PART-I

One Mark Questions

MATHEMATICS

1. Let r be a root of the equation $x^{2}+2 x+6=0$. The value of $(r+2)(r+3)(r+4)(r+5)$ is equal to .
(A) 51
(B) -51
(C) -126
(D) 126
2. Let R be the set of all real numbers and let f be a fucntion R to R such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to.
(A) 2
(B) 0
(C) -2
(D) -4
3. The sum of all positive integers n for which $\frac{1^{3}+2^{3}+\ldots .+(2 n)^{3}}{1^{2}+2^{2}+\ldots . .+n^{2}}$ is also an integer is.
(A) 8
(B) 9
(C) 15
(D) Infinite
4. Let x and y be two 2-digit numbers such that y is obtained by reversing the digits of x . Suppose they also satisfy $x^{2}-y^{2}=m^{2}$ for some positive integer m. The valuebf $x+y+m$ is.
(A) 88
(B) 112
(C) 144
(D) 154
5. Let $p(x)=x^{2}-5 x+a$ and $q(x)=x^{2}-3 x+b$, where a and b are positive integers. Suppose $h o f(p(x), q(x)$ $=x-1$ and $k(x)=1 \mathrm{~cm}(p(x), q(x))$. If the coefficient of the highest degree term of $k(x)$ is 1 , the sum of the roots of $(x-1)+k(x)$ is.
(A) 4
(B) 5
(C) 6
(D) 7
6. In a quadrilateral $A B C D$, which is not a trapezium, it is known that $\angle D A B=\angle A B C=60^{\circ}$. Moreover, $\angle C A B=\angle C B D$. Then.
(A) $A B=B C+C D$
(B) $A B=A D+C D$
(C) $A B=B C+A D$
(D) $A B=A C+A D$
7. A semi-circle of diameter 1 unit sits at the top of a semi-circle of diameter 2 units. The shaded region inside the smaller semi-circle but outside the larger semi-circle is called a lune. The area of the lune is.

(A) $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
(B) $\frac{\sqrt{3}}{4}-\frac{\pi}{24}$
(C) $\frac{\sqrt{3}}{4}-\frac{\pi}{12}$
(D) $\frac{\sqrt{3}}{4}-\frac{\pi}{8}$
8. The angle bisectors $B D$ and $C E$ of a triangle $A B C$ are divided by the incentre I in the rators $3: 2$ and $2: 1$ respectively. Then the ratio in which I divides the angle bisector through A is.
(A) $3: 1$
(B) $11: 4$
(C) $6: 5$
(D) $7: 4$
9. Suppose S_{1} and S_{2} are two unequal circles; $A B$ and $C D$ are the direct common tangents to these circles. A transverse common tangent $P Q$ cuts $A B$ in R and $C D$ in S. If $A B=10$, then $R S$ is .

www.examrace.com
(A) 8
(B) 9
(C) 10
(D) 11
10. On the circle with center O, points A, B are such that $O A=A B$. A point C is located on the tangent at B to the circle such that A and C are on the opposite sides of the line $O B=$ and $A B=B C$. The line segment AC intersects the circle again at F . Then the ratio $\angle B O F: \angle B O C$ is equal to:

(A) $1: 2$
(B) $2: 3$
(C) $3: 4$
(D) $4: 5$
11. In a cinema hall, the charge per person is Rs.200. On the first day, only 60% of the seats were filled. The owner decided to reduce the price by 20% and there was in increase of 50% in the number of spectators on the next day. The percentage increase in the revenue on the second day was
(A) 50
(B) 40
(C) 30
(D) 20
12. The population of cattle in a farm increases so that the difference between the population in year $n+2$. If the populations in year 2010, 2011 were 39, 60 and 123, respectively, then the population in 2012 was
(A) 81
(B) 84
(C) 87
(D) 90
13. The number of 6-digit numbers of the form ababab (in base 10) each of which is a product of exactly 6 distinct primes is
(A) 8
(B) 10
(C) 13
(D) 15
14. The houses on one side of a road are numbered using consecutive even humbers. The sum of the numbers of all the houses in that row is 170 . If there are at least 6 houses in that row and a is the number of the sixth house, then
(A) $2 \leq a \leq 6$
(B) $8 \leq a \leq 12$
(C) $14 \leq a \leq 20$
(D) $22 \leq a \leq 30$
15. Suppose $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ are are integers such that
$\frac{5}{7}=\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\frac{a_{4}}{4!}+\frac{a_{5}}{5!}+\frac{a_{6}}{6!}+\frac{a_{7}}{7!}$
where $0 \leq a<j$ for $j=2,4,5,6,7$. The sum $a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}$ is
(A) 8
(B) 9
(C) 10
(D) 11

PHYSICS

16. In the follwing displacement (x) vs time (t) graph, at which among the points P, Q, and R is the object's speed increasing?

