
'compiler' refers to synthesis, a process of transforming the HDL code listing into a 
physically realizable gate netlist. The netlist output can take any of many forms: a 
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"simulation" netlist with gate-delay information, a "handoff" netlist for post-
synthesis place and route, or a generic industry-standard EDIF format (for 
subsequent conversion to a JEDEC-format file). 

 

On the other hand, a software compiler converts the source-code listing into a 
microprocessor-specific object-code, for execution on the target microprocessor. 
As HDLs and programming languages borrow concepts and features from each 
other, the 

 

boundary between them is becoming less distinct. However, pure HDLs are 
unsuitable for general purpose software application development, just as general-
purpose programming languages are undesirable for modeling hardware. Yet as 
electronic systems grow increasingly complex, and reconfigurable systems become 
increasingly mainstream, there is growing desire in the industry for a single 
language that can perform some tasks of both hardware design and software 
programming. SystemC is an example of such—embedded system hardware can be 
modeled as non-detailed architectural blocks (blackboxes with modeled signal 
inputs and output drivers). The target application is written in C/C++, and natively 
compiled for the host-development system (as opposed to targeting the embedded 
CPU, which requires host-simulation of the embedded CPU). The high level of 
abstraction of SystemC models is well suited to early architecture exploration, as 
architectural modifications can be easily evaluated with little concern for signal-
level implementation issues. 

 

In an attempt to reduce the complexity of designing in HDLs, which have been 
compared to the equivalent of assembly languages, there are moves to raise the 
abstraction level of the design. Companies such as Cadence, Synopsys and Agility 
Design Solutions are promoting SystemC as a way to combine high level 
languages with concurrency models to allow faster design cycles for FPGAs than 
is possible using traditional HDLs. Approaches based on standard C or C++ (with 
libraries or other extensions allowing parallel programming) are found in the 
Catapult C tools from Mentor Graphics, and in the Impulse C tools from Impulse 
Accelerated Technologies. Annapolis Micro Systems, Inc.'s CoreFire Design Suite 
and National Instruments LabVIEW FPGA provide a graphical dataflow approach 
to high-level design entry. Languages such as SystemVerilog, SystemVHDL, and 
Handel-C seek to accomplish the same goal, but are aimed at making existing 
hardware engineers more productive versus making FPGAs more accessible to 
existing software engineers. Thus SystemVerilog is more quickly and widely 
adopted than SystemC. There is more information on C to HDL and Flow to HDL 
in their respective articles. 
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Unit – II 
 
PART-A (2 Marks) 

 
1. What are Logic gates?  

 
2. What are the basic digital logic gates?  

 
3. What is BCD adder?  

 
4. What is Magnitude Comparator?  

 
5. What is code conversion?  

 
6. Draw the logic circuit of full adder using half adder  

 
7. What is code converter?  

 
8. Define Combinational circuit.  

 
9. Define sequential circuits.  

 
10. What is Binary parallel adder?  
 

 

PART-B 

 
1. Design a combinational logic circuit to convert the Gray code into Binary code 
(16)  

 
2. Draw the truth table and logic diagram for full-Adder (16)  

 
3. Draw the truth table and logic diagram for full-Subtractor (16)  

 
4. Explain Binary parallel adder. (16)  

 
5. Design a combinational logic circuit to convert the BCD to Binary code (16)  
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UNIT III   DESIGN WITH MSI DEVICES 

 

SYLLABUS : 

 

 Decoders and Encoders  

 Multiplexers and Demultiplexers 

 Memory and Programmable Logic  

 HDL for Combinational Circuits 
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Design Using MSI devices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MULTIPLEXERS 
 
 
 
 

Many tasks in communications, control, and computer systems can be 

performed by combinational logic circuits. When a circuit has been designed to 

perform some task in one application, it often finds use in a different application as 

well. In this way, it acquires different names from its various uses. In this and the 

following sections, we will describe a number of such circuits and their uses. We 

will discuss their principles of operation, specifying their MSI or LSI 
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implementations. One common task is illustrated in Figure 12. Data generated in 

one location is to be used in another location; A method is needed to transmit it 

from one location to another through some communications channel. The data is 

available, in parallel, on many different lines but must be transmitted over a single 

communications link. A mechanism is needed to select which of the many data 

lines to activate sequentially at any one time so that the data this line carries can be 

transmitted at that time.This process is called multiplexing.An 

 

example is the multiplexing of conversations on the telephone system. A number 

of telephone conversations are alternately switched onto the telephone line many 

times per second. Because of the nature of the human auditory system, listeners 

cannot detect that what they are hearing is chopped up and that other people‘s 

conversations are interspersed with their own in the transmission process. 

