1.	The paramagn	netism of O_2^+	is due to the pre	sence of an odd	electron in the
	(A) σ_{2s}^*	(B) π 2p _y	(C) $\pi 2p_z$	(D) $\sigma^* 2p_x$	(E) $\pi^* 2p_y$
2.		dilute aqueor		~	is 25 mm Hg and t, the molality of
	(A) 0.02	(B) 1.2	(C) 1.11	(D) 0.08	(E) 0.06
3.				on $N_2(g) + 3H_2$ ant for the reaction	$g(g) \rightleftharpoons 2NH_3(g)$
	NH ₃ (g)	$\Rightarrow \frac{1}{2} N_2(g)$	$+\frac{3}{2}H_2(g)$ at the	same temperatu	re is
	(A) $\frac{1}{49}$	(B) 49	(C) 7	(D) 49^2	(E)
4.	The correct energy (ΔG°)		-	m constant (K), standard free
	$(A) \Delta G^{\circ} = RT$	ln K	(B) $K = e^{-\Delta G^{\circ}/2}$	303RT	
	(C) $\Delta G^{\circ} = -R$	T log ₁₀ K	(D) $K = 10^{-\Delta G^{\circ}}$	/2.303RT (E)	$\Delta G^{\circ} = R \ln K$
5.	Which among	the following	g is the heaviest	?	
	(A) One mole	of oxygen	(B) One	e molecule of su	lphur trioxide
	(C) 100 amu o	of uranium	(D) Tei	n moles of hydro	gen
	(E) 44 g of ca	rbon dioxide			

Arrange the following ions in the order of their magnetic moment 6.

- (a) V4+
- (b) Mn⁴⁺
- (c) Fe³⁺
- (d) Ni²⁺

(Atomic No. of V = 23, Mn = 25, Fe = 26, Ni = 28)

- (A) (b) > (c) > (a) > (d) (B) (c) > (d) > (b) > (a)

- (C)(c) > (b) > (d) > (a) (D)(a) < (d) < (c) < (b) (E)(d) < (c) < (a) < (b)

Which one of the following electrolytes would dissolve in water to give a 7. 0.1M solution with pH about 9?

- (A) CH₃COOH
- (B) CH₃COONa

(C) NH₄Cl

- (D) KOH
- (E) NaCl

Match the lists I and II and write the correct matching 8.

List I

List II

Species

Geometry

- a. H₃O⁺
- 1. Planar
- b. H₂C=NH
- 2. Angular
- c. ClO₂
- 3. Tetrahedral
- d. NH₄⁺
- 4. Trigonal bipyramidal
- e. PCls
- 5. Pyramidal

(A)
$$a-2$$
, $b-1$, $c-3$, $d-5$, $e-4$

(A)
$$a-2$$
, $b-1$, $c-3$, $d-5$, $e-4$ (B) $a-1$, $b-5$, $c-2$, $d-3$, $e-4$

(C)
$$a - 5$$
, $b - 1$, $c - 2$, $d - 3$, $e - 4$

(C)
$$a-5$$
, $b-1$, $c-2$, $d-3$, $e-4$ (D) $a-3$, $b-1$, $c-4$, $d-5$, $e-2$

(E)
$$a - 5$$
, $b - 2$, $c - 4$, $d - 3$, $e - 1$

Which one of the following complexes is not diamagnetic? 9.

- [Fe(CN)₆]⁴⁻ (A)
- $[Ti(H_2O)_6]^{3+}$ (B)
- $[Pt(CN)_4]^{2-}$ (C)
- (D) $[Co(NH_3)_6]^{3+}$
- (E) $[Ni(CO)_4]$

Match the lists I and II and pick the correct matching from the codes given 10. below

List I (Reactants)

List II (Products)

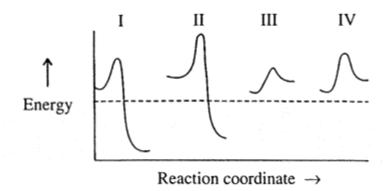
c.
$$H_3CC \equiv N$$

d.
$$\bigcirc$$
 CONH₂ Hofmann's degradation 4. CH₃CH₂NH₂

5. **RNC**

(A)
$$a-3$$
; $b-1$; $c-2$; $d-5$; $e-4$ (B) $a-2$; $b-3$; $c-4$; $d-1$; $e-5$

(B)
$$a-2$$
; $b-3$; $c-4$; $d-1$; $e-5$


(C)
$$a-3$$
; $b-2$; $c-1$; $d-5$; $e-4$ (D) $a-5$; $b-3$; $c-2$; $d-4$; $e-1$

(D)
$$a-5$$
; $b-3$; $c-2$; $d-4$; $e-1$

(E)
$$a-4$$
; $b-2$; $c-3$; $d-5$; $e-1$

- 11. The efficiency of an enzyme to catalyze a reaction is due to its capacity to
 - (A) Reduce the activation energy of the reaction
 - (B) Form strong enzyme substrate complex
 - (C) Decrease the bond energy of all substrate molecules
 - (D) Increase the free energy of the catalyst substrate reaction
 - (E) Alter the substrate geometry to fit into the shape of the enzyme molecule
- If 0.5 g of a solute (molar mass 100 g mol⁻¹) in 25 g of solvent elevates the 12. boiling point by 1 K, the molar boiling point constant of the solvent is
 - (A) 2
- (B) 8
- (C) 5
- (D) 0.5
- (E) 10

13. The potential energy diagrams for four reactions are given below.

Which one of the following statements about these diagrams is INCORRECT?