(A) R only
(B) P only
(C) Q and R only
(D) P,Q,R
17. A box, when hung from a spring balance shows a reading of 50 kg . If the same box is hung from the same spring balance inside an evacuated chamber, the reading on the scale will be
(A) 50 kg because the mass of the box remains unchanged
(B) 50 kg because the effect of the absence of the atmosphere will be indentical on the box and the spring balance
(C) Less than 50 kg because the weight of the column of air on the box will be absent
(D) More than 50 kg because the atmospheric buoyancy force will be absent
18. Two possitively charged spheres of masses m_{1}, and m_{2}, are suspended from a common point at the ceiling by identical insulating massless strings of length I. Charges on the two spheres are q_{1} and q_{2}, respectively. At equilivrium both strings make the same angle θ with the vertical. Then
(A) $q_{1} m_{1}=q_{2} m_{2}$
(B) $m_{1}=m_{2}$
(C) $m_{1}=m_{2} \sin \theta$
(D) $q_{2} m_{1}=q_{1} m_{2}$
19. A box when dropped from a certain height reaches the ground with a speed v. When it skides from rest from the same height down a rough inclined plane inclined at in angle 45° to the horizontal, jit reaches the ground with a speed $\mathrm{v} / 3$. The coefficient of sliding friction between the box and the plane is (acceleration due to gravity is $10 \mathrm{~ms}^{-2}$)
(A) $\frac{8}{9}$
(B) $\frac{1}{9}$
(C) $\frac{2}{3}$
(D) $\frac{1}{3}$
20. A thin paper cup filled with water does not catch fire when placed over a flame. This is because
(A) The water cuts off oxygen supply to the paper cup
(B) Water is an excellent conductor of heat
(C) The paper cup does not become appreciably hotter than the water it contain
(D) Paper is a poor conductor of heat
21. Ice is used in a cooler in order to cool its contents. Which of the following will speed up the cooling process
(A) Wrap the ice in a metal foil
(B) Drain the water from the cooler periodically
(C) Put the ice as a single block
(D) Crush the ice
22. The angle of a prism is 60°. When light is incident at an angle of 60° on the prism, the angle of emergence is 40°. The angle of incidence i for which the light ray will deviate the least is such that
(A) $\mathrm{i}<40^{\circ}$
(B) $40^{\circ}<i<50^{\circ}$
(C) $50^{\circ}<i<60^{\circ}$
(D) $\mathrm{i}>60^{\circ}$
23. A concave lens made of material of refractive index 1.6 is immersed in a medium of refractive index 2.0. The two surfaces of the concave lens have the same radius of curvature 0.2 m . The lens will behave as a
(A) Divergent lens of focal length 0.4 m
(B) Divergent lens of focal length 0.5 m .
(C) Convergent lens of focal length 0.4 m .
(D) Convergent lens of focal length 0.5 m
24. A charged particle, initially af rest at O , When released follows atrajectory as shown. Such a trajectory is possible in the presence of

(A) Electric field of constant magnitude and varying direction
(B) Magnetic field of constant magnitude and varying direction
(C) Electric field of constant magnitude and constant direction
(D) Electric and magnetic fields of constant magnitudes and constant directions which are parallel to each other
25. Two equal charges of magnitude Q each are placed at a dictance d apart. Their electrostatic energy is E. A third charge -Q/2 is brough midway betway these two charges. The electrostatic energy of the system is now
(A) -2 E
(B) -E
(C) 0
(D) E
26. A bar magnet falls with its north pole pointing down through the axis of a copper ring. When viewed from above, the currecnt in the ring will be
(A) Clockwise while the magnet is above the plane of the ring and counter clockwise while below the plane of the ring
(B) Counter clockwise throughout
(C) Counter clockwise while the magnet is above the plane of the ring, and clockwise while below the plane of the ring
(D) Clockwise throughout.
27. Two identical bar magnets are held perpendicular to each other with a certain separation, as shown below. The area around the magnets is divided into four zones

Given that there is a neutral point it is located in
(A) Zone I
(B) Zone II
(C) Zone III
(D) Zone IV
28. A large number of random snap shots using a camera are taken of a particle in simple harmonic motion between $x=-x_{0}$ and $x=+x_{0}$ with origine $x=0$ as the mean position. A histogram of the total number of times the particle is recorded about a given position (Event no.) would most closely resemble
(A)

(B)

(C)

29. In 1911, the physicist Ernest Rutherford discovered that atoms have a tiny, dense nucleus by shooting pisitively charged particles at a very thin gold foil. A key physical property which led Rutherford to use gold that it was
(A) Electrically conducting
(B) Highly malleable
(C) Shiny
(D) none-reactive
30. Consider the following statements
(i) All isotopes of an element have the same number of neutrons
(ii) Only one isotope of an element can be stable and non-radioactive
(iii) All elements have isotops
(iv) All isotopes of Carbon can form chemical compounds with Oxygen-16

The correct option regarding an isotope is
(A) (iii) and (iv) only
(B) (ii), (iii) and (iii) only
(C) (i),
(ii) and (iii) only
(D) (i), (iii) and (iv) only

CHEMISTRY

31. The isoelectronic pair is
(A) $\mathrm{CO}, \mathrm{N}_{2}$
(B) $\mathrm{O}_{2}, \mathrm{NO}$
(C) $\mathrm{C}_{2}, \mathrm{HF}$
(D) $\mathrm{F}_{2}, \mathrm{HCL}$
32. The numbers of lone pairs and bond pairs in hydrazine are, respectively
(A) 2 and 4
(B) 2 and 6
(C) 2 and 5
(D) 1 and 5
33. The volume of oxygen at STP required to burn 2.4 g of carbon completely is
(A) 1.12 L
(B) 8.96 L
(C) 2.24 L
(D) 4.48 L
34. The species that exhibits the highest R_{f} value in a thin layer chromatogram using a nonpolar solvant on a silica gel olate is

(B)

(C)

(D)

