Sec: Sr.IPLCO

Time: 9.00 AM to 12.00 Noon

Physics: Total Syllabus
Chemistry : Total Syllabus
Mathematics: Total Syllabus

JEE-ADVANCED-2012-P1-Model

Time: 3:00 Important instructions

Max Marks: 210
PHYSICS:

Section	Question Type	+ Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 1-10)	Questions with Single Correct Choice	3	-1	10	30
Sec - II(Q.N : 11-15)	Questions with Multiple Correct Choice	4	0	5	20
Sec - III(Q.N : 16-20)	Questions with Integer Answer Type	4	0	5	20
Total		20	$\mathbf{7 0}$		

CHEMISTRY:

Section	Question Type	+Ve Marks	$-\mathrm{Ve}$ Marks	No.of Qs	Total marks
Sec - I(Q.N : $21-30)$	Questions with Single Correct Choice	3	-1	10	30
Sec - II(Q.N : $31-35)$	Questions with Multiple Correct Choice	4	0	5	20
Sec - III(Q.N : 36-40)	Questions with Integer Answer Type	$4,1 \cap 0$		5	20
Total				20	70

MATHEMATICS:

Section	Question Type		$-\mathrm{Ve}$ Marks	$\begin{gathered} \text { No.of } \\ \text { Q }_{s} \end{gathered}$	Total marks
Sec-I(Q.N : 41-50)	Questions with Single Correot Cho	3	-1	10	30
Sec - II(Q.N : 51-55)	Questions with Multiple Correct Choice	4	0	5	20
Sec - III(Q.N : 56-60)	Questions with Integeranswe Type	4	0	5	20
Tota				20	70

SECTION I

Single Correct Answer Type
This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

1. A particle P starts from origin as shown and moves along a semicircular path. Another particle Q crosses x-axis at the instant particle P leaves the origin. Q moves with constant speed V parallel to y-axis and is all the time having y-co-ordinate same as that of P . When P reaches diametrically opposite point A , its average speed is :

(A) πV
(B) $\frac{\pi V}{2}$
(C) $\frac{V}{2}$
(D) V
2. If $y_{1}=5(\mathrm{~mm}) \sin \pi \mathrm{t}$ is the equation of oscillation of soary S_{1} and $y_{2}=5(\mathrm{~mm}) \sin (\pi \mathrm{t}+\pi / 6)$ be that of S_{2} and it ranes 1 S and $1 / 2 \mathrm{~s}$ for the transverse waves to reach point A from sources S_{1} and S_{2} respetive then the resulting amplitude at point A, is :
(A) $5 \sqrt{2+\sqrt{3}} \mathrm{~mm}$
(B)
(C) 5 mm
(D) $5 \sqrt{2} \mathrm{~mm}$
3. The average and effective values for the wave shape (positive half cycles of sine curve) shown in the figure are :

(A) $\frac{2}{\pi} \mathrm{~V}_{\mathrm{m}}$ and $\frac{\mathrm{V}_{\mathrm{m}}}{2}$
(B) $\frac{\mathrm{V}_{\mathrm{m}}}{\pi}$ and $\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$
(C) $\frac{2}{\pi} \mathrm{~V}_{\mathrm{m}}$ and $\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$
(D) $\frac{\mathrm{V}_{\mathrm{m}}}{\pi \sqrt{2}}$ and $\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$
4. A smooth tunnel is dug along the radius of the earth that at the centre of earth. A ball is released from the surface of earth along the tun el. If the coefficient of restitution is 0.2 between the end of tunnel and ball then the totalinstance travelled by the ball before second collision at the centre of earth is

(A) $\frac{6}{5} \mathrm{R}$
(B)
${ }_{-1}$
(C) $\frac{9}{5} \mathrm{R}$
(D) $\frac{3}{2} \mathrm{R}$
5. Two particles execute SHM along x-axis about the origin with same amplitude ' a ' and frequency ω. At a certain instant, they are found at a distance $a / 3$ from the origin on opposite sides but their velocities are in the same direction. What is the phase difference between the two? [Assume that the particles do not collide]
(A) $\cos ^{-1} \frac{7}{9}$
(B) $\cos ^{-1} \frac{5}{9}$
(C) $\cos ^{-1} \frac{4}{9}$
(D) $\cos ^{-1} \frac{1}{9}$
6. A cubical wooden block of side L and relative density 0.5 is floating on the surface of water as shown in the figure. A string is attached to it through an ideal pulley fixed to the bottom of vessel as shown in figure. The graph of tension T in the string $v s$ distance of the bottom of the block from the free surface of the water when the end A of the rope is slowly pulled up will be (block is moving very slowly and the vessel is very wider):
(A)

