<u>CET – PHYSICS – 2013</u>					
		VERSION C	ODE: B – 2		
1.		M_1 to the medium M_2 w	ith an angle of incidend	8 ms ⁻¹ respectively. A ray ce θ . The ray suffers total	
	$(1) > \sin^{-1}\left(\frac{3}{4}\right)$	$(2) < \sin^{-1}\left(\frac{3}{4}\right)$	$(3) = \sin^{-1}\left(\frac{3}{4}\right)$	$(4) \leq \sin^{-1}\left(\frac{3}{4}\right)$	
Ans	s: (1)				
2.	a) scatteringb) interferencec) diffractiond) velocity of light in a	denser medium is less	e wave theory of light? than the velocity of lig	ht in the rarer medium	
Ans	(1) a, b, c s: (3)	(2) a, b, d	(3) b, c, d	(4) a, c, d	
3.			tive Index = 1.5) has ween. Then the thickne	a maxima at 600 nm and ess of the film is	
Ans	(1) 1 s: (3)	(2) 2	(3) 3	(4) 4	
4.	produce a rotation of	θ in the plane of vibra to another tube of len	tion of a plane polarize gth 0.3 m of same rad	tion of concentration "C" ed light. The same sugar ius. The remaining gap is	
	(1) θ	(2) $2\frac{\theta}{3}$	(3) $3\frac{\theta}{2}$	(4) $9\frac{\theta}{4}$	
Ans	s: (1)				
5.	refractive index is 1.5.	Then its radii of curvat	in the ratio 1 : 2. Its cure are respective (3) 3 cm and 6 cm	•	
Ans	5: (4)				
6.	having a potential diffe (1) 2×10^{-9} C	rence of 500 V. The ch	at rest between two pharge on the drop is (3) 2×10^{-6} C	blates separated by 1 mm (g = 10 ms ⁻²) (4) 2 × 10 ⁻⁸ C	
Ans: (2)					
7.	A uniform electric field the circle. V_1 , V_2 , V_3 , V_4 respectively. Then (1) $V_A = V_C$, $V_B = V_D$ (2) $V_A = V_C$, $V_B > V_D$ (3) $V_A > V_C$, $V_B > V_D$ (4) $V_A = V_B$, $V_C = V_D$			B, C, D are the points on $A \rightarrow E$ $B \rightarrow B$	
				1	

An	Ans: (None of the option matching)					
8.	respectively. They a		.02 m are given a cha wire. The final charge	arge of 15 mC and 45 mC on the first sphere is		
An	<u> </u>	(2) 30	(3) 20	(4) 10		
9.			ave positive charges q_1 tial at their common ce	and q_2 with equal surface ntre?		
•		(2) $\frac{\sigma}{\epsilon_0}$ (R - r)	$(3) \ \frac{\sigma}{\epsilon_{o}} \left(\frac{1}{R} + \frac{1}{r}\right)$	$(4) \ \frac{\sigma}{\epsilon_{o}} \left(\frac{R}{r}\right)$		
An	s: (1)					
10.	21%. The original ch	harge of the capacitor is	5	stored in it is increased by		
_	(1) 30 C	(2) 40 C	(3) 10 C	(4) 20 C		
An	s: (4)					
11.		ifference of 10 ³ V is a n of capacitors as sho	wn. The 2 μł	B, a charge of 0.75 mC is $2 \mu F$ μF $2 \mu F$		
An	s: (2)			2 μF		
12.		rea of each plate is 2.0 the potential of Q becom		h. A charge of 8.85 \times 10 ⁻⁸ C P Q R		
An	s: (3)			\perp \perp		
13.		e connected in series a		en connected in turn across connected across the same		
	(1) $\frac{2}{7}$ A	(2) $\frac{3}{7}$ A	(3) $\frac{4}{7}$ A	(4) $\frac{5}{7}$ A		
An	s: (None of the option	,	,	2		

14. In the circuit, $R_1 = R_2$. The value of E and R_1 are (E – EMF, R_1 – resistance)
(1) 180 V, 60 Ω
(2) 120 V, 60 Ω
(3) 180 V, 10 Ω R ₁ 1.5 A
(4) 120 V, 10 Ω F
(2) 120 V, 60 Ω (3) 180 V, 10 Ω (4) 120 V, 10 Ω $E = r = 0$ $R_2 \leqslant$
Ans: (Data insufficient)
15. Masses of three wires of copper are in the ratio of 1 : 3 : 5 and their lengths are in the ratio of 5 : 3 : 1. The ratio of their electrical resistances is
(1) 1 : 3 : 5(2) 5 : 3 : 1(3) 1 : 15 : 125(4) 125 : 15 : 1
Ans: (4)
16. For a transformed, the turns ratio is 3 and its efficiency is 0.75. The current flowing in the primary coil is 2 A and the voltage applied to it is 100 V. Then the voltage and the current flowing in the secondary coil are respectively.