35. The number of C-C sigma bonds in the compound

(A) 16
(B) 17
(C) 18
(D) 11
36. If the radius of the hydrogen atom is 53 pm , the radius of the He^{+}ion is closest to
www.examrace.com
(A) 108 pm
(B) 81 pm
(C) 27 pm
(D) 13 pm
37. The diamagnetic species is
(A) NO
(B) NO_{2}
(C) O_{2}
(D) CO_{2}
38. The pH of 0.1 M aqueous solutions of $\mathrm{NaCl}, \mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ will follow the order
(A) $\mathrm{NaCl}<\mathrm{CH}_{3} \mathrm{COONa}<\mathrm{NH}_{4} \mathrm{Cl}$
(B) $\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{CH}_{3} \mathrm{COONa}$
(C) $\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{COONa}<\mathrm{NaCl}$
(D) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{COONa}$
39. At room temperature the average seed of Helium is higher than that of Oxygen by a factor of
(A) $2 \sqrt{2}$
(B) $6 / \sqrt{2}$
(C) 8
(D) 6
40. Ammonia is NOT produced in the reaction of
(A) $\mathrm{NH}_{4} \mathrm{Cl}$ with KOH
(B)AIN with water
(C) $\mathrm{NH}_{4} \mathrm{Cl}$ with NaNO_{2}
(D) $\mathrm{NH}_{4} \mathrm{Cl}$ with $\mathrm{Ca}(\mathrm{OH})_{2}$
41. The number of isomers which are ethers and having the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$, is
(A) 2
(B) 3
(C) 4
(D) 5
42. The major product of the reaction of 2-butene with alkaline KMnO_{4} solution is
(A)

(B)

(C)

43. Among the compounds I-IV, the compound having the lowest boiling point is

I

II

III

IV
(C) III
(D) IV
(A) I
(B) II
$\Delta G^{\circ}=250 \mathrm{~kJ} \mathrm{~mol}$
(i) $A \rightleftharpoons B$
$\Delta G^{\circ}=-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $D \rightleftharpoons E$
$\Delta G^{\circ}=-150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $F \rightleftharpoons G$
$\Delta G^{0}=150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iv) $M \rightleftharpoons N$
est equitibrium constant is
(A) (i)
(B) (ii)
(C) (iii)
(D) (iv)
44. The first ionization inthalpies for three elements are 1314, 1680, and $2080 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The correct
sequence of the elements is
(A) O,F, and Ne^{-}
(B) F O and Ne
(C) Ne, F and O
(D) F, Ne and O

BIOLOGY

46. Individuals of one kind occupying a particular geographic area at a given time are called
(A) Community
(B) Population
(C) Species
(D) Biome
47. What fraction of the assimilated energy is used in respiration by the herbivores
(A) 10 percent
(B) 60percent
(C) 30 percent
(D) 80 percent
48. Athletes are often trained at high altitude because
(A) Training at high altitude increase muscle mass
(B) Training at high altitude increases the number of red blood cells
(C) There is less change of an injury at high altide
(D) Athles sweat less at high altidute
49. In human brain two hemispheres are connected by bundle of fibers which is known as
(A) Medulla oblongata
(B) Cerebrum
(C) Cerebellum
(D) Corpus callosum
50. Which one of the following hormones is produced by the pancreas
(A) Prolactin
(B) Glucagon
(C) Leutinizing hormone
(D) Epinephrine
51. The stalk of a leaf is derived from which one of the following types of plant tissue?
(A) Sclerenchyma
(B) Paranchyma
(C) Chlorenchyma
Collenchyma
52. Which of the following muscle types CNNOT be used valuntarily
(A) Both striated and smooth
(B) Both cardiac and striated
(C) Both smooth and cardiac
(D) Cardiac, striated and smooth
53. The pulmonary artery carries
(A) deoxygenated bood to the lungs
(B) Oxygenated bood to the brain
(C) Oxygenated blood to the lungs
(D) Deoxygenated blood to the kidney
54. Both gout and kidney stone formation is caused by
(A) Calcium oxalate
(B) Uric acid
(C) Creatinine
(D) Potassium chloride
55. The auditory nerve gets its input from which of the following?
(A) The sense cells of the cochlea
(B) Vibration fo the last ossicle
(C) Eustachian tube
(D) Vibration of the tympanic nembrane
56. Which of the following organelles contain circular DNA
(A) Peroxisomes and Mitochondria
(B) Mitochondria and Glgi complex
(C) Chloroplasts and Lysosomes
(D) Mitochondria and chloroplast
57. A reflex action does NOT involve
(A) Neurons
(B) Brain
(C) Spinal cor
(D) Muscle fiber
58. Which one of the follwing options is true in photsynthesis
(A) CO_{2} is oxidized and $\mathrm{H}_{2} \mathrm{O}$ is reduced
(B) $\mathrm{H}_{2} \mathrm{O}$ is oxidized and CO_{2} is reduced
(C) Both CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are reduced
(D) Both CO 2 and H 2 O are oxidized
59. Human mature red blood cells (RBCs) do NOT contain
(A) Iron
(B) CYtoplasm
(C) Mitochondria
(D) Haemoglobin
60. A person was saved from poisonous snake bite by antivenom injection. Which of the following immunity explains this form of protection?
(A) Naturally acquired active immunity
(B) Artificially acquired active immunity
(C) Naturally acquired passive immunity
(D) Artificially acquired passive immunity