(B)

(D)

7. In a bicycle speedomfter a bar magnet is attached to the spokes of the wheel and a coil is attached to the frano so that the north pole of the magnet moves past it once for every
rotation of the wheel. As the magnet moves past the coil, a pulse of current is induced in the coil. A computer then measures the time between consecutive pulses and computes the bicycle's speed. Figure shows the magnet about to move past the coil. Which of the graphs best represents the resulting current pulse? (Take counter clockwise current in figure to be positive):

(A)

(B)

(C)

(D)

8. Consider three closed loops drawn using solid line in the magne tic field (magnetic field lines are drawn using dotted line) of an infinite current-carrying wire normal to the plane of paper as shown.

If a, b and c represent the value of ling integrals of the magnetic field along the paths 1,2 and 3 respectively, then :
(A) $a>b>c$
(B) $a-c>b$
(C) $a=b=c$
(D) $c>b>a$
9. A sample of gas is beated by three different methods from same initial state as shown. In each method, hean upplied is same. In method I piston moves up by some amount. In
method II piston moves down and in method III piston does not move. Specific heat of the gas calculated in each of the methods to be $\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\mathrm{II}}$ and $\mathrm{C}_{\mathrm{III}}$ respectively. If the piston, walls of vessel are made of insulators and piston is friction less, then
(I)

(II)

(III)

(A) $C_{I}>C_{I I}>C_{I I I}$
(B) $C_{I I}>C_{I}>C_{I I I}$
(C) $C_{I I I}>C_{I}>C_{I I}$
(D) $C_{I}>C_{I I I}>C_{I I}$
10. A dielectric slab of area A and thickness d is inserted between the plates of capacitor of area 2 A and distance between the plates d, with a constant speed V as shown in figure. The capacitor is connected to a battery of emf ε. The current in the circuit varies with time as: (Current through the cell in the direction of emf is positive)
(A)

(D)

SECTION II

Mutiple Correct Answer(s) Type
This section contains 5 multiplechore questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are corret.
11. Identical dielectric slabs are inserted into two identical capacitors A and B. These capacitors and a chargeable battery are connected as shown in the figure. Now the slab of capacitor B is pulled out with battery remaining connected:

(A)During the process, positive charge flows from a to b
(B) Finally, charge on capacitor B will be less than that on A
(C) During the process, positive work is done by the external force F , part of which appears as heat in the circuit.
(D) During the process, internal energy of the battery increases.
12. The ammeters connected in the following circuits have zero resistance. The voltmeter in figure (A) has infinite resistance and shows a reading 8 V . The alue of resistance R has not been specified. Which of the following circuit (s) has same current in the ammeter?
(A)

(B)

(D)

13. On a train moving along east dith a constant speed v , a boy revolves a bob with string of length ℓ on smooth surfac of the train, with same constant speed v relative to train. Mark the correct option (s).

(A) Maximum speed of the bob is 2 v in ground frame.
(B) Tension in string connecting the bob is $\frac{4 \mathrm{mv}^{2}}{\ell}$ at an instant.
(C) Tension in string is $\frac{\mathrm{mv}^{2}}{\ell}$ at all the moments.
(D) Minimum speed of bob is zero in ground frame.
14. A particle is moving with constant momentum P along line MN as shown in figure. Line AB is parallel to MN. Mark the correct statements.

(A) Angular momentum of particle about any ponton ine MN is zero.
(B) With respect to any reference point on line AB angular momentum vector of the particle is constant.
(C) With respect to any reference point plane in third quadrant, angular momentum vector of the particle is in positive z dredion.
(D) With respect to any reference nont $x y$ - plane in third quadrant angular momentum vector of the particle is in negat z direction.
15. In a photoelectric effectex perment, if f is the frequency of radiation incident on the metal surface and I is the intersty of the incident radiations, then mark the correct statement(s).
(A) If f is increased keeping I and work function constant then stopping potential and maximum kinetic energy of photoelectron increase.
(B) If distance between cathode and anode is only changed then stopping potential remains same.
(C) If I is increased keeping f and work function constant then stopping potential remains same and saturation current increases.
(D) Work function is decreased keeping f and I constant then stopping potential and maximum kinetic energy of photoelectrons increase.

