CODE: AE-CS

M.Tech. Common Entrance Test, PGCET - 2010

Computer Science and Engineering

Time: 2 Hours

Max. Marks: 100

Read the following instructions before answering the test

- i) Write / Darken the particulars of your identity, Test Seat Number and affix your signature on the OMR Response Sheet before the start of the test.
- ii) All Questions have multiple choices of answers, of which only one is correct.
- iii) Mark the correct answer by completely darkening only one oval against the Question number using <u>Black Ink Ball Point pen</u> only.
- iv) There will be no negative evaluation with regard to wrong answers. Marks will not be awarded if multiple answers are given.
- v) Do not make any stray mark on the OMR Response sheet. For rough work, use blank page on the question paper.
- vi) Taking the question paper out of the test hall is permitted only after the full duration of the test.
- vii) Use of only non-programmable calculator is permitted.
- viii) START ANSWERING ONLY AT THE SPECIFIED TIME WHEN THE INVIGILATOR GIVES INSTRUCTIONS.

MARKS DISTRIBUTION

PART – II PART – II 50 Questions:

 $50 \times 1 = 50 \text{ Marks}$

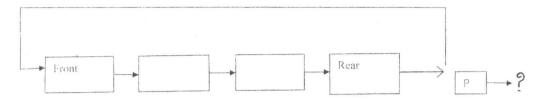
25 Questions:

 $25 \times 2 = 50 \text{ Marks}$

Total = 100 Marks

1.	In a population of N families, 50% of families have three children, 30% have two children and the remaining					
	have one child. What is the probability that a r	randomly picked child belongs to a family of two children?				
	(a) 3/23 (b) 6/23 (c) 3/10	(d) 3/5				
2.	2. Two dice are thrown simultaneously. The pro	bability that the product of the two numbers on the dice is an				
	even number is					
	(a) 1/2 (b) 3/4 (c) 5/16	(d) 3/8				
3.	3. The expected value of a probability function,	when probability is measured on a scale of 0 to 1, coincides				
	with it's					
	(a) Mean (b) Variance (c) Standa	ard deviation (d) None of them				
4.	4. Which of the following is true?					
	(a) The set of all rational numbers forms a	group under multiplication.				
	(b) The set of all matrices forms a group u	nder multiplication.				
	(c) The set of all real numbers forms a group under multiplication.					
	(d) None of these.					
5.	5. If X then Y unless Z is represented by which o	f the following?				
	(a) $(X \land \neg Z) \rightarrow Y$ (b) $(X \land Y) \rightarrow Z$	(c) $X \rightarrow (Y \land \neg Z)$ (d) $(X \rightarrow Y) \land \rightarrow Z$				
6.	6. The numbers 1,2,n are inserted in a binar	ry search tree in some order. In the resulting tree, the right				
	subtree of the root contains p nodes. The first r	number to be inserted in the tree must be				
	(a) p (b) $p+1$ (c) $n-p$	(d) $n - p + 1$				
7.	In the depth first traversal of a graph G with n vertices, k edges are marked as tree edges. The number of					
	connected components in G is					
	(a) k (b) $k + 1$ (c) $n - k - 1$	-1 (d) $n - k$				
8.	8. An abstract data type is					
	(a) The same as an abstract class (b) The data type that cannot be instantiated					
	(c) The data type for which only the operations defined on it can be used, but none else					
	(d) All of the above					
9.	9. An undirected graph G has n nodes. It's ad	jacency matrix is given by (n X n) matrix, whose diagonal				
	elements are zeros and non-diagonal elements are 1's, which one of the following is true?					
	(a) The graph G has no minimal spanning t	tree (MST).				
	(b) The graph G has unique of MST of cos	t(n-1).				
	(c) The graph G has multiple distinct MST	s, each of cost $(n-1)$.				
	(d) The graph G has multiple MSTs of diff	Perent costs.				