 

Needed at the other end of the communications link is a device that will undo the 

multiplexing: a demultiplexer. Such a device must accept the incoming serial data 

and direct it in parallel to one of many output lines. The interspersed snatches of 

telephone conversations, for example, must be sent to the correct listeners. 

 

A digital multiplexer is a circuit with 2n data input lines and one output line. It 

must also have a way of determining the specific data input line to be selected at 

any one time. This is done with n other input lines, called the select or selector 

inputs, whose function is to select one of the 2n data inputs for connection to the 

output. A circuit for n = 3 is shown in Figure 13. The n selector lines have 2n = 8 

combinations of values that constitute binary select numbers 
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Multiplexer with eight data inputs 
 
 
 
 

Multiplexers as General-Purpose Logic Circuits 
 
 
 
 

It is clear from Figures 13 and 14 that the structure of a multiplexer is that of 

a two-level AND-OR logic circuit, with each AND gate having n + 1 inputs, where 

n is the number of select inputs. It appears that the multiplexer would constitute a 

canonic sum-of-products implementation of a switching function if all the data 
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lines together represent just one switching variable (or its complement) and each of 
the select inputs represents a switching variable. 

 

Let‘s work backward from a specified function of m switching variables for which 

we have written a canonic sum-of-products expression. The size of multiplexer 

needed (number of select inputs) is not evident. Suppose we choose a multiplexer 

that has m − 1 select inputs, leaving only one other variable to accommodate all the 

data inputs.We write an output function of these select inputs and the 2m–1 data 

inputs Di. Now we plan to assign m − 1 of these variables to the select inputs; but 

how to make the assignment?4 There are really no restrictions, so it can be done 

arbitrarily. The next step is to write the multiplexer output after replacing the select 

inputs 

 

with m − 1 of the variables of the given function. By comparing the two 

expressions term by term, the Di inputs can be determined in terms of the 

remaining variable. 
 
 
 
 

Demultiplexers 
 
 
 
 

The demultiplexer shown there is a single-input, multiple-output circuit. 

However, in addition to the data input, there must be other inputs to control the 

transmission of the data to the appropriate data output line at any given time. Such 

a demultiplexer circuit having eight output lines is shown in Figure 16a. It is 

instructive to compare this demultiplexer circuit with the multiplexer circuit in 

Figure 13. For the same number of control (select) inputs, there are the same 

number of AND gates. But now each AND gate output is a circuit output. Rather 

than each gate having its own separate data input, the single data line now forms 

one of the inputs to each AND gate, the other AND inputs being control inputs. 

 

When the word formed by the control inputs C2C1C0 is the binary 

equivalent of decimal k, then the data input x is routed to output Dk. Viewed in 

another way, for a demultiplexer with n control inputs, each AND gate output 

corresponds to a minterm of n variables. For a given combination of control inputs, 

only one minterm can take on the value 1; the data input is routed to the AND gate 
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corresponding to this minterm. For example, the logical expression for the output 

D3 is xC2'C1C0. Hence, when C2C1C0 = 011, then D3 = x and all other Di are 0. 

The complete truth table for the eight-output demultiplexer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A demultiplexer circuit (a) and its truth table (b). 
 
 
 
 

DECODERS AND ENCODERS 

 

The previous section began by discussing an application: Given 2n data 

signals, the problem is to select, under the control of n select inputs, sequences of 

these 2n data signals to send out serially on a communications link. The reverse 

operation on the receiving end of the communications link is to receive data 

serially on a single line and to convey it to one of 2n output lines. This again is 
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controlled by a set of control inputs. It is this application that needs only one input 

line; other applications may require more than one.We will now investigate such a 

generalized circuit. 

