ADDCC & AEE

СОММ		L & MECHANIC	_	aper – II)
01. Reynolds nu	mber which quantifie	s the role of viscous effe	ect expressed as	
V V	ρVd	$\rho V^2 L$	ρ	

(2)
$$\frac{\rho V d}{\mu}$$

(3)
$$\frac{\rho V^2 L}{\sigma}$$

(4)
$$V\sqrt{\frac{\rho}{E}}$$

Ans: (2)

02. The lower limit of the critical Reynolds number below which all disturbances in pipe flow are damped out by viscous action has a value approximately equal to

(1) 1

- (2)500
- $(3)\ 1000$
- (4) 2000

Ans: (4)

03. The shear stress distribution in pipe flow is expressed by

(1)
$$\tau = \frac{1}{r} \left(\frac{dp}{dx} \right)$$

(2)
$$\tau = -\left(\frac{dp}{dx}\right) \frac{r}{2}$$

(1)
$$\tau = \frac{1}{r} \left(\frac{dp}{dx} \right)$$
 (2) $\tau = -\left(\frac{dp}{dx} \right) \frac{r}{2}$ (3) $\tau = -2r \left(\frac{dp}{dx} \right)$ (4) $\tau = \frac{r^2}{L} \left(\frac{dp}{dx} \right)$

(4)
$$\tau = \frac{r^2}{L} \left(\frac{dp}{dx} \right)$$

Ans: (2)

04. The Hagen – Poiseuille equation which governs the velocity distribution in laminar flow through pipes may be expressed as

$$(1) \phi = \frac{\pi d^4 \Delta p}{128 \mu L}$$

(2)
$$\phi = \frac{\pi d^2 \Delta p}{128 \mu L}$$

(1)
$$\phi = \frac{\pi d^4 \Delta p}{128\mu L}$$
 (2) $\phi = \frac{\pi d^2 \Delta p}{128\mu L}$ (3) $\phi = \frac{128\mu L}{\pi d^2 \Delta p}$ (4) $\phi = \frac{128\mu L}{\pi d^4 \Delta p}$

$$(4) \phi = \frac{128\mu L}{\pi d^4 \Delta p}$$

Ans: (1)

05. The pressure drop per unit length of pipe in laminar flow is equal to

$$(1) \frac{d^2}{32\mu V}$$

(2)
$$\frac{32\mu VL}{\gamma d^2}$$
 (3) $\frac{32\mu V}{d^2}$ (4) $\frac{8\mu V}{d^2}$

(3)
$$\frac{32\mu V}{d^2}$$

$$(4) \ \frac{8\mu V}{d^2}$$

Ans: (3)

06. In laminar flow through a circular tube, the Darcy – Weisbach friction is related to the Reynolds

(1)
$$f = \left(\frac{1}{R}\right)$$

$$(2) f = \left(\frac{16}{R}\right)$$

$$(3) f = \left(\frac{64}{R}\right)$$

(1)
$$f = \left(\frac{1}{R}\right)$$
 (2) $f = \left(\frac{16}{R}\right)$ (3) $f = \left(\frac{64}{R}\right)$ (4) $f = \left(\frac{0.316}{R^{1/4}}\right)$

Ans: (3)

07. The discharge in (m³/s) for laminar flow through a pipe of diameter 0.04 m bearing a centerline velocity of 1.5 m/s is

$$(1) \frac{3\pi}{59}$$

$$(2) \ \frac{3\pi}{2500}$$

(3)
$$\frac{3\pi}{5000}$$

(2)
$$\frac{3\pi}{2500}$$
 (3) $\frac{3\pi}{5000}$ (4) $\frac{3\pi}{10000}$

Ans: (4)

08. The most essential feature of a turbulent flow is

- (1) large discharge
- (2) High velocity
- (3) velocity and pressure at a point exhibit irregular fluctuations of high frequency
- (4) velocity at a point remains constant with time

Ans: (3)