10. In	(a) Queue		(c) Tree			ced parentheses or not is a _	
	ne		e smallest eleme (c) θ (log n			mallest element can be four	nd in
	des in any binary	tree of height		- ·	•	f path. The maximum number	er of
13. Wh	ich of the follow (a) Merge sort		orithms has the			exity? (d) Selection sort	
14. The	e maximum num (a) n ²		a n-node undire				
	merging two soler (a) O (m)					we require comparisons of the log n)	f the
16. The						nber system is (d) $-(2^{n-1}+1)$ to $(2^{n-1}-1)$	
17. The	Boolean function (a) x'+y'						
18.	Which of the fo (i) absolute add (iii) relative add (a) (i) and (iv)	ressing	sing modes are s (ii) based addr (iv) indirect ac and (ii)	ressing ddressing	r program reloc	ation at run time? (d) (i), (ii) and (iv)	
	dwidth?	DMA and poll	ed interrupts	(b) Cyc	le stealing and v	nanisms provide the highest vectored interrupts polled interrupts	I/O
20. The	addition of the 4 (a) 0001 and an (c) 0001 and no	overflow	(b) 1001 and n	o overflo	W	ults in	
	grammer A→A. (a) Ambiguous		suitable for predictions (c) Rig			grammer is operator grammer	


22. Which of the following is TRUE ab	out the regular	expression 01*0?			
(a) It represents a finite set of f	inite strings	(b) It represents an infinite set of finite strings			
(c) It represents a finite set of in	nfinite strings	(d) It represents an infinite set of infinite strings			
23. Context free languages closed under	r				
(a) Union, Intersection	. (b) Ur	nion, Kleene closure			
(c) Intersection, compliment	(d) co	mplement, Kleene closure.			
24. Consider the grammer with the follow	owing production	ons			
S-> $a \alpha b b \alpha c Ab$					
S-> α s b					
S-> α bb ab					
$S \alpha \rightarrow b d b b$					
The above grammar is					
(a) Context free (b) Reg	gular (c) Conte	ext sensitive (d)LRCK			
 (a) The non deterministic finite (b) Non deterministic push dow (c) Non deterministic turing man (d) Non deterministic turing man 26. A hash table contains 10 buckets ar	state automata are vin automata are chines are equivered in the chines are equivalent uses linear p. If the values	which of the following statements is false? are equivalent to deterministic finite state automata. equivalent to deterministic push down automata. valent to deterministic turing machines. valent to deterministic push down automata. probing to resolve collisions. The key values are integers 43,165,62,123 and 142 are inserted in the table, in what			
(a) 2 (b) 3	(c) 4	(d) 6			
 27. A linker is given object modules for not be included in an object module (a) Object code (c) Names & locations of all ext (d) absolute address of internal sections. 	? ernal symbols d	ns that were compiled separately. What information need (b) relocation bits defined in the object module			
28. Relative mode of addressing is most (a) Co routines (b) Position ind		writing (c) Shareable code (d) Interrupt handlers			
29. Which operation does a simple two p(a) Allocates space for literals(c) builds the symbol table		he total length of program			