 

Conceivably, there might be a combinational circuit that accepts n inputs (not 

necessarily 1, but a small number) and causes data to be routed to one of many, say 

up to 2n, outputs. Such circuits have the generic name decoder. 

 

Semantically, at least, if something is to be decoded, it must have previously been 

encoded, the reverse operation from decoding. Like a multiplexer, an encoding 

circuit must accept data from a large number of input lines and convert it to data on 

a smaller number of output lines (not 

 

necessarily just one). This section will discuss a number of implementations of 
decoders and encoders. 
 
 
 
 

n-to-2n-Line Decoder 
 
 
 
 

In the demultiplexer circuit in Figure 16, suppose the data input line is 

removed. (Draw the circuit for yourself.) Each AND gate now has only n (in this 

case three) inputs, and there are 2n (in this case eight) outputs. Since there isn‘t a 

data input line to control, what used to be control inputs no longer serve that 

function. Instead, they are the data inputs to be decoded. This circuit is an example 

of what is called an n-to-2n-line decoder. Each output represents a minterm. 

Output k is 1 whenever the combination of the input variable values is the binary 

equivalent of decimal k. Now suppose that the data input line from the 

demultiplexer in Figure 16 is not removed but retained and viewed as an enable 

input. The decoder now operates only when the enable x is 1. Viewed conversely, 

an n-to-2n-line decoder with an enable input can also be used as a demultiplexer, 

where the enable becomes the serial data input and the data inputs of the decoder 

become the control inputs of the demultiplexer.7 Decoders of the type just 

described are available as integrated circuits (MSI); n = 3 and n = 4 are quite 

common. There is no theoretical reason why n can‘t be increased to higher values. 

Since, however, there will always be practical limitations on the fan-in (the number 
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of inputs that a physical gate can support), decoders of higher order are often 
designed using lower-order decoders interconnected with a network of other gates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ENCODER 

 

An encoder is a combinational circuit that performs the inverse operation of 

a decoder. If a device output code has fewer bits than the input code has, the device 

is usually called an encoder. e.g. 2n-to-n, priority encoders. 

 

The simplest encoder is a 2n-to-n binary encoder, where it has only one of 

2n inputs = 1 and the output is the n-bit binary number corresponding to the active 

input. 
 

Priority Encoder 

 

A priority encoder is a practical form of an encoder. The encoders available 

in IC form are all priority encoders. In this type of encoder, a priority is assigned to 

each input so that, when more than one input is simultaneously active, the input 

with the highest priority is encoded. We will illustrate the concept of priority 

encoding with the help of an example. Let us assume that the octal to-binary 
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encoder described in the previous paragraph has an input priority for higher-order 

digits. Let us also assume that input lines D2, D4 and D7 are all simultaneously in 

logic ‗1‘ state. In that case, only D7 will be encoded and the output will be 111. 

The truth table of such a priority 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Octal to binary encoder 
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Truth table of encoder 
 
 
 
 

encoder will then be modified to what is shown above in truth table. Looking at the 

last row of the table, it implies that, if D7 = 1, then, irrespective of the logic status 

of other inputs, the output is 111 as D7 will only be encoded. As another example, 

Fig. 8.16 shows the logic symbol and truth table of a 10-line decimal to four-line 

BCD encoder providing priority encoding for higher-order digits, with digit 9 

having the highest priority. In the functional table shown, the input line with 

highest priority having a LOW on it is encoded irrespective of the logic status of 

the other input lines. 
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10 line decimal to four line BCD priority encoder 
 
 
 
 

Some of the encoders available in IC form provide additional inputs and outputs to 

allow expansion. IC 74148, which is an eight-line to three -line priority encoder, is 

an example. ENABLE-IN (EI) and ENABLE-OUT (EO) terminals on this IC 

allow expansion. For instance, two 74148s can be cascaded to build a 16-line to 

four-line priority encoder. 
 
 

 

Magnitude Comparator 

 

A magnitude comparator is a combinational circuit that compares two given 

numbers and determines whether one is equal to, less than or greater than the other. 