Previous	AEE	Pa	per
----------	------------	----	-----

	: 2 :	Previous AEE Paper
09. The velocity distribution in turbulent f (1) parabolic law (2) logarithmic law Ans: (2)		(4) hyperbolic law
10. Steel and cast iron pipes carrying fluid (1) the boundary surface is relatively s (2) the roughness projections are of lo (3) the roughness elements are comple (4) the laminar layer is thin as compar Ans: (3)	smooth w height etely covered by the lamin	nar sub-layer
 11. The Darcy – Weisbach friction factor dependant on (1) roughness height, diameter and vel (2) relative roughness, diameter and vel (3) relative roughness, velocity and vis (4) relative height, diameter, velocity and velocity Ans: (4) 	locity iscosity scosity	sure of resistance to flow in pipes is
12. The parameters which determine the from (1) Froude number and relative rought (2) Froude number and Mach number (3) Reynolds number and relative rought (4) Mach number and relative roughned Ans: (3)	ness	nt flow in a rough pipe are
13. In case of turbulent flow of a fluid that at the same flow, rate, the maximum wand the pressure drop across a given leading.	velocity is, sength is, something is	
14. The hydraulic efficiency of an impulsion that of the jet velocity. (1) one-fourth (2) one-half Ans: (2)		·
15. The number of buckets on the periphe (1) $\frac{D}{2d}$ + 5 (2) $\frac{D}{2d}$ + 10 Ans: (3)		
16. In a reaction turbine, the draft tube is a (1) to run the turbine full (3) to increase the effective head of war. (3)	(2) to prevent	air to enter the turbine t water to downstream

 17. In an inward flow reaction turbine (1) the water flows parallel to the axis of the wheel (2) the water enters at the centre of the wheel and from there flows towards the outer periphery of the wheel (3) the water enters the wheel at outer periphery, and then flows towards the centre of the wheel (4) the flow of water is partly radial and partly axial Ans: (3)
18. In a Kaplan turbine runner, the number of blades are generally
(1) 2 to 4 (2) 4 to 8 (3) 8 to 16 (4) 16 to 24 Ans: (2)
19. The power developed by a turbine is (1) Directly proportional to H ^{1/2} (3) Directly proportional to H ^{3/2} (4) Inversely proportional to H ^{3/2} Ans: (3)
\$ 0°
20. The specific speed of a turbine is given by (1) $\frac{N\sqrt{P}}{H^{3/2}}$ (2) $\frac{N\sqrt{P}}{H^{5/4}}$ (3) $\frac{N\sqrt{P}}{H^2}$ (4) $\frac{N\sqrt{P}}{H^3}$ Ans: (2) 21. The turbine to be used for 450 m head of water is
21. The turbine to be used for 450 m head of water is (1) Pelton wheel (2) Francis turbine (3) Kaplan turbine (4) None of these Ans: (1)
22. The cavitation in a hydraulic machine (1) causes noise and vibration of various parts (2) makes the surface rough (3) reduces the discharge of a turbine (4) causes sudden drop in power output and efficiency
Ans: (1)
 23. The specific speed of a turbine is speed of an imaginary turbine, identical with the given turbine, which (1) delivers unit discharge under unit load (2) delivers unit discharge under unit speed (3) develops unit H.P. under unit head (4) develops unit H.P. under unit speed

(3) at the bottom

(4) from sides

Ans: (3)

Ans: (1)

24. In a centrifugal pump the liquid enters the pump (1) at the centre (2) at the top (3) at the

26. Theoretical power required to drive a reciprocal pump is

 $(1) \frac{\text{WQH}_{\text{s}}}{60}$

 $(2) \frac{\text{WQH}_{\text{s}}}{75}$

 $(3) \frac{\text{WQH}_{d}}{60}$

Ans: (4)

27. The specific speed of a centrifugal pump is given by

 $(1) \frac{N\sqrt{Q}}{H^{2/3}}$

 $(2) \frac{N\sqrt{Q}}{L}$

Ans: (3)

28. For centrifugal pump impeller, the maximum value of the vane exit angle is

 $(1)\ 10^{\circ}\ \text{to}\ 15^{\circ}$

(2) 15° to 20°

(3) 20° to 25°

 $(4) 25^{\circ} \text{ to } 30^{\circ}$

Ans: (4)

29. Which of the following pumps is preferred for flood control and irrigation applications?

(1) Centrifugal pump

(2) Mixed flow pump

(3) Axial flow pump

(4) Reciprocating pump

Ans: (3)

30. In order to avoid cavitation in centrifugal pumps

(1) the suction pressure should be high (2) the delivery pressure should be high

(3) the suction pressure should be low (4) the delivery pressure should be low

Ans: (3)

31. In a propped cantilever beam, the number of points of contraflexure is

(1) 1

(4) 4

Ans: (1)

32. A fixed beam 'AB' 6 m long carries a vertical load 90kN at 2 m from 'A'. The fixed end moments at 'A' and 'B' are

(1) 40 kN-m, 80 kN-m

(2) 40 kN-m, 120 kN-m

(3) 80 kN-m, 40 kN-m

(4) 120 kN-m, 80 kN-m

Ans: (3)

33. In a fixed beam, at the fixed ends

- (1) slope is zero and deflection is maximum
- (2) slope is maximum and deflection is zero
- (3) both slope and deflection are maximum
- (4) slope and deflection are zero