SECTION III

Integer Answer Type
This section contains 5 questions. The answer to each question is single digit integer, ranging from 0 to 9 (both inclusive).
16. The principal section of glass prism is an isosceles $\triangle P Q R$ with $P Q=P R$. The face $P R$ is silvered. A ray is incident perpendicularly on face PQ and after two reflections, it emerges from base QR , normal to it. The angle of the prism is given $\frac{\pi}{}$.ad. Find the value of α.
17. A balloon is filled with helium at the atmospheric pressure . The volume of the balloon is V_{0}. The balloon is made of the material of density 0 ne its n ass is m . After being released, the balloon bursts at an altitude where the atmospneric pressure is $\left(\mathrm{P}_{0} / 2\right)$. Just before bursting, the balloon has a volume of 1.25 V . If the maximum stress that the balloon material can withstand is given by $\frac{750}{}$, 1 the value of k . Assume that the temperature of helium remains constant, the baloen remains spherical, thickness of balloon material is very small when compared with radius and the density of the material remains virtually constant. [Take : $\mathrm{V}_{0}=8 \mathrm{~m}^{3}, \rho=500 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~m}=18 \mathrm{~kg}$]
18. Two tuning forks A and B rah of natural frequency 85 Hz move with velocity $10 \mathrm{~m} / \mathrm{s}$ relative to stationary observer ' O '. Fork A moves away from the observer while the fork B
moves towards him as shown in the figure. A wind is blowing with a speed $10 \mathrm{~m} / \mathrm{s}$ in the direction of motion of fork A. Find the beat frequency measured by the observer in Hz. [Take speed of sound in air as $340 \mathrm{~m} / \mathrm{s}$]

19. The internal energy of a monoatomic ideal gas is 1.5 nRT . One mole of helium is kept in a cylinder of cross-section $8.5 \mathrm{~cm}^{2}$. The cylinder is closed by a light rictionless piston. The gas is heated slowly in a process during which a total 12 eat is given to the gas. The temperature rises through $2^{\circ} \mathrm{C}$. The distance pred by the piston is given as $\left(\alpha \times 10^{\beta}\right) \mathrm{m}$ in scientific notation. Find the value of $+\rho$ Take $R=\frac{25}{3}$ in SI units, atmospheric pressure $=100 \mathrm{kPa}$]
20. Three small balls of equal mat s are connected by light insulating inextensible threads of length ℓ each and kept ona level smooth non-conducting ground. The balls A and B are
given charge Q each. The strings are all taut. The string connecting A and B suddenly snaps.

What is the maximum speed (in m / s) of C during the resulting motion? $\mathrm{Q}=1 \mu \mathrm{C}, \ell=1.5 \mathrm{~m}$, mass $\mathrm{m}=1 \mathrm{~g}$.

m

CHEMISTRY:

Max.Marks : 70

SECTION I

This section contains 10 multip echoice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct
21. Which of the isomeac compounds would you expect to have the lowest boiling point
(A)

(B)

(C)

(D)

22. $\mathrm{X}+\mathrm{Mg}-\frac{\text { dry }}{\text { ether }} \xrightarrow[2 . \mathrm{H}_{3} \mathrm{O}^{+}]{\longrightarrow} \mathrm{Y}-\underset{\mathrm{CH}}{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

Identify X and Z in the above sequence of reaction
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ and HCHO
(B) $\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(D) $\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{CH}_{3} \mathrm{CHO}$
23.

Which of the following is a key intermediate in the reaction sĥqui above.
(A)

(C)

(B)

(D
Cl

24. A pyranose form is a cyclic hemiaeta with a six-membered ring. Which of the following compounds can not exists in py angseform
(A)

(B)

(C)

(D)