(1) 150 V, 1.5 A (2) 300 V, 0.5 A (3) 300 V, 1.5 A (4) 150 V, 0.5 A
Ans: (2)
17. A proton and helium nucleus are shot into a magnetic field at right angles to the field with same kinetic energy. Then the ratio of their radii is
(1) $1:1$ (2) $1:2$ (3) $2:1$ (4) $1:4$
Ans: (1)
 18. Two identical circular coils A and B are kept on a horizontal tube side by side without touching each other. If the current in the coil A increases with time, in response, the coil B (1) is attracted by A (2) remains stationary (3) is repelled (4) rotates
Ans: (3)
19. In the diagram, I_1 , I_2 are the strength of the currents in the loop and straight conductors respectively. OA = AB = R. The net magnetic field at the centre O is zero. Then the ratio of the currents in the loop and the straight conductors is (1) π (2) 2π (3) $\frac{1}{\pi}$ (4) $\frac{1}{2\pi}$ (4) $\frac{1}{2\pi}$
Ans: (4)
 20. Two tangent galvanometers, which are identical except in their number of turns, are connected in parallel. The ratio of their resistances of the coils is 1 : 3. If the deflections in the two tangent galvanometers are 30° and 60° respectively, then the ratio of their number of turns is (1) 1 : 1 (2) 3 : 1 (3) 1 : 2 (4) 1 : 6
Ans: (None of the options matching)

21. A charged particle with a velocity 2 \times 10 ³ ms ⁻¹ passes undeflected through electric field and
magnetic fields in mutually perpendicular directions. The magnetic field is 1.5 T. The magnitude of electric field will be
(1) $1.5 \times 10^3 \text{ NC}^{-1}$ (2) $2 \times 10^3 \text{ NC}^{-1}$ (3) $3 \times 10^3 \text{ NC}^{-1}$ (4) $1.33 \times 10^3 \text{ NC}^{-1}$ Ans: (3)
 22. In R-L-C series circuit, the potential differences across each element is 20 V. Now the value of the resistance alone is doubled, then P.D. across R, L and C respectively. (1) 20 V, 10 V, 10 V (2) 20 V, 20 V, 20 V (3) 20 V, 40 V, 40 V (4) 10 V, 20 V, 20 V
Ans: (1)
23. A rectangular coil of 100 turns and size $0.1 \text{ m} \times 0.05 \text{ m}$ is placed perpendicular to a magnetic field of 0.1 T. If the field drops to 0.05 T in 0.05 second, the magnitude of the e.m.f. induced in the coil is
(1) $\sqrt{2}$ (2) $\sqrt{3}$ (3) $\sqrt{0.6}$ (4) $\sqrt{6}$
Ans: (No answer)
 24. In the circuit diagram, heat produces in R, 2R and 1.5 R are in the ratio of (1) 4 : 2 : 3
$\begin{array}{c} (1) + 1 & 2 & 1 \\ (2) & 8 & 1 & 27 \end{array}$
$(3) 2 \cdot 4 \cdot 3$
(4) 27:8:4 I I I I I
2 R
Ans: (2)
25. A series combination of resistor (R), capacitor (C) is connected to an A.C. source angular frequency 'ω'. Keeping the voltage same, if the frequency is changed to ω/3, the current becomes half of the original current. Then the ratio of the capacitive reactance and resistance at the former frequency is
(1) $\sqrt{0.6}$ (2) $\sqrt{3}$ (3) $\sqrt{2}$ (4) $\sqrt{6}$
Ans: (1)
26. Pick out the correct statement from the following:
(1) Mercury vapour lamp produces line emission spectrum.