Previous	AEE	Paper
-----------------	------------	--------------

	: 5 :	Previous AEE Paper
34. If a fixed beam is subjected to a point (1) 1 (2) 2	load at mid span, tota (3) 3	I number of points of contraflexure are (4) zero
Ans: (2)		
35. A beam of length, <i>l</i> , fixed at both ends is the flexural rigidity, then the maxim	num deflection in the b	peam is
(1) $\frac{wl^4}{192EI}$ (2) $\frac{wl^4}{24EI}$	$(3) \frac{\text{wl}^4}{384\text{EI}}$	(4) $\frac{\text{wl}^4}{12\text{EI}}$
Ans: (3)		
36. Slenderness ratio of a column may be (1) radius of column(3) maximum radius of gyration Ans: (2) 	(2) minimum radiu	s of gyration
 37. The crippling load of a column with on (1) √2 times that of a both ends hinge (2) Two times that of a both ends hinge (3) Four times that of a both ends hinge (4) Eight times that of a both ends hinge Ans: (2) 	ed column ged column ged column	end hinged is
38. The formula given by I.S. code in calcolumns is based on (1) Johnson's parabolic formula (3) Perry's formula Ans: (3)		line formula
39. The Rankine constant (a) in Rankine's	formula is equal to	
(1) $\frac{\pi^2 E}{\sigma_C}$ (2) $\frac{\sigma_C}{\pi^2 E}$ Ans: (2)	$(3) \frac{\pi^2}{\sigma_c E}$	$(4) \frac{E\sigma_C}{\pi^2}$
Ans: (2)		
40. When both ends of the column are pin (1) $P = \frac{\pi^2 EI}{I^2}$ (2) $P = \frac{4\pi^2}{I^2}$	ned, then the formula	for crippling load (P) is equal to $P = \frac{\pi^2 EI}{I^2}$ (4) $P = \frac{\pi^2 EI}{I^2}$

Ans: (1)

Ans: (4)

Ans: (3)

(1) 16

41. In Rankine's formula, the material constant for mild steel is

(2) 8

(1) $\frac{1}{9000}$ (2) $\frac{1}{5000}$ (3) $\frac{1}{1600}$ (4) $\frac{1}{7500}$

42. If the flexural rigidity of the column is doubled, then the strength of the column is increased by

(3) 2

(4) 4

43. The diameter of	the core for no tensio	on in a column of diam	eter 120 mm is	
(1) 30 mm	(2) 15 mm	(3) 40 mm	(5) 20 mm	
Ans: (1)				
44. The least radius	of gyration for solid of	circular column is		
(1) d	(2) $\frac{d}{2}$	(3) $\frac{d}{4}$	(4) $\frac{d}{3}$	
Ans: (3)	2	7	3	
		xural rigidity of the tulppling load kN is give (3) 29.60	be is 1.2×10^{10} N-m ² . The tule n by (4) 1.85	be is used as
Ans: (2)	(2) 7.10	(3) 25.00	(1) 1.03	
46. The ratio of pre below water lev	ssures between two p		I respectively at depths of 0.5	5 m and 8 m
(1) 1: $\sqrt{2}$	(2) 1:2	(3) 1:8	(4) 1:16	
Ans: (4)				
		entroid 4 m below wat		entric circles
Ans: (3)	(2) 11000 7	(3) 120007	ι (4) 24000 π	
71113. (3)		70,,		
_	=	_ ' / / '	ılar plane of diameter 'd' sub	merged in a
(1) $\frac{\pi d}{12}$	meter located at the free (2) $\frac{\pi d}{32}$	(3) $\frac{\pi d}{64}$	$(4) \frac{3\pi d}{32}$	
12	32	64	32	
Ans: (4)	.4.			
	_	_	with its top surface and botto of centre of pressure below th	
(1) 4.0 m	(2) 4.5 m	(3) 4.375 m	(4) 4.2 m	
Ans: (4)				
50 In an inclined al		4au 4ha aautus af uusaa	: a la cata d	
(1) at the centro	_	ter, the centre of press (2) below the cent		
(3) above the ce		(4) anywhere in th		
Ans: (2)	in old	(1) any where in an	e piane	
51. When a body flooring point known as	oating in a liquid is g	iven a small angular o	lisplacement, it stands oscilla	ting about a
(1) centre of pre	essure	(2) centre of gravi	ty	
(3) centre of buo		(4) matacentre	-	
Ans: (4)				