The output is in the form of three binary variables representing the conditions A = 

B_A>B and A<B, if A and B are the two numbers being compared. Depending 

upon the relative magnitude of the two numbers, the relevant output changes state. 

If the two numbers, let us say, are four-bit binary numbers and are designated as 
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(A3 A2 A1 A0) and (B3 B2 B1 B0), the two numbers will be equal if all pairs of 

significant digits are equal, that is, A3= B3, A2 = B2, A1= B1 and A0 = B0. In 

order to determine whether A is greater than or less than B we inspect the relative 

magnitude of pairs of significant digits, starting from the most significant position. 

The comparison is done by successively comparing the next adjacent lower pair of 

digits if the digits of the pair under examination are equal. The comparison 

continues until a pair of unequal digits is reached. In the pair of unequal digits, if 

Ai = 1 and Bi = 0, then A > B, and if Ai = 0, Bi= 1 then A < B. If X, Y and Z are 

three variables respectively representing the A = B, A > B and A < B conditions, 

then the Boolean expression representing these conditions are given by the 

equations 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let us examine equation (7.25). x3 will be ‗1‘ only when both A3 and B3 are equal. 

Similarly, conditions for x2, x1 and x0 to be ‗1‘ respectively are equal A2 and B2, 

equal A1 and B1 and equal A0 and B0. ANDing of x3, x2, x1 and x0 ensures that X 

will be ‗1‘ when x3, x2, x1 and x0 are in the logic ‗1‘ state. Thus, X 
 
= 1 means that A = B. On similar lines, it can be visualized that equations (7.26) 

and (7.27) respectively represent A > B and A < B conditions. Figure 7.36 shows 

the logic diagram of a four-bit magnitude comparator. 
 
 
 
 

Magnitude comparators are available in IC form. For example, 7485 is a four-bit 

magnitude comparator of the TTL logic family. IC 4585 is a similar device in the 

CMOS family. 7485 and 4585 have the same pin connection diagram and 

functional table. The logic circuit inside these devices determines whether one 

four-bit number, binary or BCD, is less than, equal to or greater than a second 

four-bit number. It can perform comparison of straight binary and straight BCD (8-

4-2-1) codes. These devices can be cascaded together to perform operations on 
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larger bit numbers without the help of any external gates. This is facilitated by 

three additional inputs called cascading or expansion inputs available on the IC. 

These cascading inputs are also designated as A = B, A > B and A < B inputs. 

Cascading of individual magnitude comparators of the type 7485 or 4585 is 

discussed in the following paragraphs. IC 74AS885 is another common magnitude 

comparator. The device is an eight bit magnitude comparator belonging to the 

advanced Schottky TTL family. It can perform high-speed arithmetic or logic 

comparisons on two eight-bit binary or 2‘s complement numbers and produces two 

fully decoded decisions at the output about one number being either greater than or 

less than the other. More than one of these devices can also be connected in a 

cascade arrangement to perform comparison of numbers of longer lengths. 
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Four Bit Magnitude Comparator 
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Unit III 

PART-A (2 Marks) 
 
1. Define Multiplexing? 

2.What is Demultiplexer? 

 
3.Define decoder & binary decoder 

4.Define Encoder & priority Encoder 

5.Give the applications of Demultiplexer. 

 
6. Mention the uses of Demultiplexer.  

 

7. List the types of ROM.  

 

8. Differentiate ROM & PLD‘s  

 

9. What are the different types of RAM? 

10.What are the types of arrays in RAM? 

PART-B  

 
1. Implement the following function using PLA. (16) 
A (x, y, z) = _m (1, 2, 4, 6)   
B (x, y, z) = _m (0, 1, 6, 7) 
C (x, y, z) = _m (2, 6)  

 
2. Implement the following function using PAL. 
(16) W (A, B, C, D) = _m (2, 12, 13)   
X (A, B, C, D) = _m (7, 8, 9, 10, 11, 12, 13, 14, 15) 
Y (A, B, C, D) = _m (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 
15) Z (A, B, C, D) = _m (1, 2, 8, 12, 13)  

 