25. The equation of state of a gas is $\left(P+a T^{2} / V\right) V^{C}=(R T+b)$ where a, b, c and R are constants. The isotherms can be represented by $P=A V^{m}-B V^{n}$ where A and B depends only on temperature and
(A) $m=-c$ and $n=-1$
(B) $m=c$ and $n=1$
(C) $m=-c$ and $n=1$
(D) $m=c$ and $n=-1$
26. A sample of $\mathrm{Fe}_{\mathrm{x}} \mathrm{O}$ contains one Fe (III) for every three F (II). Then the value of x will be
(A) $8 / 9$
(B) $9 / 8$
(C) $4 / 3$
(D) $6 / 5$
27. Liquid A undergoes self ionization to form B^{+}ald C^{-}with the equilibrium $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}^{+}+\mathrm{C}^{-}$ for the equilibrium is 10^{-30}. How matw C Fons are present per cc of the liquid A (assuming A behaves like a base).
(A) 10^{-8}
(B) 10^{-15}
(C) 6.023×10^{5}
(D) 12.04×10^{5}
28. In the following sub austions choose the correct answer from among the following possibilities and eelecterrect code of your answers (Answer of P,Q R and S respectively):
(P) The most stable low valent halide (1) GeX_{2} (2) SnX_{2} (3) $\mathrm{PbX} \mathrm{X}_{2}$
(Q) A non existing halide (1) SnCl_{4} (2) PbCl_{4} (3) PbI_{4}
(R) A purely acidic oxide (1) PbO_{2} (2) SnO_{2} (3) SiO_{2}
(S) Thermally most stable hydride (1) NH_{3} (2) PH_{3} (3) AsH_{3}
(A) 3,2,1,3
(B) $1,3,3,1$
(C) $3,3,3,1$
(D) $1,1,1,3$
29. Assume that $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ ion is a high spin complex and the enthalpy of hydration of Fe^{+2} ion is $-12.4 \mathrm{kcal} / \mathrm{mole}$ which is higher than that expected in the absence of crystal field stabilization energy then the estimated value of Δ_{0} for this ion is
(A) $7234 \mathrm{~cm}^{-1}$
(B) $8680 \mathrm{~cm}^{-1}$
(C) $1808.4 \mathrm{~cm}^{-1}$
(D) $10850 \mathrm{~cm}^{-1}$
30. Given the data at $25^{\circ} \mathrm{C}$
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag} \quad ; \quad \mathrm{E}^{0}=+0.800 \mathrm{~V}$
$\mathrm{AgI}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+\mathrm{I}^{-} ; \quad \mathrm{E}^{0}=-0.152 \mathrm{~V}$
then the value of $\log \mathrm{K}_{\mathrm{sp}}$ for AgI is
(A) -16.13
(B) +8.612 *
(C) -37.83
(D) -8.12

This section contains 5 multiple ofrice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct
31. Which of the follown represents a pair of constitutional isomers?
(A) Δ and Δ
(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(C)

(D)

32. Some statements are given about following compound

Identify correct statements
(A) It gives yellow precipitate with I_{2} in aq NaOH Solutio
(B) It does't form silver mirror with Tollens reagent
(C) One of Hydrolysis products of given coppond gives red precipitate with Benedicts solution
(D) Both, the given compound and its ene hyarolysis products gives positive test with

2, 4 - DNP
33. Which is incorrectly matched for refining of metals?
(A) Si, Ge from impuritie \Rightarrow zone refining method
(B) Copper refined from its metaloxide \Rightarrow cupellation method
(C) Al from impurities \Rightarrow Hoop's method
(D) $\mathrm{Zn}, C d$ from impurities with high boiling point \Rightarrow liquation
34. In the aqueous solution of soaps above CMC :
(A) the cations associate to form the aggregates and not directed towards water.
(B) the anions associate to form the clusters of colloidal dimension
(C) the polar ends of the ions forming the clusters are directed towards water
(D) the non-polar (hydrocarbon) ends are directed towards water
35. Which of the following reactions give the same nitrogen containing gaseous product?
(A) Heating of $\mathrm{NH}_{4} \mathrm{NO}_{2}$
(B) By passing NH_{3} over heated CuO
(C) Heating of $\operatorname{Ba}\left(N_{3}\right)_{2}$
(D) $\mathrm{Cu}+$ cold and dilute HNO_{3}

This section contains 5 questions. The answer to ea huestion is single digit integer, ranging from 0 to 9 (both inclusive).
36. The enthalpy of monoatomic gas at 28^{0} is $300 y$ calorie then the value of ' y ' is
37. How many of the following wo ld be expected to give a positive test with Benedict's reagent?
D-Galactose
D-Fructose
Lactose
Gluconic acid
Sucrose
D-ribose
Maltose
38. Number of chlorme froms present in a molecule of organic product of following reaction