- (A) I has the largest rate constant for an exothermic reaction.
- (B) II has the smallest rate constant for the reverse reaction.
- (C) III will have the most rapid establishment of equilibrium
- (D) IV has the largest rate constant for an endothermic reaction.
- (E) The magnitude of the enthalpy of reaction I is greater than that of III.
- 14. The addition of Br_2 to Z-2-butene gives
 - (A) (R, R)-2, 3-Dibromo butane only
 - (B) (S, S)-2, 3-Dibromo butane only
 - (C) (R, S)-2, 3-Dibromo butane only
 - (D) A mixture of (R R) and (S S)-2, 3-dibromo butanes (50%: 50%)
 - (E) (R, S)-1, 2-Dibromo butane
- 15. Which of the following metals, Fe, Zn, Pb, Ag and Pt, DO NOT give a metal nitrate on treatment with concentrated HNO₃?
 - (A) Fe and Zn
- (B) Fe and Pt
- (C) Pb, Ag and Pt
- (D) Fe, Ag and Pt
- (E) Fe, Zn and Pt

16.	Which of the following factors are responsible for the increase in the rate of a surface catalysed reaction?					
	 A catalyst provides proper orientation for the reactant molecules to react 					
1	 Heat of adsorption of reactants on a catalyst helps reactant molecules to overcome activation energy 					
	3. The catalyst increases the activation energy of the reaction					
	 Adsorption increases the local concentration of reactant molecules on the surface of the catalyst 					
	Select the correct answer using the code given below					
	(A) 1 and 2 (B) 1 and 3					
	(C) 2 and 4 (D) 1, 2 and 3 (E) 1, 2 and 4					
17.	The radioisotope of hydrogen has a half-life of 12.33 y. What is the age of an old bottle of wine whose ³ ₁ H radiation is 10% of that present in a new bottle of wine?					
	(A) 41 y (B) 123.3 y (C) 1.233 y (D) 410 y (E) 12.33 y					
18.	One of the different amino acids which can be synthesized in the body is					
	(A) lysine (B) histidine					
	(C) valine (D) phenyl alanine (E) alanine					
19.	Neopentyl bromide undergoes dehydrohalogenation to give alkene even though it has no β - hydrogen. This is due to					
	 (A) E₂ mechanism (B) E₁ mechanism (C) Due to rearrangement of carbo cation by E₁ mechanism (D) E₁ CB mechanism (E) Hofmann elimination 					
20.	If the aqueous solutions of the following salts are electrolysed for 1 hour with 10 ampere current, which solution will deposit the maximum mass of the metal at the cathode? The atomic weights are, $Fe = 56$, $Zn = 65$, $Ag = 108$, $Hf = 178$ and $W = 184$.					
	(A) ZnSO ₄ (B) FeCl ₃ (C) HfCl ₄ (D) WCl ₆ (E) AgNO ₃					

- 21. Which of the following statement is true?
 - (A) The kinetic energy of an electron is inversely proportional to square of its momentum.
 - (B) de Broglie wavelength associated with a particle is directly proportional to its mass.
 - (C) de Broglie wavelength associated with a particle is directly proportional to square of its velocity.
 - (D) The wavelength associated with an electron is directly proportional to square root of accelerating potential.
 - (E) The kinetic energy of an electron is directly proportional to accelerating potential.
- 22. Which species are more resonance stabilized in the following pairs?

 $[C_6H_5Cl, C_6H_5CH_3], [CH_2=CHCl, CH_2=CHCH_2Cl],$

[C₆H₅Br, C₆H₅CH₂Br], [CH₃COOH, CH₃COO⁻]

- (A) C₆H₅Cl, CH₂=CHCH₂Cl, C₆H₅CH₂Br, CH₃COO⁻
- (B) C₆H₅CH₃, CH₂=CHCH₂Cl, C₆H₅CH₂Br, CH₃COO⁻
- (C) $C_6H_5CH_3$, $CH_2=CHCH_2Cl$, $C_6H_5CH_2Br$, CH_3COOH
- (D) C₆H₅Cl, CH₂=CHCl, C₆H₅Br, CH₃COOH
- (E) C₆H₅Cl, CH₂=CHCl, C₆H₅Br, CH₃COO⁻
- 23. Which one of the following statements about rocket propellants is NOT true?
 - (A) Rocket propellants have to burn in the absence of atmospheric oxygen
 - (B) Specific impulse is the criterion for propellant performance
 - (C) Liquid oxygen and hydrazine constitutes a liquid propellant
 - (D) A propellant consisting of liquid N₂O₄ and acrylic rubber is a double base propellant
 - (E) A blend of polyurethane, ammonium perchlorate and aluminium powder is a composite propellant
- 24. Dead burnt plaster is
 - (A) CaSO₄. 2H₂O
- (B) MgSO₄. 7H₂O
- (C) CaSO₄. ½ H₂O
- (D) CaSO₄
- (E) MgSO₄

25. Match the lists I and II and pick the correct matching from the codes given below:

List I(Halo alkane/arane)