3. Implement the given function using multiplexer (16)  

 
4. Explain about Encoder and Decoder? (16)  

 
5. Explain about 4 bit Magnitude comparator? (16)  
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UNIT IV   SYNCHRONOUS SEQUENTIAL LOGIC 

 

SYLLABUS : 

 

 Sequential Circuits  

 Flip flops 

 Analysis and Design Procedures  

 State Reduction and State Assignment 

 Shift Registers  

 Counters  

 HDL for Sequential Circuits. 
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UNIT IV 
 

SEQUENTIAL LOGIC DESIGN 
 

5.1 Flip Flops and their conversion 

 

The flip-flop is an important element of such circuits. It has the interesting 
property of memory: It can be set to a state which is retained until explicitly reset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

R-S Flip-Flop 
 
 
 
 

A flip-flop, as stated earlier, is a bistable circuit. Both of its output states are 

stable. The circuit remains in a particular output state indefinitely until something 

is done to change that output status. Referring to the bistable multivibrator circuit 
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discussed earlier, these two states were those of the output transistor in saturation 
(representing a LOW output) and in cut-off (representing a HIGH output). If the 
 

LOW and HIGH outputs are respectively regarded as ‗0‘ and ‗1‘, then the output 

can either be a ‗0‘ or a ‗1‘. Since either a ‗0‘ or a ‗1‘ can be held indefinitely until 

the circuit is appropriately triggered to go to the other state, the circuit is said to 

have memory. It is capable of storing one binary digit or one bit of digital 

information. Also, if we recall the functioning of the bistable multivibrator circuit, 

we find that, when one of the transistors was in saturation, the other was in cut-off. 

This implies that, if we had taken outputs from the collectors of both transistors, 

then the two outputs would be complementary. 

 

In the flip-flops of various types that are available in IC form, we will see that all 

these devices offer complementary outputs usually designated as Q and Q‘ The R-

S flip-flop is the most basic of all flip-flops. The letters ‗R‘ and ‗S‘ here stand for 

RESET and SET. When the flip-flop is SET, its Q output goes to a ‗1‘ state, and 

when it is RESET it goes to a ‗0‘ state. The Q‘ output is the complement of the Q 

output at all times. 
 
 

 

J-K Flip-Flop 
 
 
 
 

A J-K flip-flop behaves in the same fashion as an R-S flip-flop except for 

one of the entries in the function table. In the case of an R-S flip-flop, the input 

combination S = R = 1 (in the case of a flip-flop with active HIGH inputs) and the 

input combination S = R = 0 (in the case of a flip-flop with active LOW inputs) are 

prohibited. In the case of a J-K flip-flop with active HIGH inputs, the output of the 

flip-flop toggles, that is, it goes to the other state, for J = K = 1 . The output toggles 

for J = K = 0 in the case of the flip-flop having active LOW inputs. Thus, a J-K 

flip-flop overcomes the problem of a forbidden input combination of the R-S flip-

flop. Figures below respectively show the circuit symbol of level-triggered J-K 

flip-flops with active HIGH and active LOW inputs, along with their function 

tables. 
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The characteristic tables for a J-K flip-flop with active HIGH J and K inputs and a 
J-K flip-flop 

 

with active LOW J and K inputs are respectively shown in Figs 10.28(a) and (b)_ 

The corresponding Karnaugh maps are shown in Fig below for the characteristics 

table of Fig and in below for the characteristic table below. The characteristic 

equations for the Karnaugh maps of below figure is shown next 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG a. JK flip flop with active high inputs, b. JK flip flop with active low inputs 
 

Toggle Flip-Flop (T Flip-Flop) 
 
 
 
 

The output of a toggle flip-flop, also called a T flip-flop, changes state every time 

it is triggered at its T input, called the toggle input. That is, the output becomes ‗1‘ 

if it was ‗0‘ and ‗0‘ if it was ‗1‘. 