30. The parsing technique that avoids back tracking is							
	(a) To	p down par	sing (b) F	Recursive descent pa	arsing (c) Predictiv	re parsing (d) both (b) and (c)	
31.	Test and se	et are used	in				
	(a) Cr	itical region	(b)	Semaphores	(c) Race round	(d) None of these.	
32.	Dijkstra's	bankers' al	gorithm is ı	used in the context of	of		
	(a) dea	ad lock avo	idance (b)	deadlock recovery	(c) mutual exclusi	on (d) context sustaining.	
33.	The conce	pt of dirty b	oit for a pag	e table	_		
	(a) hel	ps in avoid	ing unnece	ssary writing on a p	aging device (b)) helps to maintain LRU information	
	(c) alle	ows only to	read the pa	age	(d)) none of these.	
34.	In which n	nethod of st	orage is a p	orogram placed in th	ne largest available l	nole in the main memory?	
	(a) Be	st fit (b) First fit	(c) Worst fit	(d) None of these		
2.5			1 .				
35.				iative memory is		(1) (1) (1)	
	(a) Pai	rallel search	1 (b) S	sequential search	(c) Binary search	(d) Selective search	
36.	Which sch	eduling pol	icy is most	suitable for a time s	shared operating sys	tem?	
	(a) She	ortest job fi	rst (b) I	Round Robin	(c)First cum first so	erve (d)Longest job first.	
37.					of algebra is		
	(a) rov	v (b) column	(c) table	(d) function.		
38.	Look at the	e instance o	f a relation	R(A,B,C) below.			
	A	В	С				
	1	1	1				
	1	1	0	= =			
	2	3	2				
	2	3	2				
We	can conclu						
			nes B and l	B functionality dete	rmines C		
		-		-			
	(b) A functionally determines B and B does not functionally determine C						
	(c) B does not functionally determine C(d) A does not functionally determine B and B does not functionally determine C						
(u) 1	4 does not	Tunctionan	y determine	b and b does not h	functionally determin	ne C	
39.	Consider a	schema R	(A, B, C, D) and functional dep	oendencies A→B an	d C→D. Then the decomposition	
(of R into $R_1(AB)$ and $R_2(CD)$ is						
	(a) Dep	pendency p	reserving a	nd lossless join	(b) Lossless joir	but not dependency preserving	
	(c) Del	pendency p	reserving b	ut not lossless join	(d) Neither depe	endency preserving not lossless join	

40. A re	lation R with a	an associated set of fu	nctional dependen	cies F is decomposed into BCNF. The redundance
in th	e resulting set	of relations is		
	(a) Zero		(b) More than	n zero, but less than that of an equivalent
	(c) Proportion	al to the size of F ^t	(d) Undeterm	inate
41. Which	ch normal form	n is considered adequ	ate for normal rela	tional database design?
((a) 2NF	(b) 5NF (c)	4NF	(d) 3NF
42. A su	bnet has been	assigned a subnet ma	sk of 255.255.255.	192. What is the maximum number of hosts that
can b	pelong to this	subnet?		
((a) 14	(b) 30 (c)	62	(d) 126
43. In TO	CP, a unique s	equence number is as	signed to each	
((a) Byte	(b) Word (c)	Segment	(d) Message
44. Whic	ch one of the f	following statements is	s false?	
(a) Packet swit	tching leads to better	utilization of bands	width than circuit switching
(b) Packet swi	tching results is less v	ariation in delay th	nan circuit switching
(c) Packet swit	tching needs more per	packet processing	than circuit switching
(d) Packet swi	tching can lead to rec	ordering unlike in c	ircuit switching
			graphy to send a m	nessage to the receiver. Which of the following
	ments are TRU			(h) Cd
		rypts using receiver's		(b) Sender encrypts using his own public key
(c) Receiver de	ecrypts using sender's	public key	(d) Receiver decrypts using his own public ke
46. Coun	t to infinity is	a problem associated	with	
(a) Link state r	outing protocol	(b) Distance v	rector routing protocol
(c) DNS while	resolving host name	(d) TCP for co	ongestion control
47. Which	h of the follow	ving objects can be us	ed in expressions a	and scriplets in JSP without explicitly declaring
them	?			
	(a) Session	and request only	(b) Request ar	nd response only
	(c) Respon	se and session only	(d) Session, re	equest and response
48. What	is ASP?			
	(a) It is a p	rogramming language	(b) It is a pack	age
	(c) It is a S	cripting language	(d) It is a testing	ng tool