List II(Applications)

a. Iodoform

1. CF₄

b. BHC

2. antiseptic

c. Freon-14

3. moth repellent

d. Halothanes

4. inhalative anesthetic

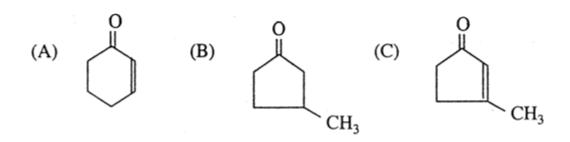
e. p-dichlorobenzene

5. termite pesticide

(A)
$$a-2$$
; $b-4$; $c-5$; $d-3$; $e-1$

(B)
$$a-2$$
; $b-5$; $c-1$; $d-4$; $e-3$

(C)
$$a-3$$
; $b-4$; $c-2$; $d-1$; $e-5$


(D)
$$a-1$$
; $b-3$; $c-5$; $d-2$; $e-4$

(E)
$$a-5$$
; $b-4$; $c-3$; $d-2$; $e-1$

26. The diketone

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
CH_3-C-(CH_2)_2-C-CH_3
\end{array}$$

on intramolecular aldol condensation gives the final product

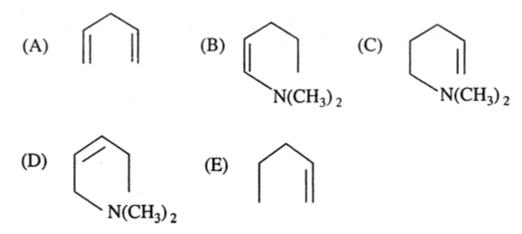
- 27. The electronic configuration of four elements are
 - 1. [Xe] 6s¹
 - 2. [Xe] $4f^{14}5d^{1}6s^{2}$
 - 3. [Ar] $4s^24p^5$
 - 4. [Ar] $3d^74s^2$

Which one of the following statements about these elements is NOT correct?

- (A) 1 is a strong reducing agent
- (B) 2 is a d-block element
- (C) 3 has high electron affinity
- (D) 4 shows variable oxidation state
- (E) The compound formed between 1 and 3 is ionic
- 28. Which of the following statements is / are NOT TRUE about the diagonal relationship of Be and Al.
 - (a) Both react with NaOH to liberate hydrogen
 - (b) Their oxides are basic
 - (c) They are made passive by nitric acid
 - (d) Their carbides give acetylene on treatment with water
 - (A) only (a)

(B) (b) and (c)

(C) only (d)


(D) (a) and (d)

- (E) (b) and (d)
- 29. Which one of the following statements about CH₃CN is not true?
 - (A) Its IUPAC name is ethanenitrile
 - (B) The bond between C and N is a triple bond
 - (C) The C-C-N bond angle is 180°
 - (D) The carbon-carbon bond is longer than the carbon-nitrogen bond
 - (E) It has a relatively high boiling point due to hydrogen bonding

30.	For the homogeneous reaction $xA + yB \rightleftharpoons lY + mZ$					
			and $\Delta S = -100$ action is at equil			
	(A) 50°C	(B) 250°C	(C) 100K	(D) 27°C	(E) 500K	
31.	The amount of copper deposited by one Faraday current will be maximum in an acidic solution of one litre of					
	(A) 1M Cu ₂ Cl ₂		(B) 2M Cu(NO ₃) ₂			
	(C) 5M CuS	SO ₄	(D) 5M Cu ₃ (PC	$(E_4)_2$) 10 M CuF ₂	
32.	Which of th	e following mo	lecule is planar?			
	(A) CH ₄	(B) NH ₃	(C) C_2H_4	(D) SiCl ₄	(E) PCl ₃	
33.	The number	of isomers pos	ssible for disubst	ituted borazine,	$B_3N_3H_4X_2$ is	
	(A) 3	(B) 4	(C) 6	(D) 2	(E) 5	
34.		a of compound n sodium nitrop	_	let colour in La	ssagine's test for	
	(A) Na ₄ [Fe(CN) ₆ S]	(B) Na ₄ [Fe(CN)5NCS]		
	(C) Na ₄ [Fe([CN)5NOS]	(D) Na ₂ [Fe(CN) ₅ NOS] (E)	Na ₄ [Fe(CN) ₅ S]	
35.	HCl was ad		out changing the	_	ace when 0.73 g The flocculation	
	(A) 0.365	(B) 36.5	(C) 100	(D) 150	(E) 200	
36.	The stronge are	est ortho-para a	and strongest me	eta-directing gro	oups respectively	
	(A) –NO	2 and -NH2				
	(B) –CO	NH ₂ and –NH ₂				
	(C) –NH	₂ and –CONH ₂				
		nd –CONH ₂				
	(E) –NH	₂ and –NO ₂				

37. In the following reaction,

the organic product X has the structure

38. Consider the structures given below

They are

(A) Enantiomers

(B) Diastereoisomers

(C) Geometrical isomers

(D) Homomers

- (E) Meso isomers
- 39. When excess ammonia is added to CuSO₄ solution the deep blue complex obtained is
 - (A) Tetrahedral and Paramagnetic
 - (B) Tetrahedral and Diamagnetic
 - (C) Square Planar and Diamagnetic
 - (D) Square Planar and Paramagnetic
 - (E) Tetrahedral and Ferromagnetic