 

Positive edge-triggered and negative edge-triggered T flip-flops, along with their 
function tables. 
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If we consider the T input as active when HIGH, the characteristic table of such a 

flip-flop is shown in Fig. If the T input were active when LOW, then the 

characteristic table would be as shown in Fig. The Karnaugh maps for the 

characteristic tables of Figs shown respectively. The characteristic equations as 

written from the Karnaugh maps are as follows: 
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J-K Flip-Flop as a Toggle Flip-Flop 
 
 
 
 

If we recall the function table of a J-K flip-flop, we will see that, when both J and 
K inputs of the 

 

flip-flop are tied to their active level (‗1‘ level if J and K are active when HIGH, 

and ‗0‘ level when J and K are active when LOW), the flip-flop behaves like a 

toggle flip-flop, with its clock input serving as the T input. In fact, the J-K flip-flop 

can be used to construct any other flip-flop. That is why it is also sometimes 

referred to as a universal flip-flop. Figure shows the use of a J-K flip-flop as a T 

flip-flop. 
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D Flip-Flop 
 
 
 
 

A D flip-flop, also called a delay flip-flop, can be used to provide temporary 
storage of one bit of 
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information. Figure shows the circuit symbol and function table of a negative edge-

triggered D flip-flop. When the clock is active, the data bit (0 or 1) present at the D 

input is transferred to the output. In the D flip-flop of Fig the data transfer from D 

input to Q output occurs on the negative-going (HIGH-to-LOW) transition of the 

clock input. The D input can acquire new status 
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D Type Flip Flop 
 
 
 
 

J-K Flip-Flop as D Flip-Flop 
 
 
 
 

Figure below shows how a J-K flip-flop can be used as a D flip-flop. When 
the D input is a logic ‗1‘, the J and K inputs are a logic ‗1‘ and ‗0‘ respectively. 
 

According to the function table of the J-K flip-flop, under these input conditions, 

the Q output will go to the logic ‗1‘ state when clocked. Also, when the D input is 

a logic ‗0‘, the J and K inputs are a logic ‗0‘ and ‗1‘ respectively. Again, 

according to the function table of the J-K flip-flop, under these input conditions, 

the Q output will go to the logic ‗0‘ state when clocked. Thus, in both cases, the D 

input is passed on to the output when the flip-flop is clocked. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

JK Flip Flop as D Flip Flop 
 
 
 
 

Analysis and Synthesis of Synchronous Sequential Circuit 

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

www.R
eji

np
au

l.in
fo



For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

www.R
eji

np
au

l.in
fo



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design of synchronous sequential circuit 
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Unit IV 

 

PART-A (2 Marks) 

 

1. What is sequential circuit?  

 

2. List the classifications of sequential circuit.  

 

3. What is Synchronous sequential circuit?  

 

4. List different types of flip-flops.  

 

5. What do you mean by triggering of flip-flop.  

 

6. What is an excitation table?  

 
7. Give the excitation table of a JK flip-flop  

 

8. Give the excitation table of a SR flip-flop  

 

9. Give the excitation table of a T flip-flop 

PART-B  

 
1. Design a counter with the following repeated binary sequence:0, 
1, 2,3, 4, 5, 6.   
use JK Flip-flop. (16)  

 
2. Describe the operation of SR flip-flop (16)   
3. Design a sequential circuit using JK flip-flop for the following 
state table [use state   
diagram] (16)  

 
4. The count has a repeated sequence of six states, with flip flops B 
and C repeating the   
binary count 00, 01, 10 while flip flop A alternates between 0 and 1 
every three counts.  
Designs with JK flip-flop (16)  

 
5. Design a 3-bit T flip-flop counter (16)  
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UNIT V ASYNCHRONOUS SEQUENTIAL LOGIC 

 

SYLLABUS : 

 

 Analysis and Design of Asynchronous Sequential Circuits 

 Reduction of State and Flow Tables 

 Race-Free State Assignment 

 Hazards  

 ASM Chart. 
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Optional conditional output box(es). Such an 

ouput box indicates outputs that are conditionally 

asserted. These outputs are called asynchrous or 

Mealy outputs. 
 
 
 

There is no rule saying that outputs are exclusively inside an a conditional output 
box or in a state box. An output written inside a state box is simply independent of 
the input, while in that state. 

 

The idea is that flow passes from ASM block to ASM block, the decisision boxes 
decide the next state and conditional output. Consider the following example of an 
ASM diagram block. When state S0 is entered, output Z5 is always asserted. Z1_n 
however is asserted only if X2 is also high. Otherwise Z2 is asserted. 
 