PART-II

Two Mark Questions

MATHEMATICS

61. Let a, b, c be non-zero real numbers such that $a+b+c=0$; let $q=a^{2}+b^{2}+c^{2}$ and $r=a^{4}+b^{4}+c^{4}$ Then
(A) $q 2<2 r$ always
(B) $q 2=2 r$ always
(C) $q 2>2 r$ always
(D) q2-2r can take both positive and negative value
62. The value of
$\sum_{\mathrm{n}=0}^{1947} \frac{1}{2^{\mathrm{n}}+\sqrt{2^{1947}}}$
is equal to
(A) $\frac{847}{\sqrt{2^{1945}}}$
(B) $\frac{1946}{\sqrt{2^{1947}}}$
(C) $\frac{1947}{\sqrt{2^{1947}}}$
(D) $\frac{1948}{\sqrt{2^{1947}}}$
63. The number of integers a in the interval $[1,2014]$ for which the system of equations $x+y=a \frac{x^{2}}{x-1}+\frac{y^{2}}{y-1}=4$ has finitely many solutions is
(A) 0
(B) 1007
(C) 2013
(D) 2014
64. In a triangle $A B C$ with $\angle A=90^{\circ}, P$ is a point on $B C$ such that $P A: P B=3: 4$. If $A B=\sqrt{7}$ and $A C=\sqrt{5}$, then $B P: P C$ is
(A) $2: 1$
(B) $4: 3$
(C) $4: 5$
(D) $8: 7$
65. The number of all 3-digit numbers abc (in base10) for which $(a \times b \times c)+(a \times b) 6+(c \times a)+a+b+c=29$ is
(A) 6
(B) 10
(C) 14
(D) 18

PHYSICS

66. A uniform square wooden sheet of side a has its center of mass located at point O as shown in the figure on the left. A square portion of side b of this sheet is cut out to produce and L -shaped sheet as shown in the

The center of mass of the L-shaped sheet lies at the point P (in the diagram) when
(A) $a / b=(\sqrt{5}-1) / 2$
(B) $a / b=(\sqrt{5}+1) / 2$
(C) $a / b=(\sqrt{3}-1) / 1$
(D) $a / b=(\sqrt{3}+1) / 2$
67. A machine is blowing spherical soap bubbles of different raddi filled with helium gas. It is found that if the bubbles have a radius smaller than 1 cm , then they sink to the floor in still air. Larger bubbles float in the air. Assume that the thickness of the soap film in all bubbles is uniform and equal. Assume that the density of soap solution is same as that of water $\left(=1000 \mathrm{kgm}^{-3}\right)$. The density of helium inside the bubbles and air are $0.18 \mathrm{~kg} \mathrm{~m}^{-3}$ and $1.23 \mathrm{~kg} \mathrm{~m}^{-3}$, respectively. Then the thickness of the soap film of the bubbles is (note $1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$)
(A) $0.50 \mu \mathrm{~m}$
(B) $1.50 \mu \mathrm{~m}$
(C) $7.00 \mu \mathrm{~m}$
(D) $3.50 \mu \mathrm{~m}$
68. An aluminum piece of mass 50 g initially at $300^{\circ} \mathrm{C}$ is dipped quickly and taken out of 1 kg of water, initially at $30^{\circ} \mathrm{C}$. If the teperature of the aluminum piece be $160^{\circ} \mathrm{C}$, what is the temperature of the water then (Specific heat capacities of aluminum and water are $900 \mathrm{JKf}^{-1} \mathrm{~K}^{-1}$ and $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, respectively)
(A) $165^{\circ} \mathrm{C}$
(B) $45^{\circ} \mathrm{C}$
(C) $31.5^{\circ} \mathrm{C}$
(D) $28.5^{\circ} \mathrm{C}$
69. A ray of light incident paralled to the base PQ of an isosceles right-angled triangular prism PQR suffers two successive total internal reflections at the faces $P Q$ and $Q R$ before emerging reversed in direction as shown

If the refractive index of the material of the prism is μ, then
(A) $\mu>\sqrt{5}$
(B) $\sqrt{3}<\mu<\sqrt{5}$
(C) $\sqrt{2}<\mu<\sqrt{5}$
(D) $\mu<\sqrt{2}$
70. Consider the circuit shown below where all resistors are of $1 \mathrm{k} \Omega$

If a current of magnitude 1 mA flows through the resistor marked X , what is the potential difference measured between point P and Q ?
(A) 21 V
(B) 68 V
(C) 55 V
(D) 34 V

CHEMISTRY

71. 10 moles of a mixture of gydogen and oxygen gases at a pressure of 1 atm at constant volume and temperature, react to form 3.6 g of liquid water. The pressure of the resulting mixture will be closest to
(A) 1.07 atm
(B) 0.97 atm
(C) 1.02 atm
(D) 0.92 atm
72. The amonia evolved from 2 g of a compound in Kjeldahl's estimation of nitrogen neutralizes 10 mL of 2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The weight percentage of nitrogen in the compound is
(A) 28
(B) 14
(C) 56
(D) 7
73. Complete reaction of 2.0 g of calcium (at. $\mathrm{wt} .=40$) with excess HCL produces 1.125 L of H_{2} gas. Complete reaction of the same quantity of another metal " M " with excess HCL produces 1.85 L of H_{2} gas under indentical conditions. The equivalent weight of " M " is closest to
(A) 23
(B) 9
(C) 7
(D) 12
74. A compound X formed after heating coke with lime react with water to give Y which on passing over redhot iron at 873 produces Z. The compound Z is
(A)

(B)

(C)

(D)

75. In the following reaction sequence

X and Y are, respectively
(A) $\mathrm{Ph}=$
and

(B)
 and

(C)

(D)