40.	Among the following transition elements, pick out the element / elements with highest second ionization energy							
		(a) V (At. no = 23)						
		(b) Cr (At. no = 24)						
		(c) Mn (At. $no = 2$	25)					
		(d) Cu (At. no = 2	29)					
		(e) Zn (At. no = 3	0)					
	(A) (a) and (c)	(B) (b) and (d)					
	(C) (b) and (e)	(D) only (d)	(E) on	ly (c)			
41.	The prese		of an electron is ze	ro. In which orb	oital may it be			
	(A) 2	(B) 2p	(C) 3d	(D) 4f	(E) 5f			
42.	Whic	ch of the following	will show geometrica	al isomerism?				
	(A)	2-Methyl butene	(B) Propene					
	(C)	Vinyl chloride	(D) But-2-ene	(E) 2-Methyl	propene			
43.	Matc		nd pick the correct n	natching from the	codes given			
		List I	List II					
	a. Propane-1,2,3-triol		triol 1. Cyclic eth	ner				
	b. Ethane-1,2-diolc. Tetrahydrofurand. Power alcohole. Methylated spirit		ol 2. Absolute	 Absolute ethanol + Petrol Dynamite Denatured alcohol Terylene 				
			an 3. Dynamite					
			4. Denature					
			irit 5. Terylene					
	(A)	a-1; $b-2$; $c-1$	3;d-4;e-5					
	(B)	a-1; $b-3$; $c-$	5; d-4; e-2					
	(C)	a-3; $b-2$; $c-4$	4; d-5; e-1					

(e) H_2O

Kerala Medical Entrance Examination 2006: Chemistry and Physics

The decreasing order of boiling points of the following hydrides

(c) AsH₃

(d) SbH_3

(b) PH₃

44.

(a) NH₃

	(A) (e) >	(d) > (a) >	(c) > (b)	(B) (e) $>$ (a	(a) > (b) > (c) > (d))	
	(C) (b) >	(d) > (c) >	(a) > (e)	(D) (d) $>$ ((c) > (a) > (b) > (e))	
	(E) (e) >	(d) > (c) > (c)	(b) > (a)				
45.	zero orde				mol dm ⁻³ reacts e completion of th		
	(A) k / a	(B) a	1 / 2k	(C) a / k	(D) 2k / a	(E) ka	
46.		_	-	present in yea so known as	st. Its deficiency	in diet ca	uses
	(A) Vitar	nin H	(B) V	itamin B ₃			
	(C) Vitar	nin B ₁₂	(D) V	itamin D	(E) Vit	amin E	
47.	Pick out	the wrong s	tatement(s))			
		pour pressi ermolecular		_	measure of the	strength	of.
		rface tensio uid.	n of a liqu	id acts perpe	ndicular to the su	rface of	the
	3. Va	pour pressu	re of all liq	uids is same a	at their freezing po	oints.	
		_	-		attractive force nolecular forces.	s are m	ore
	(A) 2, 3 a	and 4		(B) 2 and 3			
	(C) 1, 2 a	and 3	((D) 3 only	(E) 2 only	y
48.		The pressi			lissociation of PC it is 50% dissoc		
	(A) 4.8	(B) 4.5	2	(C) 3.2	(D) 2.4	(E)	6.4

49. Consider the following reaction at 1000°C

(a)
$$Zn(s) + \frac{1}{2} O_2(g) \longrightarrow ZnO(s); \Delta G^{\circ} = -360 \text{ kJmol}^{-1}.$$

(b)
$$C(gr) + \frac{1}{2} O_2(g) \longrightarrow CO(g); \quad \Delta G^{\circ} = -460 \text{ kJmol}^{-1}.$$

Choose the correct statement

At 1000°C

- (A) Zinc can be oxidized by carbon monoxide
- (B) Zinc oxide can be reduced by graphite
- (C) Both statements (A) and (B) are true
- (D) Both statements (A) and (B) are false
- (E) Carbon monoxide can be reduced by zinc
- 50. Which of the following metal in solution forms a precipitate with NaOH, which is not soluble in an excess of the base?
 - (A) Fe
- (B) Sn
- (C) Pb
- (D) Zn
- (E) Al
- 51. In the solvolysis of 3-methyl-3-bromohexane, which of the following statement is not correct?
 - (A) It involves carbocation intermediate
 - (B) The intermediate involves sp² carbon
 - (C) Polar solvents accelerates the reaction
 - (D) The rate of the reaction depends upon 3-methyl-3-bromo hexane concentration
 - (E) It involves inversion of configuration
- 52. The following is known as "Bordeaux mixture"
 - (A) Borax and copper sulphate
 - (B) Orthoboric acid and ferrous sulphate
 - (C) Sodium borate and zinc sulphate
 - (D) Copper sulphate and lime
 - (E) Borax and manganous sulphate

- 53. Which among the following will give a precipitate with ammonical silver nitrate?
 - (A) 2-Butene
- (B) 2-Butyne
- (C) Chlorobenzene

- (D) 3-Methyl-1-butyne
- (E) 1,3-Butadiene
- 54. Consider the following representation

$$CH_3$$
 CH_3 $H \xrightarrow{} Br$ $F \xrightarrow{} H$ Br

They are

- (A) enantiomers
- (B) diastereomers
- (C) conformational isomers
- (D) identical
- (E) cis-trans isomers
- 55. One mole of an unsaturated hydrocarbon on ozonolysis gives one mole each of CH₃CHO, HCHO and OHC.CHO. The hydrocarbon is
 - (A) CH₃.CH₂C≡C.CH₃
- (B) CH≡C.CH₂.CH₂.CH₃
- (C) CH₃.CH=CH.CH=CH₂
- (D) CH₂=CH.CH₂.CH=CH₂
- (E) CH₂=C=CH.CH₂.CH₃
- 56. Which one of the following compounds is used as a body deodorant?
 - (A) Aspirin
- (B) Omeprazole
- (C) Indigosol-O
- (D) p-chlorometaxylenol
- (E) Bithional
- 57. The rate of the reaction A+2B→3C gets increased by 72 times when the concentration of A is tripled and that of B is doubled. The order of the reaction with respect to A and B are ---- and ---- respectively.
 - (A) 1, 2
- (B) 2, 3
- (C) 3, 2
- (D) 2, 2
- (E) 2, 1
- 58. Which of the following is not in greenhouse gas?
 - (A) CO₂
- (B) CH₄
- $(C) O_3$
- (D) N₂
- (E) CCl₂F₂