49. A HTML form is to be designed to Credit card details are to be entered would be appropriate to send data to	and the submit			*
(a) GET only (b)POST only	(c) either GE	Γ or POST (d) 1	Neither C	GET nor POST.
50. Which of the following is TRUE or	nly in case of X	ML but not HTN	ML?	
(a) It is derived from SGML	(b) It describe	es content and la	yout	
(c) It allows user defined tags	(d) It is restri	cted only to be u	sed with	web browsers
		RT – II		
Each Question carries two mar	<u>ks</u>			$25 \times 2 = 50 \text{ Marks}$
51. An unbiased coin is tossed repeated	lly until the out	come of two suc	cessive to	osses is the same. Assuming that
the trials are independent, the expec	cted number of	tosses is	-	
(a) 3 (b) 4	(c) 5	(d) 6		
52. Consider the following first order le	ogic formula in	which R is a bir	nary relat	ion symbol.
$\forall x \ \forall y \ y(R \ x,y) = R(y,x)$. The for	rmula is			
(a) Satisfiable and Valid		(b) Satisfiable	e and so i	is its negation
(c) Unsatisfiable but its negation	on is valid	(d) Satisfiable	e but its r	negation is unsatisfiable.
of finding a defective chip does not probability distribution is (a) binomial (b) not the finding and the probability distribution is	depend on whe	(c) Uniform	s chip wa	as defective or not. The (d) Triangular
(a) nk (b) (n-1) k+1	(c) n((k-1)+1	(d) n(k-1)
55. How many distinct binary search tro (a) 5 (b) 14	ees can be creat	ted out of 4 distinution (d) 42	nct keys?	
56. Suppose we run Dijkstra's single so	ource shortest p	ath algorithm on	the follo	owing edge-weighted directed
graph with vertex P as the source	, i			
P 6 5 2	R		s for whi	nodes get included into the ch the shortest path
(a) P,Q,R,S,T,U (b) P,Q	Q,R,U,S,T	(c) P,Q,R,U,T	r,s	(d) P,Q,T,R,U,S.

57. A circularly linked list is used to represent a queue. A single variable P is used to access the queue. To which node should P point, such that both the operations of enqueue(insert) and dequeue(delete) can be performed in constant time?

- (a) Rear Mode (b) Front Mode (c) Not possible with a single pointer (d) Node next to front
- 58. Let G be a directed graph whose vertex set is the set of numbers from 1 to 100. There is an edge from vertex i to vertex j if either j = i+1 or j = 3i. The minimum number of edges in a path in G from vertex 1 to vertex 100 is

(a) 4

(b) 7

(c) 23

(d) 99

59. Which of the following sequences of array elements forms a heap?

(a) [23,17,14,6,13,10,1,12,7,5]

(b) [23,17,14,6,13,10,1,5,7,12]

(c) [23,17,14,7,13,10,1,5,6,12]

(d) [23,17,14,7,13,10,1,12,5,7]

60. Which of the following expressions is equivalent to $(A \oplus B) \oplus C$?

(a) $(A+B+C)(\bar{A} + \overline{B} + \overline{C})$

(b) (A+B+C) $(\bar{A} + \bar{B} + C)$

(c) ABC + $\overline{A}(B \oplus C)$ + $\overline{B}(A \oplus C)$

(d) none of these.

61. A serial transmission T1 uses 8 information bits, 2 start bits, 1 stop bit and 1 parity bit for each character. A synchronous transmission T2 uses 3 eight bit sync characters followed by 30 eight bit information characters. If the bit rate is 1200 bits/second in both, what are the transfer rates of T1 and T2?

(a)100 ch/sec, 153 ch/sec

(b) 80 ch/sec, 136 ch/sec

(c) 100 ch/sec, 136 ch/sec

(d) 80 ch/sec, 153 ch/sec.

62. A certain processor supports only the immediate and direct addressing modes. Which of the following programming language features cannot be implemented on this processor?

(a) Pointers

(b) Arrays

(c) Records

(d) all of these.

63. Consider the grammar given below _____

 $S \rightarrow xB \mid yA$

 $A \rightarrow x | xs | yAA$

 $B \rightarrow y | ys | yBB$

Consider the following strings:

i) xxyyx

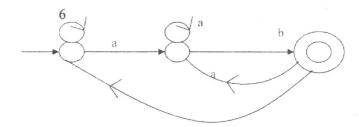
ii) xx yy xy

iii) xy xy

iv) yx xy

Which of the

strings are generated by the grammer?


(a) (i), (ii) and (iii)

(b) (ii)

(c) (ii) (iii) and iv

(d) i, iii, and iv

64. If the final states and non-final states in the DFA below are interchanged, then which of the following languages over the alphabet {a,b} will be accepted by the new DFA?