Biology
76. In which of the following cellular compartment(s) do respiratory reactions occur?
(A) cytoplasm and endoplasmic reticulum
(B) Mitochondria and Golgi complex
(C) Mitochondria and cytoplasm
(D) Mitochondria only
77. A women heterozygous for color blindness marries a clolor blind man. What be the ratios of carrier daughters, color blind daughters, normal sons and color blind sons in F1 generation?
(A) 1:2:2:1
(B) $2: 1: 1: 2$
(C) $1: 1: 1: 1$
(D) 1:1:2:2
78. Two semi-permeable bags containgn 2% sucrose placed in two beakers, 'P' containing water and ' Q ' containing 10% socrose. Which one of the following outcomes is true?
(A) Bag in 'P' becomes flaccid due to exosmosis
(B) Bag in 'P' becomes turgid due to endosmosis
(C) Bag in ' Q ' becomes turgid due to endosmosis (D)
(D) Concentration of sucrose remain unchanged both
79. Children suffering from phenylketonuria are given food low in phenylalanine and supplemented with tyrosine. This is because they.
(A)Are unable to utilize phenylalanine
(B) Do not require phenylalanine
(C) Have increased tyrosine anabolism
(D) Have increased tyrosine catabolism
80. Two bottles were half filled with water from Ganga ('P') and kaveri ('Q') and kept under indentical airtight conditions for 5 days. The oxygen was determined to be 2% in bottle ('P') and 10% in bottle ('Q'). What could be the cause of this difference?
(A) Ganga is more polluted than Kaveri
(B) Both the rivers are equally polluted
(C) Kaveri is more polluted than Ganga
(D) Kaveri has more minerals than Ganga

PART-I

One Mark Questions

MATHEMATICS

1.

Sol. r be a root $\Rightarrow r^{2}+2 r+6=0$ \qquad

$$
\begin{align*}
& \text { now }(r+2)(r+3)(r+4)(r+5) \tag{1}\\
& =\left(r^{2}+5 r+6\right)(r 2+9 r+20) \\
& =(3 r)(7 r+14) \quad \text { using (i) } \\
& =21\left(r^{2}+2 r\right) \\
& =-126 \quad \text { using (i) }
\end{align*}
$$

Ans. (C)
2.

Sol. Given $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$
but $x=0$
$f(0)+\frac{1}{2} f(1)=1$
$\Rightarrow 2 f(0)+f(1)=2$
put $x=1$ in (1)
$\Rightarrow f(1)+\frac{3}{2} f(0)=1$
$\Rightarrow 2 f(1)+3 f(0)=2$
Solving (2) \& (3) we have $F(0)=2 \& f(1)=-2$
$\therefore 2 f(0)+f(1)=4-6=-2$
Ans. (C)
3. $\frac{1^{3}+2^{3}+\ldots .+(2 n)^{3}}{1^{2}+2^{2}+\ldots \ldots .+n^{2}}=\left(\frac{2 n(2 n+1)}{2}\right)^{2} \cdot \frac{6}{n(n+1)(2 n+1)}$

$$
=\frac{6 n(2 n+1)}{n+1}
$$

$$
=\frac{12 n^{2}+6 n}{n+1}=\frac{12\left(n^{2}-1\right)+6(n+1)+6}{n+1}
$$

$$
=1+\frac{6}{n+1}
$$

If the given terms is an intiger, then $\frac{6}{n+1}$ must be an integer
$\Rightarrow \mathrm{n}=1,2,5$
Sum $=8$
Ans. (A)
4. $\mathrm{X} \rightarrow \mathrm{ab}$ or $\mathrm{x}=10 \mathrm{a}+\mathrm{b}$
$y \rightarrow$ ba or $y=10 b+a$
Now $x^{2}-y^{2}=(10 a+b)^{2}-(10 b+a)^{2}$

$$
\begin{align*}
& =99\left(a^{2}-b^{2}\right) \\
& =3^{2} \times 11(a+b)(a-b) \tag{1}
\end{align*}
$$

According of Q
$(a+b)(a-b)=11$ and $a-b=1$
$\Rightarrow a+b=11$ and $a-b=1$
$\Rightarrow a=6, b=5$
Hence
$x=65$
$y=56$
and $\quad m=33$

$$
\Rightarrow x+y+m=154
$$

Ans. (D)
5.

Sol. $\quad \therefore H C F=x-1$

$$
\Rightarrow p(x)=x^{2}-5 x+a
$$

$$
=x^{2}-5 x+4
$$

$$
\begin{equation*}
=(x-1)(x-4) \tag{1}
\end{equation*}
$$

and $\quad q(x) x^{2}-3 x+b=x^{2}-3 x+2$

$$
\begin{equation*}
=(x-1)(x-2) \tag{2}
\end{equation*}
$$

$\Rightarrow k(x)=(x-1)(x-2)(x-4)$
Hence
$(x-1)+R(x)=(x-1)+(x-1)(x-2)(x-2)(x-4)$
$=(x-1)(x-3)^{2}$
Hence sum of roots $=7$
Ans. (D)
6. Ans. (D)
7.

Sol.

area of sector $O A C B=\frac{r^{2}}{2} \theta=\frac{1}{2} \cdot \frac{\pi}{3}=\frac{\pi}{6}$
area of shaded region $=\frac{\pi}{6}-$ area of $\triangle O A B$
$=\frac{\pi}{6}-\frac{\sqrt{3}}{4}$.
Hence area of line \leqslant Area of semi-circle - area of shaded region
$=\frac{1}{2} \pi\left(\frac{1}{2}\right)^{2}-\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)$
$=\frac{\sqrt{3}}{4}+\frac{\pi}{8}-\frac{\pi}{6}$
$=\frac{\sqrt{3}}{4}-\frac{\pi}{24}$.
Ans. (B)
8.