(2) Oil flame produces line emission spectrum(3) Band spectrum helps us to study molecular structure
(4) Sunlight spectrum is an example for line absorption spectrum
Ans: (1, 3, 4)
27. Light emitted during the deexcitation of electron from n = 3 to n = 2, when incident on a metal, photoelectrons are just emitted from that metal. In which of the following deexcitations photoelectric effect is not possible?
(1) From $n = 2$ to $n = 1$ (2) From $n = 3$ to $n = 1$
(3) From $n = 5$ to $n = 2$ (4) From $n = 4$ to $n = 3$
Ans: (4)

	28. The additional energy that should be given to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is				
	(1) 2 times the initial kinetic energy		(2) 3 times the initial kinetic energy		
		al kinetic energy	(4) 4 times the initial l	kinetic energy	
Ans:	(2)				
	energy required to rei	move both the electron	is	m atom is 24.6 eV. The	
	(1) 51.8 eV	(2) 79 eV	(3) 38.2 eV	(4) 49.2 eV	
Ans:	(2)				
30.		3E			
		5E/3			
	The figure change the	E	atom When the electro	n deeveites from 25 to 5	
	an electromagnetic	wave of wavelength λ	, is emitted. What is	n deexcites from 3E to E, the wavelength of the	
	electromagnetic wave	e emitted when the elect	from deexcites from $\frac{1}{3}$	O E?	
	(1) 3λ	(2) 2λ	(3) 5λ	(4) $\frac{3\lambda}{5}$	
Ans:	(1)				
/	(-)				
31.	Maximum velocity c of specific charge of 1) 1	of the photoelectron emi f the electron is 1.8 x 10 2) 3	tted by a metal is 1.8 x D ¹¹ C kg ⁻¹ . Then the sto 3) 9	10 ⁶ ms ⁻¹ . Take the value pping potential in volt is 4) 6	
Ans:	-	2) 5	5,5	., 0	
32.	2. λ_1 and λ_2 are used to illuminate the slits. β_1 and β_2 are the corresponding fringe widths. The wavelength λ_1 can produce photoelectric effect when incident on a metal. But the wavelength λ_2 cannot produce photoelectric effect. The correct relation between β_1 and β_2 is 1) $\beta_1 < \beta_2$ 2) $\beta_1 = \beta_2$ 3) $\beta_1 > \beta_2$ 4) $\beta_1 \ge \beta_2$				
Ans:	(1)				
33.	a) Electron emissionb) Nuclear force is cc) Fusion is the chie	statements from the fo n during B-decay is alwa charge independent. of source of stellar energe 2) (a), (c) are correct	ays accompanied by neu gy.		
Ans:			b) only (u) is correct		
34.	A nucleus _Z X ^A emits is	an α -particle with veloc	city v. The recoil speed	of the daughter nucleus	
	1) $\frac{A-4}{4y}$	2) $\frac{4v}{A-4}$	3) v	4) $\frac{V}{4}$	
Ans:	ΤV	A – 4		4	
35.	in the next 2 seconds. The mean life of the sample is				
	1) 4 seconds	2) 2 seconds	3) $\frac{1}{0.693}$ seconds	4) 2 x 0.693 seconds	
Ans: (3)					

26	T 1.1 CH CH				
36.	1) Germanium is do	owing statements, the oped with bismuth oped with gallium		with antimony	
Ans:	(3)				
37. Ans :	 increased by rev decreased by rev 		N junction diode is 2) increased by for 4) independent of t		
38.	When the transister	r is used as an amplifi	or		
30.	1) Emitter-base jun biased.		e biased, Collector-base	junction must be forward	
	 Emitter-base jun biased. 	iction must be forward	d biased, Collector-base	e junction must be forward	
	 Emitter-base jun biased. 	nction must be reverse	e biased, Collector-base	junction must be reverse	
		nction must be forward	d biased, Collector-base	junction must be reverse	
Ans:					
39.	Which of the followi	ing is not made by qu	arks?		
Ans:	1) Neutron	2) Positron	3) Proton	4) π-meson	
40. Ans :	 In forward biased condition diode conducts. If the packing fraction is negative, the element is stable. Binding energy is the energy equivalent to mass defect. Radioactive element can undergo spontaneous fission. 				