KBr is 80% dissociated in aqueous solution of 0.5M concentration. 59. (Given K_f for water = 1.86 K kg mol⁻¹). The solution freezes at

(A) 271.326 K (B) 272 K (C) 270.5 K (D) 268.5 K

(E) 269 K

In a polymer sample 30% of molecules have a molecular mass 20,000. 60. 40% have 30,000 and the rest 60,000. What is the weight average molecular mass of the polymer?

(A) 40,300

(B) 30,600 (C) 43,333

(D) 50,400

(E) 33,333

Match the lists I and II and pick the correct matching from the codes given 61.

List I(Atomic / Molecular Species)

List II(Corresponding pairs)

1. 228Ra₈₈ & 228Ac₈₉

2. $^{39}Ar_{18} & ^{40}K_{19}$

3. ${}^{2}H_{1} \& {}^{3}H_{1}$

4. 235U₉₂ & 231Th₉₀

5. CO₂ & N₂O

a. Isotope

b. Isobar

c. Isotone

d. Isosters

e. Isodiaphers

(A) a-2; b-1; c-4; d-5; e-3

(B)
$$a-2$$
; $b-5$; $c-1$; $d-4$; $e-3$

(C)
$$a-3$$
; $b-1$; $c-2$; $d-5$; $e-4$

(D)
$$a-5$$
; $b-4$; $c-1$; $d-2$; $e-3$

(E)
$$a-5$$
; $b-3$; $c-1$; $d-2$; $e-4$

62. Which pair of the gases diffuses with the same rate at same temperature and pressure?

(A) CO and NO

(B) NO_2 and CO_2

(C) NH₃ and PH₃

(D) NO and C₂H₆

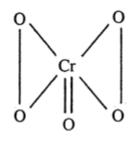
(E) Cl_2 and SO_2

Among the following complexes, which has a magnetic moment of 63. 5.9 BM?

 $Ni(CO)_4$, $[Fe(H_2O)_6]^{2+}$, $[CO(NH_3)_6]^{3+}$, $[MnBr_4]^{2-}$, $[Zn(NH_3)_4]^{2+}$

- (A) Ni(CO)₄
- (B) $[Fe(H_2O)_6]^{2+}$
- (C) $[CO(NH_3)_6]^{3+}$
- (D) $[MnBr_4]^{2-}$ (E) $[Zn(NH_3)_4]^{2+}$

In the Victor-Meyer's test, the colours given by 1°, 2° and 3° alcohols are, 64. respectively


- (A) red, colourless, blue
- (B) red, blue, colourless
- (C) colourless, red, blue
- (D) red, blue, violet
- (E) blue, red, violet

A particular solid is very hard and has a high melting point. In solid state it 65. is a non conductor and its melt is a conductor of electricity. Classify the solid

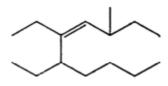
- (A) Metallic
- (B) Molecular
- (C) Network
- (D) Ionic

(E) Amorphous

66. CrO₅ has a structure as shown

The oxidation number of chromium in the above compound is

- (A) 4
- (B) 5
- (C) 6
- (D) 10
- (E) 0

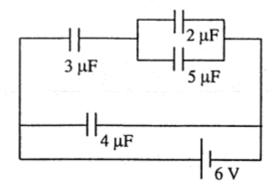

Which one of the following statements about diborane is NOT true? 67.

- (A) The B atoms in it are sp³ hybridised
- (B) It contains two 3-centre-2-electron bonds
- (C) All B-H bond lengths in it are equal due to resonance
- (D) The molecule is non-planar
- (E) The molecule contains 12 valence electrons

68.	Which of the following is not aromatic	?

- (A) Benzene
- (B) Cyclopropenyl cation
- (C) Trophyliumcation
- (D) Cyclopentadienyl cation
- (E) Cyclopentadienyl anion
- 69. Shorter the radioactive half life
 - (A) Greater is the number of atoms disintegrating per second.
 - (B) Smaller is the decay constant.
 - (C) Less reactive is the parent nucleus.
 - (D) Greater is the mass-energy change.
 - (E) Greater is the average life.
- 70. 0.59 g of the silver salt of an organic acid (molar mass 210) on ignition gave 0.36 g of pure silver. The basisity of the acid is
 - (A) 3
- (B) 2
- (C) 1
- (D) 4
- (E) 5

71. Consider the following compound

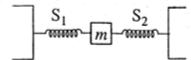

IUPAC name of this compound is

- (A) 5,6-Diethyl-3-methyl decane
- (B) 5,6-Diethyl-3-methyl dec-4-ene
- (C) 3,5,6-Trimethyl-dec-6-ene
- (D) 3,5,6-Triethyl-dec-4-ene
- (E) 5,6-Diethyl-8-methyl-dec-6-ene
- 72. The element that does not exhibit positive oxidation state is
 - (A) Fe
- (B) Cl
- (C) O
- (D) N
- (E) F