Sol. $\because \frac{A I}{I F}=\frac{b+c}{a}$

$$
\begin{equation*}
\because \frac{B I}{I D}=\frac{a+c}{b}=\frac{3}{2} \tag{1}
\end{equation*}
$$

$\because \frac{C I}{I E}=\frac{a+c}{c}=\frac{2}{1}$
$\Rightarrow a+b=2 c$
(2) $2 \mathrm{a}+2 \mathrm{c}=3 \mathrm{~b}$
using to
$\Rightarrow 2 a+a+b=3 b$ using (3)
$\Rightarrow 3 \mathrm{a}=2 \mathrm{~b}$
$\Rightarrow b=\frac{3}{2} a$

Now again (3) $\Rightarrow 2 c=a+b$
$=a+\frac{3}{2} a$
$\Rightarrow c+\frac{5}{4} a$
Hence $\frac{A I}{I F}=\frac{b+c}{a}=\frac{\frac{1}{2} a+\frac{5}{4} a}{a}=\frac{11}{4}$
Ans. (B)
9.

Sol.

$\therefore \mathrm{RP}=\mathrm{RA}=10-\alpha$

$$
\begin{align*}
& \Rightarrow R S=10-\alpha+\beta \tag{1}\\
& \Rightarrow R S=10-\beta+\alpha \tag{2}
\end{align*}
$$

(1) and (2) $\Rightarrow \alpha=\beta$, Hence $\mathrm{RS}=10$

Ans. (C)
10.

Sol.

1. $\triangle A O B$ is equilatrual $\left(\angle A O B=\angle O A B=\angle O B A=60^{\circ}\right)$
2. $\triangle O B C$ is right angled isosceles $\left(\angle O B C=90^{\circ}\right)$
3. $\triangle A B C$ is isosceles $\left(\angle B A C=\angle B C A=15^{\circ}\right)$
4. $\angle O A C=60^{\circ}-\angle C A B=45^{\circ}$
5. $\triangle A O F$ is right angled isosceles $\left(\angle A O F=90^{\circ}, \angle O F A=45^{\circ}\right)$
6. $\angle B O F=90^{\circ}-\angle A O B=30^{\circ}$
7. $\triangle O B C$ is right angled isosceles $\left(\angle B O C=45^{\circ}\right)$
$\therefore \frac{\angle B O F}{\angle B O C}=\frac{30^{\circ}}{45^{\circ}}=\frac{2}{3}$

Ans. (B)

11.

Sol. Let total seats $=100$
on first day,
Ticket price $=200$
sneots ful $=60 \%$
$=\frac{60}{100} \times 100=60$
\therefore Revenue $=60 \times 200$

$$
R_{1}=12000
$$

On second day
Tricked price $=200-20 \%$ of 200
$=200-\frac{20}{100} \times 200$
$=200-40=160$
Scents full $60+50 \%$ of 60
$=60+\frac{50}{100} \times 60$
$=60+30=90$
Revenue $=160 \times 90$

$$
R_{2}=14400
$$

12.

Sol. year Population
2010 - 39
2011 - 60
2012-x
2013-123
According to Q
$x-39=k(60) \& 63=k r$
$\Rightarrow x-39=\frac{63}{x} .63$
$\Rightarrow x^{2}-39 x=-(60)(63)=0$
$x=84 \&-40$
Ans(B)
13. $\mathrm{N}=\mathrm{ab} \mathrm{ab} a b$

.
Let house no are $\alpha, \alpha,+2, \alpha+4, \alpha+6, \alpha+8, \alpha+10$
$\alpha+10=a \Rightarrow \alpha=a-10$
House no. will be (+)
$\Rightarrow \alpha=a-10>0$
$\Rightarrow \alpha>10$
$\Rightarrow \alpha \geq 12$ as a is each too
(1)

Now $S_{n}=\frac{n}{2}[2 \alpha+(n-n) d]$
$170=\frac{n}{2}[2 \alpha+(n-1)(2)]$
$=n(\alpha+(n-1))$
$=n(a-10+n-1)$
$=n(a-11+n)$
$\Rightarrow n^{2}+n(a-11)-170=0$
$\Rightarrow n=\frac{(11-a) \pm \sqrt{(a-11)^{2}+680}}{2}$
$\because n \geq 6$
$\Rightarrow \frac{(11-a) \pm \sqrt{(a-11)^{2}+680}}{2} \geq 6$
$\Rightarrow a \leq \frac{800}{24}$
From (2) and (4) $\Rightarrow 12 \leq a \leq 32$
Now checking through (3) for $\mathrm{a}=12,14, \ldots .$. ;
we have $\mathrm{a}=18, \mathrm{n}=10$ and $\mathrm{S}_{\mathrm{n}}=170$
Hence options
www.examrace.com
Ans(C)
15.

Sol. $\frac{5}{7}=\frac{2520 a_{2}+840 a_{3}+210 a_{4}+42 a_{5}+7 a_{6}+a_{7}}{L^{7}}$
$2520 a_{2}+840 a_{3}+210 a_{4}+42 a_{5}+7 a_{6}+a_{7}=3600$
Let $a_{2}=a_{3}=a_{4}=1 a_{5}=0 \quad a_{6}=4 \quad a_{7}=2$
Ans(B)

PHYSICS

16.