				AND rate. The combination	
41.	will serve as			AND gate. The combination	
Ans:	1) AND gate (4)	2) NOT gate	3) NAND gate	4) NOR gate	
42.	activity of 1200 disi	intergrations/minute.		elements show a total ay and that of B is 2 days. mber of atoms in A and B	
-	1) 200 dis/min	2) 250 dis/min	3) 500 dis/min	4) 150 dis/min	
Ans:					
43.				tom ($_2$ He ⁴) are 1.1 MeV and ngle helium atom, then the	
Ans:	1) 26.9 MeV (3)	2) 25.8 MeV	3) 23.6 MeV	4) 12.9 MeV	
44.	 Dimensional form Dimensional form Dimensional form Dimensional form Dimensional form 	nula of potential (V) is	ictivity (K) is $M^{1}L^{1}T^{-3}K^{-1}$	¹ T ⁻² A ⁻²	
Ans:	(2 & 4)			6	

 46. A gun fires a small bullet with kinetic energy K. Then kinetic energy of the gun while recoiling is a) K b) more than K c) less than K d) √K 47. From a fixed support, two small identical spheres are suspended by means of strings of length 1 m each. They are pulled aside as shown and then released. B is the mean position. Then the two spheres collide. 1) at B after 0.25 second 3) on the right side of B after some time 4) on the right side of B after some time 4) on the right side of B when the strings are inclined at 15⁹ with B Ans: (2) 48. A truck accelerates from speed v to 2v. Work done in during this is b) three times as the work done in accelerating it from rest to v. c) same as the work done in accelerating it from rest to v. c) same as the work done in accelerating it from rest to v. d) four times as the work done in accelerating it from rest to v. f) four times as the work done in accelerating it from rest to v. f) four times as the work done in accelerating it from rest to v. f) four times as the work done in accelerating it from rest to v. f) four times as the work done in accelerating it from rest to v. Ans: (1) 49. Earth is moving around the Sun in elliptical orbit as shown. The ratio of OB and OA is R. Then the ratio of Earth at A and B is f) R³ f) R³ f) A f) R³ f) R	45. Ans:	The time taken by t 1) 0.3 second	he ball to reach the floor	r of the lift is (n	l from a height of 1.25 m. early) (g = 10 ms ⁻²) 4) 0.4 second		
 47. From a fixed support, two small identical spheres are suspended by means of strings of length 1 m each. They are pulled aside as shown and then released. B is the mean position. Then the two spheres collide. 1) at B after 0.25 second 2) at B after 0.25 second 3) on the right side of B after some time 4) on the right side of B when the strings are inclined at 15° with B Ans: (2) 48. A truck accelerates from speed v to 2v. Work done in during this is 1 three times as the work done in accelerating it from rest to v. 2) same as the work done in accelerating it from rest to v. 3) four times as the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) are at the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 50. A projectile is projected at 10 ms⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) 10/√3 (2) 10√3 (3) 500 K, 300 K (4) 5√3 Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K (2) 400 K, 200 K (3) 500 K, 300 K (4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K₁ is surrounded by a cylindrical shell of inner radius R and outer		recoiling is a) K		-			
length 1 m each. They are pulled aside as shown and then released. B is the mean position. Then the two spheres collide. 1) at B after 0.25 second 3) on the right side of B after some time 4) on the right side of B when the strings are inclined at 15° with B Ans: (2) 48. A truck accelerates from speed v to 2v. Work done in during this is 1) three times as the work done in accelerating it from rest to v. 2) same as the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 50. A projectile is projected at 10 ms ⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is in steady state. The effective thermal conductivity of the system is in steady	Ans:	(3)					
2) at B after 0.5 second 3) on the right side of B after some time 4) on the right side of B when the strings are inclined at 15° with B Ans: (2) 48. A truck accelerates from speed v to 2v. Work done in during this is 1) three times as the work done in accelerating it from rest to v. 2) same as the work done in accelerating it from rest to v. 3) four times as the work done in accelerating it from rest to v. 3) four times as the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. Ans: (1) 49. Earth is moving around the Sun in elliptical orbit as shown. The ratio of OB and OA is R. Then the ratio of Earth at A and B is 1) R^{-1} 2) \sqrt{R} 3) R 4) $R^{2/3}$ Ans: (Question incomplete) 50. A projectile is projected at 10 ms ⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) $K_1 + K_2$ 2) $\frac{K_1K_2}{K_1+2}$ 3) $\frac{2K_1+K_2}{4}$ 4) $\frac{K_1+3K_2}{4}$ Ans: (4)	47.	length 1 m each. They are pulled aside as shown and then released. B is the mean position. Then the two spheres collide.					