Chlorobenzene
Trichloroacetaldehyde
39. The no of the possible orbitals (upto $\mathrm{n}=3$) which fulfill all the following conditions Case - I $\rightarrow \quad$ having only one radial node

Case - II $\rightarrow \quad$ having XY plane as angular node
Case - III $\rightarrow \quad$ having only two maxima if a curve is plotted between radial distribution function vs radial distance
40. A certain reaction B^{n+} is getting converted to $B^{(n+4)+}$ in solution. The rate constant of this reaction is measured by titrating a known volume of the solution with a reducing agent which reacts only with B^{n+} and $B^{(n+4)+}$. In this process it converts $\mathrm{B}^{\mathrm{n}+}$ to $\mathrm{B}^{(\mathrm{n}-2)+}$ and $\mathrm{B}^{(\mathrm{n}+4)+}$ to $\mathrm{B}^{(\mathrm{n}-1)+}$. At, $t=0$ theylume of reagent consumed is 25 ml and at $\mathrm{t}=10$ minute, the volume used is 32 m the rate constant for the conversion of $\mathrm{B}^{\mathrm{n}+}$ of $\mathrm{B}^{(\mathrm{n}+4)+}$ is $x \times 10^{-2} \min ^{-1}$ then the value of ' x ' is (Near by Integer)

MATHEMATICS:

SECTION I

single Correct Answer Type
This section contains 10 multiple choie questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct
41. If $\sum_{r=1}^{n} t_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$ then $\sum_{r=1}^{n} \frac{1}{t_{r}}=$
(A) $\frac{n(n+1)}{(n+2)(n+3)}$
(B) $\frac{n(n+1)}{2(n+2)(n+3)}$
(C) $\frac{n(n+1)}{(n+1)(n+2)}$
(D $\frac{n(n+3)}{2(n+1)(n+2)}$
42. $\sum_{p=1}^{32}(3 p+2)\left\{\sum_{r=1}^{10}\left(\sin \frac{2 r \pi}{11}-i \cos \frac{2 r \pi}{11}\right)\right\}^{p}=$
(A) $48 i$
(B) $16(1-i)$
(C) $48(1-i)$
(D) $16(i-1)$
43. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots \ldots+C_{n} x^{n}$ then $\sum_{0 \leq i<j \leq n} \sum(C i+C j)^{2}=$
(A) $(n-1) 2 n_{c_{n}}+2^{2 n}$
(B) $n\left(2 n_{c_{n}}\right)+2^{2 n}$
(C) $(n+1) 2 n_{c_{n}}+2^{n}$
(D) $n\left(2 n_{c_{n}}\right)+2^{n}$
44. If two small squares of selected at random from a chess board then the probability that they have exactly one common vertex is
(A) $\frac{1}{144}$
(B) $\frac{7}{72}$
(C) $\frac{1}{72}$
D) $\frac{7}{144}$
45. $\lim _{n \rightarrow \infty} \prod_{r=3}^{n}\left(\frac{r^{3}-8}{r^{3}+8}\right)=$
(A) $\frac{1}{7}$
(B) $\frac{2}{7}$
(c) $\frac{3}{7}$
(D) $\frac{4}{7}$
46. The largest term of the sequencea $a_{n}=\frac{n^{2}}{n^{3}+200}$ is
(A) a_{6}
(C) a_{8}
(D) a_{9}
47. The range of values of α for which the line $2 y=g x+\alpha$ is a normal to the circle $x^{2}+y^{2}+2 g x+2 g y-2=0$ for real values of g is
(A) $[1, \infty)$
(B) $[-1, \infty)$
(C) $(0,1)$
(D) $(-\infty, 1]$
48. $(x-1)(y-2)=5$ and $(x-1)^{2}+(y+2)^{2}=r^{2}$ intersect in the points A,B,C,D and the centroid of the triangle ABC lies on the line $y=3 x-4$. Then the locus of D is
(A) $y=3 x$
(B) $x^{2}+y^{2}+3 x+1=0$
(C) $3 y=x+1$
(D) $y=3 x+1$
49. The position vectors of the point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are respectively $\hat{i}-\hat{j}-3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $-5 \hat{i}+2 \hat{j}-6 \hat{k}$. If the internal angular bisector of $\lfloor A$ in $\triangle A B C$ meet $B C$ at D then the length of $A D$ is
(A) $\frac{1}{4}$
(B) $\frac{11}{2}$
(C) $\frac{15}{2}$
(D) $\frac{3 \sqrt{10}}{4}$
50. The number of roots of the equation $\cos ^{7} x \rightarrow \sin x=1$ in the interval $(-\pi, \pi)$ is
(A) 4
(B) 3
(C) 2
(D) 1

This section contains 5 multiple choicequestions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
51.