Sol. |slope| is increasing at point R
Ans. (A)
17.

Sol. No Bnoycncy force in vaccum Ans. (D)
18.

Sol.

$\tan \theta=\frac{F}{m g} \quad(F \rightarrow$ same $)$
$\tan \theta \propto \frac{1}{m}$
$\therefore m_{1}=m_{2}$
Ans. (B)
19.

Sol. Case-1
$v=\sqrt{2 g h}$
Case-2
$\Delta U+\Delta k E=w_{f}$

$-m g h+\frac{1}{2} m\left(\frac{2 g h}{9}\right)=-\mu m g h$
$\mu=\frac{8}{9}$
Ans. (A)
20. Ans. (C)
21. Ans. (D)
22.

Sol. For min deviatom

$$
\mathrm{i}=\mathrm{e}
$$

$$
r_{1}=r_{2}=\frac{A}{2}
$$

$$
\therefore r_{1}=r_{2}=30^{\circ}
$$

For minimum devation i should lie between 40 to 50°
Ans. (B)
23.

Sol. $\quad 2)^{1.6}\left(\frac{2}{\square}\right.$ $\left.\frac{1}{F}=\left(\frac{1.6}{2}-1\right)\left(\frac{4}{-0.2}-\frac{1}{0.2}\right)\right)$
$=\frac{0.4}{2} \times \frac{1}{0.1}$
$\mathrm{F}=0.5$ converging ens
Ans. (D)
24. Sol-In option B it will not move, in option $C \& D$ path will be straight line.

Ans. (A)
25.

Sol.

$$
\begin{aligned}
& \mu_{f}=\frac{k Q^{2}}{d}+\frac{k(-Q)^{2}}{d}+\frac{k-Q^{2}}{d} \\
& =-\frac{k Q^{2}}{d}=-E
\end{aligned}
$$

26. Sol.Useing lenz's law upper face first become North pole then south pole

Ans. (C)
27. Ans. (B)
28. In SHM particle comes 2 times at every position in 1 oscillation, so actual histogram may be option (A) but since at it random snap shots so it should be option (C)
Ans. (C)
29. Ans. (B)
30. Ans. (A)
31.

Sol. $\quad \mathrm{CO} \& \mathrm{~N}_{2}$ are isoelectronic

32.

Sol. HYDRAZINE $\mathrm{N}_{2} \mathrm{H}_{4}$
33.

Sol.

$L P=2$
$B P=5$
Ans. (B)

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)
$$

moles $=1$ mole 1 mole 1 mole
weight $=12 \mathrm{gm} 32 \mathrm{gm} 44 \mathrm{gm}$
12 gm of C require $\rightarrow 1$ mole of O_{2}
$\therefore \quad 2.4 \mathrm{gm}$ of C will recquire $\rightarrow \frac{1}{12} \times 2.4$ mole of O_{2}
volume of $2.4 / 12$ mole $_{2}$ at $\mathrm{STP}=\frac{22.4 \times 2.4}{12}$ litre
4.48 litre

Ans. (D)
34.

Sol. Nonpolar substance will have high R_{f} value as solvent is nonpolar therefore option (A) will have high R_{t} value as it have low dipole moment.
Ans. (A)
35. Ans. (A)
36.

Sol. $r_{n}=\frac{R_{H} n^{2}}{Z}$
$r_{H_{e}}=\frac{53 n^{2}}{Z}$
$=\frac{53 \times 1^{2}}{2}=27$ approx.
Ans. (C)
37. Ans. (D)
38.

Sol. $\quad \mathrm{NH}_{4} \mathrm{Cl} \rightarrow$ acidic Salt $(\mathrm{PH}<7)$
$\mathrm{NaCl} \rightarrow$ Neutral Salt (PH=7)
$\mathrm{CH}_{3} \mathrm{COONa} \rightarrow$ Basic salt ($\mathrm{PH}>7$)
Ans. (B)
39.

Sol. average speed $\alpha \frac{1}{\sqrt{M}}$
$\frac{V_{\mathrm{He}}}{V_{\mathrm{O}_{2}}}=\sqrt{\frac{32}{4}}=\sqrt{\frac{M_{\mathrm{O}_{2}}}{M_{H e}}}$
$=\sqrt{8}=2 \sqrt{2}$
40.

Sol.

41.

Sol.
Ans. (C)
1.

Ans. (B)
42.

Sol.

Oxidation
Ans. (D)
43.

Sol. I,II \& IV compound form H-bond III do not form H-Bond
Ans. (C)
44.

Sol. $\Delta G^{\circ}=-R T \ln K_{e q}$
Ans. (C)
45.

Sol. As we move from left to right in period ionisaton energy increases Ans. (A)

BIOLOGY

46.

(B)
47.
(A)
48.
(B)
49.
(D)
50.
(B)
(D)
(B)
51.
(D)
52.
(C)

53
(A)
54.
(B)
55.
(A)
58.
(B)
59.
(C)

PART-II
 Two Mark Questions

MATHEMATICS

61.

$$
a+b+c=0, \quad a, b, c \in R \neq 0
$$

$a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=0$
$\mathrm{q}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}, \quad \mathrm{r}=\mathrm{a}^{4}+\mathrm{b}^{4}+\mathrm{c}^{4}$
$r=q^{2}-2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)$
$r=q^{2}-2\left[(a b+b c+c a)^{2}-2 a b c(a+b+c)\right]$
$r=q^{2}-2\left(q^{2} / 4\right)$
ANS - B
62.