 
 
 
 
 
 
 
 
 

 

An ASM block 
 

Certain Rules 

 

The drawing of ASM charts must follow certain necessary rules: 
 

The entrance paths to an ASM block lead to only one state box 
 

Of 'N' possible exit paths, for each possible valid input combination, 
only one exit path can be followed, that is there is only one valid next 
state. No feedback internal to a state box is allowed. The following 
diagram indicates valid and invalid cases. 
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Incorrect Correct 

 
 

Parallel vs. Serial 
 

We can bend the rules, several internal paths can be active, provided that they lead 

to a single exit path. Regardless of parallel or serial form, all tests are performed 

concurrently. Usually we have a preference for the serial form. The following two  
examples are equivalent. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parallel Form 
 
 

 

Sequence Detector Example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Serial Form 

 
The use of ASM charts is a trade-off. While the mechanics of ASM 
charts do reduce clutter in significant designs, its better to use an 
ordinary state diagrams for simple state machines. Here is an 
example Moore type state machine with input X and output Z. 
Once the flag sequence is received, the output is asserted for one 
clock cycle. 

 

The corresponding ASM chart is to the right. Note that unlike the 
state diagram which illustrates the output value for each arc, the 
ASM chart indicates when the output Z only when it is asserted. 

 
 
 
 
 
 
 
 
 
 

State diagram for sequence detector 

 
 
 
 
 
 
 
 
 

ASM chart 
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The following timing diagram illustrates the detection of the desired sequence. 
Here it is assumed that the state is updated with a rising clock edge. The key 
concept to observe is that regardless of the input, the output can only be 
asserted for one entire clock cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Timing diagram 
 

Event Tables 

 

Simply stated, timing diagrams are prone to a particular problem for the reader, in 
that there can be too much to see. Timing diagrams clearly expresses time 
relationships and delay. However, in synchonous sequential logic, all registers are 
updated at the rising edge of the system clock. The clock period is just set to an 
arbitrarily value. Provided that the input setup-and-hold requirements are satisfied, 
the details of the timing diagram are distracting. 

 

The goal of an event table is that given a scenario, to neatly summarize the 
resultant behavior of synchronous sequential logic. In writing an event table, 
capitol T refers to the system clock period and nT means n times the system clock 
period. For asynchronous input changes, the time is given, assuming that the 
system output reacts instantaneously. For synchronous signals, the + symbol 
means a moment suitably after the given time, for the system to become settled. 
The - symbol however, means a moment suitably before the given time, 
satisfying the necessary setup time. 

 

To reduce the clutter, be sure to fill in those signals that change state or are 
updated. The following event table summarizes the behavior in the above timing 
diagram. An empty entry will be interpreted to mean no-change to the 
corresponding signal during the corresponding clock cycle. 

 

Event Table 
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 Time  Reset  X  State  Z  

           
        

 0T  1  0  M0  0  

           
          

 0.4T  0        

           
           

 1T+      M1    

           
          

 1.3T    1      

           
           

 2T+      M2    
           
          

 2.6T    0      
           
          

 3T+      M3  1  
           
          

 3.6T    1      

           
          

 4T+      M2  0  

           
          

 4.4T    0      

           
           

 

Asynchronous and Synchronous Output Example 

 

The following is an example of an ASM chart with inputs X1 and X2, and outputs 
Z1 and Z2. In state S0 the outputs are immediately dependent on the input. In state 
S1, output Z1 is always asserted. In state S2, output Z1 is dependent on input X1 
but Z2 is not asserted. 
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Example ASM chart 

 

The following is the corresponding state diagram. The legend indicates how the 
input and output are associated with each arc. The 'd' symbol, which refers here to 
the don't-care condition helps to reduce the clutter. While the state diagram and 
ASM chart here are similar in complexity, state diagrams quickly become messy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Corresponding state diagram 
 

Clock Enable 

 

Simply stated, a clock enable indicates when a state machine must pay attention to 
the system clock. The figure below has a clock signal and a clock enable, note that 
this clock enable is asserted for one clock period at a time. The clock enable 
concept is powerful as it allows a device to effectively be clocked at a rate slower 
than the system clock, while remaining entirely synchronous with the rest of the 
system. In this case the effective clock rate is one-third that of the system clock. 
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Clock and enable 

 

In the spirit of reducing clutter, a clock enable can be written next to a state box. 
When not asserted, the device remains in its current state. The following figues are 
equivalent. Further, it is assumed that devices controlled by such a state, as directly 
or indirectly enabled by the clock enable as well. 
 