(A) $\cos ^{-1} \frac{2 \sqrt{1+x-x^{2}}}{\sqrt{5}(x+1)}+C$
(B) $2 \tan ^{-1}\left(\frac{\sqrt{1+x-x^{2}}+1}{2}\right)+C$
(C) $\sin ^{-1}\left(\frac{3 x+1}{5(x+1)}\right)+C$
(D) $\sin ^{-1}\left(\frac{3 x+1}{\sqrt{5}(x+1)}\right)+C$
52. The tangent at a point P on a curve meets X -axis in A . If the area of the triangle $O A P$ (O is origin) is $a^{2}(a$ constant), then the equation of the curve is
(A) $x=c y+\frac{a^{2}}{y}$
(B) $y=c x+\frac{a^{2}}{x}$
(C) $x=c y-\frac{a^{2}}{y}$
(D) $y=c x-\frac{a^{2}}{x}$
53. If the roots of the equation $x^{2}-a x-b=0(a, b \in R)$ have absolut value less than 1 , then
(A) $|b|<1$
(B) $a+b<1$
(C) $b-a<1$
(D) $a+b=0$
54. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be square matrices of same order and I the ynit matrix of same order such that $A+B+C=A B+B C+C A$. Consider the following statements
(i) $A B C=A C-C A$
(ii) $B C A=B A$
\bigcirc
(iii) $C A B=C B-B C$
(A) (i) and (ii) are equivalent
(D) (ii) and (iii) are equivalent
(C) (i) and (iii) are equivalent
(D) (i), (ii) and (iii) are equivalent
55. Which of the following statement is / are correct
(A)The number of solutions of equation $\operatorname{Tan}^{-1}\left(\frac{x}{1-x^{2}}\right)+\operatorname{Tan}^{-1}\left(\frac{1}{x^{3}}\right)=\frac{3 \pi}{4}$ belonging to the interval $(0,1)$ is 2
(B) $\mathrm{Tan}^{-1}\left(\frac{1}{2}\right)+\operatorname{Tan}^{-1}\left(\frac{1}{8}\right)+\operatorname{Tan}^{-1}\left(\frac{1}{18}\right)+\operatorname{Tan}^{-1}\left(\frac{1}{32}\right)+\ldots$. to n terms is $\frac{\pi}{4}-\operatorname{Tan}^{-1}\left(\frac{1}{2 n+1}\right)$
(C) If $0 \leq x \leq 1$ and $\theta=\sin ^{-1} x+\cos ^{-1} x-\tan ^{-1} x$, then $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$
(D) The value of $\operatorname{Sin}^{-1}\left(\sin \frac{4 \pi}{3}\right)+\operatorname{Cos}^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is $\frac{\pi}{2}$

SECTION III

Integer Answer Type
This section contains 5 questions. The answer to each question is single digit integer, ranging from 0 to 9 (both inclusive).
56. The letter of the word MOTHER are arranged in allyosfbe ways and the resulting words are arranged as in DICTIONARY. If the rank of he word is K , then the number of positive integral divisors of K is
57. In the triangle $A B C$, points K and L are taken on the segments $A B$ and $B C$ such that $A K: K B=1: 2$ and $B L: L=1:$. Let P be the point of intersection of the lines $A L$ and $C K$. If the area of $\triangle B C R \leqslant 2$ quare units then twice the area of triangle $A B C$ is
58. If $I=\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$, then the integral part of I is
59. If the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $(a \cos \theta, b \sin \theta)$ meets the auxiliary circle in two points A, B such that the chord AB subtends a right angle at the centre, then the eccentricity of the ellipse is $\frac{1}{\sqrt{\alpha+\beta \sin ^{2} \theta}}$ where $(\alpha+\beta)^{2}=$
60. In triangle $\mathrm{ABC}, \frac{\tan A-\tan B}{\tan A+\tan B}=\frac{c-b}{c}$ then $2 \tan ^{2} A=$