Similarly \& \therefore

$$
\sum_{n=0}^{1947} \frac{1}{2^{4}+\sqrt{2^{1947}}}=\frac{974}{\sqrt{2^{1947}}}=\frac{487}{\sqrt{2^{1945}}}
$$

ANS - A

63. $\frac{x^{2}-1+1}{x-1}+\frac{y^{2}-1+1}{y-1}=4$
$x+1+\frac{1}{x-1}+y+1+\frac{1}{y-1}=4$
$a+2+\frac{1}{x-1}+\frac{1}{(a-1)-x}=4$
$\frac{(a-1)-x+x-1}{(x-1)[(a-1)-x]}=2-a$
$\because a \neq 2$ [for $a=2$ equation have infinitely many solution]
$\therefore(x-1)[(a-1)-x]=-1$
$(x-1)[x-(a-1)]=1$
$x^{2}-a x+(a-2)=0$
D >0
\therefore equation have 2 real roots so
a can be 1, 3, 4...... 2014
ans 2013
ANS - C

Equation of line $A B$ is
$\frac{x}{\sqrt{7}}+\frac{y}{\sqrt{5}}=1$
Let $\mathrm{P}\left[\alpha, \sqrt{5}\left(1-\frac{\alpha}{\sqrt{7}}\right)\right]$
on solving $16(\mathrm{PA}) 2=9(\mathrm{~PB}) 2$
$P\left[\frac{\sqrt{7}}{3}, \frac{2 \sqrt{5}}{3}\right]$
Let $\mathrm{BP}: \mathrm{PC}=\lambda: 1$
then $\lambda=2$
$B P: P C=2: 1$
ANS - (A)
65. $(a \times b \times c)+(a \times b)+(c \times a)+(a+b+c)=29$
$(1+a)(1+b)(1+c)=30$
$=2 \times 3 \times 5 \rightarrow(a, b, c) \Rightarrow(1,2,3) \Rightarrow 6$
$=1 \times 6 \times 5 \rightarrow(a, b, c) \Rightarrow(0,5,4) \Rightarrow 4$
$=1 \times 3 \times 10 \rightarrow(a, b, 1) \Rightarrow(0,2,9) \Rightarrow 4$

ANS - (C)
66.

Sol. Finaly com at p

$$
X_{a m}=\frac{A_{1} X_{1}+A_{2} X_{2}}{A_{1}+A_{2}}
$$

$(a-b)=\frac{a(a-b) \frac{(a-b)}{2}+b(a-b)(a-b+b / 2)}{a(a-b)+(a-b) b}$

$\therefore\left(\frac{a}{b}\right)^{2}-\left(\frac{a}{b}\right)-1=0$
$\frac{a}{b}=\frac{1+\sqrt{5}}{2}$
Ans. (B)
67. Weight $=F_{0}$
$4 \pi r^{2} t \rho_{w} g+4 / 3 \pi r^{3} \rho_{\text {Ne }} g=4 / 3 \pi r^{3} \rho_{\text {air }} g$
$\therefore \mathrm{t}=3.5 \mathrm{um}$
Ans. (D)
68.

Sol Heat lost = heat gas
$0.05 \times 900 \times(300-160)=1 \times 4200 \times(\mathrm{T}-30)$
$\mathrm{T}=31.5^{\circ}$
Ans. (C)
69.

Ans (A)
70.

Using KCL
At point A
Current is 3 mA
At point C
Current is 8 mA
At point E
Current is 21 mA
At point G
Current through GH is
34 ma
$\therefore \mathrm{V}_{\mathrm{PQ}}=\mathrm{V}_{\mathrm{GH}}=\mathrm{i} \mathrm{R}_{\mathrm{GH}}$
$=34 \mathrm{~V}$
Ans. (D)
71.

Sol. $\quad 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)$
0.2 mole 0.1 mole 0.2 mole
moles of gas remaining $=9.7$
at constant $(\mathrm{T}) \&(\mathrm{~V})$
$\frac{n_{1}}{n_{2}}=\frac{p_{1}}{p_{2}}$
$\frac{10}{9.7}=\frac{1}{p_{2}} \& p_{2}=0.97$
Ans. (B)
72.

Sol.

millimole of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\text { mmol of } \mathrm{NH}_{3}}{2}=20$
$\mathrm{mmol} \mathrm{NH}_{3}=\mathrm{mmol}$ of $N=40$
$W_{N}=\frac{40 \times 14}{1000}=\frac{560}{1000}=0.56 \mathrm{~g}$
$\%$ of $N=\frac{0.56}{2} \times 100=28$
Ans. (A)
73.

Sol. 1.125L of H_{2} produced by 0.1 equivalent of metal
1.85 L a of H_{2} will be produced by $=\frac{0.1 \times 1.85}{1.125}$ equivalents
\therefore No of gram equivalent of metal
$=\frac{2}{\text { Equivalent weight }}=\frac{2}{x}$
$\therefore \frac{0.1}{1.125} \times 1.85=\frac{2}{x}$
$x=12.16$
Ans. (D)
74.

Sol.
$\mathrm{CaO}+\mathrm{C} \longrightarrow \mathrm{CaC}_{2}+\mathrm{CO}_{2}$
$\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HC} \equiv \mathrm{CH}+\mathrm{Ca}(\mathrm{OH})_{2}$
$3 H C \equiv C H \frac{\text { Red Hot }}{F e}$

Ans. (A)
75.

Sol.
Ans. (A)

Biology

76.

(C) 77 .
(C)
78.
(B)

79
(A)
80. (A)