 
 
 
 
 
 
 
 
 
 

 

Equivalent enables 
 
 
 
 

Race condition 

 

A race condition or race hazard is a flaw in an electronic system or process 
whereby the output and/or result of the process is unexpectedly and critically 
dependent on the sequence or timing of other events. The term originates with the 
idea of two signals racing each other to influence the output first. 

 

Race conditions can occur in electronics systems, especially logic circuits, and in 
computer software, especially multithreaded or distributed programs. 
 

Electronics 

 

A typical example of a race condition may occur in a system of logic gates, where 

inputs vary. If a particular output depends on the state of the inputs, it may only be 

defined for steady-state signals. As the inputs change state, a small delay will occur 

before the output changes, due to the physical nature of the electronic system. For a 

brief period, the output may change to an unwanted state before settling back to the 

designed state. Certain systems can tolerate such glitches, but if for example this 

output functions as a clock signal for further systems that contain memory, the 

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

For more Anna University Study Materials - search here : www.Vidyarthiplus.com/search.html

www.R
eji

np
au

l.in
fo



 
system can rapidly depart from its designed behaviour (in effect, the 
temporary glitch becomes permanent). 

 

For example, consider a two input AND gate fed with a logic signal A on one input 
and its negation, NOT A, on another input. In theory, the output (A AND NOT A) 
should never be high. However, if changes in the value of A take longer to 
propagate to the second input than the first when A changes from false to true, a 
brief period will ensue during which both inputs are true, and so the gate's output 
will also be true. 

 

Proper design techniques (e.g. Karnaugh maps) encourage designers to 
recognize and eliminate race conditions before they cause problems. 

 

As well as these problems, some logic elements can enter metastable states, 
which create further problems for circuit designers. 
 

Critical and non-critical race conditions 

 

A critical race occurs when the order in which internal variables are changed 
determines the eventual state that the state machine will end up in. 

 

A non-critical race occurs when the order in which internal variables are changed 
does not alter the eventual state. In other words, a non-critical race occurs when 
moving to a desired state means that more than one internal state variable must 
be changed at once, but no matter in what order these internal state variables 
change, the resultant state will be the same. 
 

Static, dynamic, and essential race conditions  
Static race conditions 
 

These are caused when a signal and its complement are combined together. 
 

Dynamic race conditions 

 

These result in multiple transitions when only one is intended. They are due 

to interaction between gates (Dynamic race conditions can be eliminated by 

using not more than two levels of gating). 
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Essential race conditions 

 

These are caused when an input has two transitions in less than the total 

feedback propagation time. Sometimes they are cured using inductive delay-

line elements to effectively increase the time duration of an input signal 
 

Unit V 

 

PART-A (2 Marks) 

1.What is the use of state diagram? 

2. What is state table?   
3. What is a state equation?  

4. Differentiate ASM chart and conventional flow chart?  

5. What is flow table?  

6. What is primitive flow table?  

7. Define race condition.  

8. Define critical & non-critical race with example.  

9. How can a race be avoided?   
10. Define hazards.  

 

PART-B 
 

1. Design an Asynchronous sequential circuit using SR latch with 
two inputs A and B   
and one output y. B is the control input which, when equal to 1, 
transfers the input A to   
output y. when B is 0, the output does not change, for any change in 
input. (16)   
2. Give hazard free relation for the following Boolean function.   
F (A, B, C, D) =_m (0, 2, 6, 7, 8, 10, 12) (16) 

3. Explain about Hazards? (16)   
4. Explain about Races? (16)   
5. Design T Flip flop from Asynchronous Sequential circuit? (16)  
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