 1) three times as the work done in accelerating it from rest to v. 2) same as the work done in accelerating it from rest to v. 3) four times as the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. 4) less then the work done in accelerating it from rest to v. Ans: (1) 49. Earth is moving around the Sun in elliptical orbit as shown. The ratio of OB and OA is R. Then the ratio of Earth at A and B is R R Question incomplete) 50. A projectile is projected at 10 ms⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) 10/√3 2) 10 √3 5/√3 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 600 K, 400 K 400 K, 200 K 500 K, 300 K 40 300 K, 100 K 52. A solid cylinder of radius R made of a material of thermal conductivity K₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K₂. The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is K₁ + K₂ K₁ + K₁ K₁ + K₂ 	Ans:	2) at B after 0.5 sed3) on the right side4) on the right side	cond of B after some time	re inclined at 15 ⁰ with E	3		
49. Earth is moving around the Sun in elliptical orbit as shown. The ratio of OB and OA is R. Then the ratio of Earth at A and B is 1) R ⁻¹ 2) \sqrt{R} 3) R 4) R ^{2/3} Ans: (Question incomplete) 50. A projectile is projected at 10 ms ⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) K ₁ + K ₂ 2) $\frac{K_1K_2}{K_1+2}$ 3) $\frac{2K_1+K_2}{4}$ 4) $\frac{K_1+3K_2}{4}$ Ans: (4)	48.	A truck accelerates from speed v to 2v. Work done in during this is 1) three times as the work done in accelerating it from rest to v. 2) same as the work done in accelerating it from rest to v. 3) four times as the work den in accelerating it from rest to v.					
Then the ratio of Earth at A and B is 1) \mathbb{R}^{11} 2) $\sqrt{\mathbb{R}}$ 3) \mathbb{R} 4) $\mathbb{R}^{2/3}$ Ans: (Question incomplete) 50. A projectile is projected at 10 ms ⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K , 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is $1) \text{ K}_1 + \text{ K}_2$ 2) $\frac{\text{K}_1 \text{ K}_2}{\text{K}_1 + 2}$ 3) $\frac{2\text{K}_1 + \text{K}_2}{4}$ 4) $\frac{\text{K}_1 + 3\text{K}_2}{4}$ Ans: (4)	Ans:	(1)					
Ans: (Question incomplete) 50. A projectile is projected at 10 ms ⁻¹ by making at an angle 60° to the horizontal. After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K , 400 K 2) 400 K , 200 K 3) 500 K , 300 K 4) 300 K , 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is $1) \text{ K}_1 + \text{ K}_2$ 2) $\frac{\text{K}_1 \text{ K}_2}{\text{K}_1 + 2}$ 3) $\frac{2\text{K}_1 + \text{K}_2}{4}$ 4) $\frac{\text{K}_1 + 3\text{K}_2}{4}$ Ans: (4)	49.	Then the ratio of Earth at A and B is 1) R^{-1} 2) \sqrt{R}					
50. A projectile is projected at 10 ms ⁻¹ by making at an angle 60 ⁰ to the horizontal. After some time its velocity makes an angle of 30 ⁰ to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carmot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) $K_1 + K_2$ 2) $\frac{K_1K_2}{K_1 + 2}$ 3) $\frac{2K_1 + K_2}{4}$ 4) $\frac{K_1 + 3K_2}{4}$ Ans: (4)	Δns:		-		——————————————————————————————————————		
time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is 1) $\frac{10}{\sqrt{3}}$ 2) $10\sqrt{3}$ 3) $\frac{5}{\sqrt{3}}$ 4) $5\sqrt{3}$ Ans: (1) 51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) K ₁ + K ₂ 2) $\frac{K_1K_2}{K_1+2}$ 3) $\frac{2K_1 + K_2}{4}$ 4) $\frac{K_1 + 3K_2}{4}$ Ans: (4)		Ans: (Question incomplete)					