- (a) Set of all strings that do not end with ab
- (b) Set of all strings that begin with either an a or b.
- (c) Set of all strings that do not contain the substring ab.
- (d) The set described by the regular expression b* aa* (ba) * b*.
- 65. Generation of intermediate code based on an abstract machine model is useful in compilers because
 - (a) It makes implementation of lexical analysis and syntax analysis easier
 - (b) Syntax directed translations can be written for intermediate code generation
 - (c) It enhances the portability of the front end of the complier.
 - (d) It is not possible to generate code for real machines directly from HLL.
- 66. An advantage of chained hash table (external hashing) over the open addressing scheme is
 - (a) Worst case complexity of search operations is less
 - (b) Space used is less

(c) Deletion is easier

- (d) None of the above
- 67. In a multiprogramming environment a set of processes is deadlocked if each process is waiting for an event to occur that can be initiated only by another process in the set. Which of the following is Not one of the conditions necessary for dead lock to occur?
 - (a) Mutual Exclusion
- (b) Partial assignment of resources
- (c) Non preemption
- (d) Process suspension.
- 68. The correct matching for the following pairs
 - (A) Disk Scheduling
- 1. Round Robin
- (B) Batch Processing
- 2. SCAN
- (C) Time sharing
- 3. LIFO
- (D) Interrupt processing
- 4. FIFO

- (a) A-3, B-4, C-2, D-1 (b) A-4, B-3, C-2, D-1 (c) A-2, B-4, C-1, D-3 (d) A-3, B-4, C-1, D-2
- 69. A relation R is defined on the set of integers as xRy if (x+y) is even. Which of the following statements is true?
 - (a) R is not an equivalence relation
 - (b) R is an equivalence relation having 1 equivalent class
 - (c) R is an equivalence relation having 2 equivalent class
 - (d) R is an equivalence relation having 3 equivalent class

-			4), (3,1), (3,2), (3	$\{3,3\}, (3,4)\}$ on the set $A =$	{1,2,3,4} is
(a) Reflexiv	ve, symmetric an	d transitive			
(b) Neither	reflexive nor irre	eflexive but trans	itive		
(c) Irreflexi	ive, symmetric ar	nd transitive			
(d) Irreflex	ive and antisymn	netric			
71. In a sliding wine	dow ARQ schem	ne, the transmitter	r's window size is	s N and the receiver's win	dow size is M.
the minimum nu	umber of distinct	sequence number	ers required to ens	sure correct operation of the	he ARQ scheme
is					
(a) Min (M	,N) (b)	max(M,N)	(c) M+1	(d) M,N	
72. A 20 Kbps sate	llite link has a p	propagation delay	of 400 ms. The	transmitter employs a "g	go back n ARQ'
scheme with n	set to 10. Assi	uming that each	frame is 100 by	tes long, what is the ma	ximum data rate
possible?					
(a) 5 kbps	(b)	10 kbps	(c) 15 kbps	(d) 20 kbps	
round trip delay	between A and	B is 80 millisec	onds and the bott	B using a sliding windo	-
and B is 128 kb	ps. What is the	optimal window s	size that A should	use?	
(a) 20	(b) 40	(c) 160	(d) 320		
74. Consider the fol	lowing statemen	ts			
(i) telnet, ft	p and http are ap	plication layer pr	rotocols.		
	nterprise Java Be tion server	ans) components	can be employed	by J2EE (Java2 Enterpri	se Edition)
		m to the common	language specific	cation (CLS) of Microsof	t .Net
				e inherited by the other.	
	are true statemen			o minorities by the control	
(a) (i) and		(b) (i) and (i	ii) only	(c) (ii) and (iii) only	(d) all of them
75. Which of the fo	llowing statemer	nts are true?			
(a) A comp	outer virus infect	s by attaching its	copies to other pr	rograms.	
(b) A netwo	ork worm enters	the system as an	independent prog	gram.	
(c) Once in	side a system, a	worm behaves ju	st like a virus.		
(d) All of the	he above				