- 73. An electron revolves in a circle of radius 0.4Å with a speed of 10⁵ ms⁻¹

 The magnitude of the magnetic field, produced at the center of the circular path due to the motion of the electron, in weber metre⁻² is
 - (A) 0.01
- (B) 10.0
- (C) 1.0
- (D) 0.005
- (E) 5

74. Consider the circuit given below.


The charge in μC on the capacitor having capacity 5 μF is

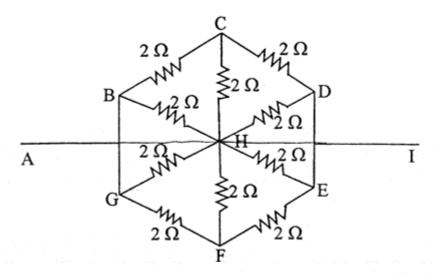
- (A) 21
- (B) 3.6
- (C)9
- (D) 12.6
- (E) 18
- 75. The work done by a force $\vec{F} = (-6x^3 \hat{i}) \text{ N}$, in displacing a particle from x = 4 m to x = -2 m is
 - (A) 360 J
- (B) 240 J
- (C) 240 J
- (D) -360 J
- (E) 408 J
- 76. Two forces of 5 N and 12 N simultaneously act on a particle. The net force on the particle is
 - (A) 17 N only

- (B) 12 N
- (C) 13 N

- (D) between 7 N and 17 N
- (E) 7 N only
- 77. If the acceleration due to gravity on the surface of earth of radius R is g, the gain in potential energy of a body of mass m raised from the surface to a height R is
 - (A) 4mgR
- (B) mgR/4
- (C) mgR/2
- (D) 2mgR
- (E) mgR

- The core of a transformer is laminated to **78.**
 - (A) increase the magnetic flux linked.
 - (B) reduce the power loss due to eddy current.
 - (C) reduce the flux leakage loss.
 - (D) reduce copper loss.
 - (E) reduce hysteresis loss.
- 79. In the given diagram S_1 and S_2 are identical springs.

The frequency of oscillation of the mass 'm' is f. If one of the springs is removed, the frequency will be

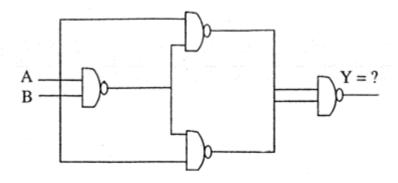

(C)
$$\sqrt{2}f$$

(B)
$$2f$$
 (C) $\sqrt{2}f$ (D) $\frac{f}{\sqrt{2}}$ (E) $\frac{f}{2}$

(E)
$$\frac{f}{2}$$

- A body cools from 50°C to 49.9°C in 5 s. How long will it take to cool 80. from 40°C to 39.9°C? Assume the temperature of the surroundings to be 30°C and Newton's law of cooling to be valid
 - (A) 2.5 s
- (B) 5 s
- (C) 20 s
- (D) 10 s
- (E) 15 s
- 81. Two stretched strings of same material are vibrating under same tension in fundamental mode. The ratio of their frequencies is 1:2 and ratio of the length of the vibrating segments is 1:4. Then the ratio of the radii of the strings is
 - (A) 2:1
- (B) 4:1 (C) 3:2
- (D) 8:1
- (E) 4:5

The effective resistance across the points A and I is 82.

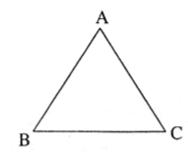


- $(A) 2 \Omega$
- (B) 1Ω
- $(C) 0.5 \Omega$
- (D) 5 Ω
- (E) 10Ω
- Blood is flowing at the rate of 200 cm³ s⁻¹ in a capillary of cross sectional 83. area 0.5 m². The velocity of flow, in mm s⁻¹, is
 - (A) 0.1
- (B) 0.2
- (C) 0.3
- (D) 0.4
- (E) 0.5
- 84. The area of the region covered by the TV broadcast by a TV tower of 100 m height is (radius of the earth = 6.4×10^6 m)
 - (A) $12.8 \,\pi \times 10^8 \,\mathrm{km}^2$
- (B) $1.28 \,\pi \times 10^3 \,\mathrm{km}^2$
- (C) $0.64 \, \pi \times 10^3 \, \text{km}^2$
- (D) $1.28 \times 10^3 \text{ km}^2$
- (E) $2.56 \,\pi \times 10^3 \,\mathrm{km}^2$
- The electrical conductivity of a semiconductor increases when an 85. electromagnetic radiation of wavelength shorter than 1125 nm is incident on it. The band gap of the semiconductor is
 - (A) 0.9 eV

- (B) 0.7 eV (C) 0.5 eV (D) 0.8 eV (E) 1.1 eV
- 4 cells each of emf 2 V and internal resistance of 1 Ω are connected in 86. parallel to a load resistor of 2 Ω . Then the current through the load resistor is
 - (A) 2 A

- (B) 1.5 A (C) 1 A (D) 0.888 A (E) 0.75 A

- 87. To what depth below the surface of sea should a rubber ball be taken as to decrease its volume by 0.1%? [Take: density of sea water = 1000 kgm⁻³, Bulk modulus of rubber = 9×10⁸ Nm⁻²; acceleration due to gravity =10 ms⁻²]
 - (A) 9 m
- (B) 18 m
- (C) 180 m
- (D) 90 m
- (E) 900 m
- 88. Select the outputs Y of the combination of gates shown below for inputs A=1, B=0; A=1, B=1 and A=0, B=0 respectively.