Ans: (1)51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K52. A solid cylinder of radius R made of a material of thermal conductivity K1 is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K2. The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) $K_1 + K_2$ 2) $\frac{K_1 K_2}{K_1 + 2}$ 3) $\frac{2K_1 + K_2}{4}$ 4) $\frac{K_1 + 3K_2}{4}$ Ans: (4)Ans: (4)	50.	time its velocity ma	kes an angle of 30 ⁰ to th	ne horizontal. Its speed	at this instant is		
51. For which combination of working temperatures of source and sink, the efficiency of Carnot's heat engine is maximum? 1) 600 K, 400 K 2) 400 K, 200 K 3) 500 K, 300 K 4) 300 K, 100 K Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K ₁ is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) K ₁ + K ₂ 2) $\frac{K_1K_2}{K_1+2}$ 3) $\frac{2K_1 + K_2}{4}$ 4) $\frac{K_1 + 3K_2}{4}$ Ans: (4)	Ans:						
Ans: (4) 52. A solid cylinder of radius R made of a material of thermal conductivity K_1 is surrounded by a cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K_2 . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) $K_1 + K_2$ 2) $\frac{K_1 K_2}{K_1 + 2}$ 3) $\frac{2K_1 + K_2}{4}$ 4) $\frac{K_1 + 3K_2}{4}$ Ans: (4)		For which combination of working temperatures of source and sink, the efficiency of					
cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is $1) K_1 + K_2 \qquad 2) \frac{K_1 K_2}{K_1 + 2} \qquad 3) \frac{2K_1 + K_2}{4} \qquad 4) \frac{K_1 + 3K_2}{4}$ Ans: (4)	Ans:		2) 400 K, 200 K	3) 500 K, 300 K	4) 300 K, 100 K		
		cylindrical shell of inner radius R and outer radius 2R made of a material of thermal conductivity K ₂ . The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is 1) $K_1 + K_2$ 2) $\frac{K_1K_2}{K_1 + 2}$ 3) $\frac{2K_1 + K_2}{4}$ 4) $\frac{K_1 + 3K_2}{4}$					
	/ 1131						

53.		radiate maximum energ the ratio of the surface 2) 81 : 256			
Ans:		_,	0)0	.)	
54.	Two solids P and Q	float in water. It is obse	erved that P floats with	half of its volume	
	immersed and Q flo	pats with $\frac{2}{3}^{ra}$ of its volur	ne is immersed. The ra	tio of densities of P and Q	
Ans:	is 1) 4/3 (2)	2) 3/4	3) 2/3	4) 3/2	
55.	in metre and t is in which are in phase	ransverse wave is giver second. The minimum and the wave velocity a 2) 100 m. 100 ms ⁻¹	distance of separation lare respectively	- 0.02 x), where x, y are between two particles 4) 100 m. 50 ms ⁻¹	
Ans:	-	2) 100 m. 100 ms	5) 50 m. 100 ms	1) 100 111 30 113	
56. Ans:	overtone of the close 1) 2 : 1			the frequency of the first pipe and the closed pipe is 4) 3 : 1	
57.		ating tuning fork of frequ	Jency 338 Hz is moving	towards a vertical wall	
57.	with a speed of 2 n that person per sec	ns ⁻¹ . Velocity of sound in cond is	n air is 340 ms ⁻¹ . The n	umber of beats heard by	
Ans:	1) 2 (2)	2) 4	3) 6	4) 8	
58. Ans:	 Lateral shift increases as the angle of incidence increases. Lateral shift increases as the value of refractive index increases Normal shift decreases as the value of refractive index increases Both normal shift and lateral shift are directly proportional to the thickness of the medium. 				
59.	following. Path of the normal sector of the normal	he light ray in	n n n (c)	DNG statement from the n	
	1) a is correct if n_2 3) c is correct if n_2		 2) b is correct if n₁ = 4) d is correct if n₁ > 		
Ans:	(1)				
60.		on is 2. What will be the		converging lens is 0.72 le object is moved by 0.04	
Ans:	1) 2	2) 4	3) 3	4) 6′	
				8	