- (A) (0.11)
- (B) (0 0 1)
- (C) (1 0 1)
- (D) (1 1 1)
- (E) (1 0 0)
- 89. Of the following which is preferred modulation scheme for digital communication?
 - (A) Pulse Code Modulation (PCM)
 - (B) Pulse Amplitude Modulation (PAM)
 - (C) Pulse Position Modulation (PPM)
 - (D) Pulse Width Modulation (PWM)
 - (E) Pulse Time Modulation (PTM)
- 90. In a Fraunhofer diffraction at single slit of width 'd' with incident light of wavelength 5500 Å, the first minimum is observed, at angle 30°. The first secondary maximum is observed at an angle $\theta =$

(A)
$$\sin^{-1}\frac{1}{\sqrt{2}}$$
 (B) $\sin^{-1}\frac{1}{4}$ (C) $\sin^{-1}\frac{3}{4}$ (D) $\sin^{-1}\frac{\sqrt{3}}{2}$ (E) $\sin^{-1}\frac{3}{8}$

91.	A thermos flask made of stainless steel contains several tiny lead shots. If the flask is quickly shaken, up and down several times, the temperature of lead shots (A) Increases by adiabatic process					
	` '	s by isotherma es by adiabation				
	(D) Remains		c process			
		reases and the	en increases			
92.	The slope of change of	f the kinetic	energy versu	s position	vector g	gives the rate of
	(A) momentu	um (I	B) velocity	(C) force	
	(D) power	(1	E) work			
93.		ctrical flux lead pole of charg		cal surface	e of radiu	s 'r' m enclosing
	(A) zero	(B) $\frac{q}{\varepsilon_0}$	(C) $\frac{8\pi r^2 q}{\varepsilon_0}$	(D	$\frac{2q}{\varepsilon_0}$	(E) $\frac{4\pi r^2 q}{\varepsilon_0}$
94.		-	_			which induces a ance between the
	(A) 10 mH	(B) 15 mH	(C) 25 mH	(D) 20	mH (E	E) 5 mH
95.	What is the the bob is do		time period o	f a simple	e pendulu	m if the mass of
	(A) halved		(B) doubled			
	(C) becomes	eight times	(D) becomes	zero	(E)	no effect
96.	A particle is	released from	n rest from a	tower of h	neight 3h.	The ratio of the
	intervals of t	ime to cover t	hree equal hei	ghts h is		
	(A) $t_1: t_2: t_3:$	= 3:2:1		(B) $t_1: t_2: t_3$	$t_2: t_3 = 1:($	$(\sqrt{2}-1):(\sqrt{3}-2)$
	(C) $t_1: t_2: t_3$	$=1:\sqrt{2}:\sqrt{3}$		(D) $t_1: t_1$	$t_2: t_3 = \sqrt{3}$:√2:1
	(E) $t_1: t_2: t_3$	$= 1: (\sqrt{2} - 1)$	$(\sqrt{3} - \sqrt{2})$			

97.	After how many days with behind, if the half-life of the		
	(A) 25.12 days	(B) 28.32 days	(C) 29.96 days
	(D) 23.03 days	(E) 27.72 days	
98.	Moment of inertia of a boo	ly does not depend upon	n its
	(A) mass	(B) axis of rotation	(C) shape
	(D) distribution of mass	(E) angular velocity	
99.	A nucleus has 6 protons $(fermi)^3$ [Given $R_0 = 1.3$]		volume of the nucleus in
	(A) 60.28 (B) 10	01.35 (C) 25.0 (I	D) 110.4 (E) 125.5
100.	What is the escape velocit	y for a body on the su	rface of a planet on which
	the acceleration due to gra	vity is $(3.1)^2$ ms ⁻² and	whose radius is 8100 km?
	(A) 2790 km.s ⁻¹ (B) 27.9 km.s ⁻¹	(C) $\frac{27.9}{\sqrt{5}}$ km.s ⁻¹
	(D) $27.9\sqrt{5} \text{ km.s}^{-1}$	(E) $\frac{2.79}{\sqrt{5}}$ km.s ⁻¹	
101.	Which one of the followin	g is not a derived unit?	
	(A) frequency	(B) Planck's constant	t
	(C) gravitational constant	(D) charge	(E) electric current

102. Three identical charges each of 2μC are placed at the vertices of a triangle ABC as shown in the figure

If AB + AC = 12 cm and AB.AC = 32 cm², the potential energy of the charge at A is

- (A)1.53 J
- (B) 5.31 J
- (C) 3.15 J
- (D) 1.35 J
- (E) 3.51 J

103. The diagonals of a parallelogram are represented by vectors $\vec{p} = 5\hat{i} - 4\hat{j} + 3\hat{k}$ and $\vec{q} = 3\hat{i} + 2\hat{j} - \hat{k}$. Then the area of the parallelogram is

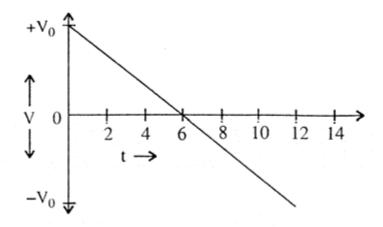
(A) $\sqrt{171}$ units

- (B) $\sqrt{72}$ units
- (C) 171 units

(D) 72 units

(E) $\sqrt{191}$ units

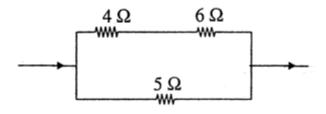
104. A block released from rest from the top of a smooth inclined plane of inclination 45° takes time t to reach the bottom. The same block released from rest from top of a rough inclined plane of the same inclination takes time 2t to reach the bottom. The coefficient of friction is


- (A) 0.75
- (B) 0.5
- (C) 0.25
- (D) 0.4
- (E) 0.33

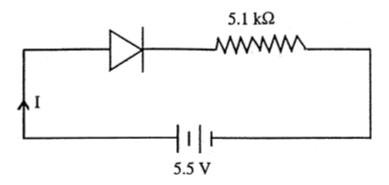
105. A solid cylinder rolls down an inclined plane of height 3 m and reaches the bottom of plane with angular velocity of $2\sqrt{2}$ rad. s⁻¹. The radius of cylinder must be [Take $g=10 \text{ m s}^{-2}$]

- (A) 5 cm
- (B) 0.5 m
- (C) √10 cm
 - (D) $\sqrt{5}$ m
- (E) 10 cm

- The SKIP ZONE in Radio Wave Transmission is that range where 106.
 - (A) there is no reception of either ground wave or sky wave
 - (B) the reception of ground wave is maximum but that of sky wave is minimum
 - (C) the reception of ground wave is minimum, but that of sky wave is maximum
 - (D) the reception of both ground and sky wave is maximum
 - (E) the reception of both ground and sky wave is minimum
- 107. The correct arrangement of colours in the descending order of their wavelengths is
 - (A) yellow, violet, green, orange
 - (B) orange, yellow, green, violet
 - (C) violet, green, yellow, orange
 - (D) yellow, green, orange, violet
 - (E) orange, green, violet, yellow
- 108. The velocity of sound is ν at 273 K. The temperature at which it is 2ν is
 - (A) $2 \times 273 \text{ K}$
- (B) $4 \times 273 \text{ K}$
- (C) $8 \times 273 \text{ K}$
- (D) $16 \times 273 \text{ K}$
- (E) $\sqrt{2} \times 273 \text{ K}$
- 109. Same force acts on two bodies of different masses 3 kg and 5 kg initially at rest. The ratio of times required to acquire same final velocity is
 - (A) 5:3
- (B) 25:9
- (C) 9:25 (D) $\sqrt{3}:\sqrt{5}$ (E) 3:5


110. Consider the given velocity-time graph.

It represents the motion of


- a projectile projected vertically upward, from a point (A)
- an electron in the hydrogen atom (B)
- (C) a car with constant acceleration along a straight road
- (D) a bullet fired horizontally from the top of a tower
- (E) an object in the positive direction with decreasing speed

In a given circuit, the heat produced in the 5 Ω resistor due to the current 111. flowing through it is 10 Js^{-1} . The heat generated in the 4Ω resistor is

- (A) 4 Js^{-1} (B) 1.6 Js^{-1}
- (C) 2 Js^{-1}
- (D) 8 Js^{-1}
- (E) 34.7 Js^{-1}
- 112. To decrease the volume of a gas by 5% at constant temperature, the pressure should be
 - decreased by 5.26% (A)
- increased by 5.26% (B)
- (C) decreased by 11%
- (D) increased by 11%
- (E) increased by 15 %
- 113. The magnifying power of objective of a compound microscope is 5. If the magnifying power of microscope is 30, then magnifying power of eyepiece will be
 - (A) 0.17
- (B) 6
- (C) 3
- (D) 25
- (E) 35

- A block of wood weighs 4N in air and 3N when immersed in a liquid. The 114. buoyant force in newton is
 - (A) zero
- (B) 1
- (C) 3/4
- (D) 4/3
- (E)7
- A 16µF capacitor is charged to a 20 volt potential. The battery is then 115. disconnected and pure 40 mH coil is connected across the capacitor so that LC oscillations are setup. The maximum current in the coil is
 - (A) 0.2 A
- (B) 40 mA
- (C) 2 A
- (D) 0.4 A
- (E) 0.8 A
- A PN junction diode is connected to a battery of emf 5.5 V and external 116. resistance 5.1 k Ω . The barrier potential in the diode is 0.4 V. The current in the circuit is

- (A) 1.08 mA (B) 0.08 mA
- (C) 1 mA
- (D) 1 A
- (E) 2 mA
- A concave lens of focal length 20 cm produces an image half the size of the 117. real object. The distance of the real object is
 - (A) 20 cm
- (B) 30 cm (C) 10 cm
- (D) 60 cm
- (E) 40 cm
- A particle of charge q and mass m moves in a circular orbit of radius r with 118. angular speed ω. The ratio of the magnitude of its magnetic moment to that of its angular momentum is
- (A) $\frac{q}{2m}$ (B) $\frac{q\omega r^2}{2}$ (C) $\frac{q\omega}{2mr^2}$ (D) $\frac{q\omega r^2}{2m}$ (E) $\frac{\omega}{2r}$

119.	Two tangent galvanometers with coils of same radii are connected in series.
	If the deflections are 30° and 45° respectively for a current of 1 A, then the
	turns ratio is

(A) 1:1 (B) 1:2 (C) $\sqrt{3}$: 1 (D) $\sqrt{3}$: 2 (E) 1: $\sqrt{3}$

120. If the kinetic energy of the particle is increased by 16 times, the percentage change in the de Broglie wavelength of the particle is

(A) 25% (B) 75% (C) 60% (D) 50% (E) 30%