52.	vertex downward, with al	titude, 'h', has the cen	tre of pressure below	-
	$(1) \frac{h}{4}$	$(2) \frac{h}{3}$	(3) $\frac{2h}{3}$	$(4) \frac{h}{4}$
An	s: (4)			
53.	A vertical wall is subjected wall per unit length is	ed to a pressure due to	a liquid on one of it	ss sides. The total pressure on the
	(1) wH	$(2) \frac{wH^2}{2}$	$(3) \frac{wH}{2}$	$(4) \frac{wH^2}{3}$
An	s: (2)	2	2	3
	A vertical gate closes a pressure at the bottom of (1) 2.0 MN s: (2)	horizontal tunnel 5 r the gate is 196.2 kN/n (2) 2.575 MN	m high and 3 m wion ² . The total pressure (3) 5.525 MN	de running full with water. The on the gate is (4) 1.75 MN
	A body floating in a liqui (1) coincides with its cent (2) lies above its centre graph (3) lies below its centre or (4) lies below the centre or (5): (1)	tre of gravity ravity f gravity	Sillo	metacentre
An 57.	stream lines will have (1) incompressible	w ints for points lying on the same value, if the	(2) two dimensiona(4) four dimensionathe same stream line flow is	
An	s: (3)			
	The Bernoulli's equation quantity. Identify this quantity (1) energy per unit volume (2) energy per unit weights: (3)	antify. ne	(2) energy per unit (3) energy per unit	
	The total energy line is between the two represen (1) the datum head (3) the velocity head s: (3)	• •	the hydraulic grade (2) the pressure hea (4) the piezometric	

v	

60. The total energy r	epresented by the Bern	noulli's equation $\left(\frac{v^2}{2g}\right)$	$+\frac{p}{\gamma}+z$ has the units
(1) N-m/m Ans: (2)	(2) N-m/N	(3) $N-m^2/s$	(4) N-m/s
61. In a double overha	anging beam carrying u	udl throughout its leng	th, the number of points of contra
(1) 1 Ans: (2)	(2) 2	(3) zero	(4) 3
			pported span BC=1. The overhangs are ngth, the maximum BM at the centre
$(1) \frac{\mathrm{w}\ell^2}{8} - \frac{\mathrm{wa}^2}{4}$	$(2) \frac{wa^2}{4}$	$(3) \frac{wa^2}{2}$	$(4) \ \frac{wl^2}{8} - \frac{wa^2}{2}$
Ans: (3)			<i>∧</i> .
63. Rate of change of (1) Bending mom (3) Maximum def Ans: (2)	shear force is equal to ent	(2) Intensity of loading(4) Slope	
	bjected to udl throughog moment is 400kN, th		aximum shear force is 200kN and
(1) 3	(2) 2	(3) 4	(4) 8
distance 'a' fro	om support. Then the r	· =	ckwise couple of 'M' at a section C, s equal to
(1) M	$(2) \frac{M}{2}$	(3) Zero	(4) Ma
Ans: (3)			
	wo sections varies linea	· ·	
(1) linearly Ans: (2)	(2) parabolically	(3) constant	(4) None of these
67. At section of a beautiful point load	am sudden in BM indic (2) couple	cates the action of (3) point load or coup	ola (4) udl
Ans: (2)	(2) couple	(3) point load of coup	ne (4) uui
	overhang beam, for mace 'x' from the ends of		mall as possible, the supports must be of x is
(1) $0.5l$ Where $l = \text{span of}$	(2) $0.207 l$	(3) 0.53 <i>l</i>	(4) 0.7 <i>l</i>
Ans: (2)			

69.	A	freely	supporte	ed beam	of span	6m is	subjected	to a poin	t of 60	kN a	at mid span.	The r	naximum	BM
	is	equal	to											

- (1) 300 kN-m
- (2) 180 kN-m
- (3) 90 kN-m
- (4) 270 kN-m

Ans: (3)

- 70. If a freely supported beam is subjected to udl throughout the span, the shape of the BMD is
 - (1) rectangle
- (2) straight line
- (3) equilateral triangle (4) parabola

Ans: (4)

- 71. Section modulus of a beam is defined as
 - (1) IY
- $(3) \frac{I}{Y_{\dots}}$
- $(4) Y^2 I$

Ans: (3)

- 72. A beam of uniform strength is one which has same
 - (1) bending moment throughout the section
- (2) shearing force throughout the section
- (3) deflection throughout the beam
- (4) bending stress at every section

Ans: (4)

- 73. Neutral axis of a beam is the axis at which
 - (1) the shear force is zero
 - (2) the section modulus is zero
 - (3) the bending stress is maximum
 - (4) the bending stress is zero

Ans: (4)

74. A beam cross-section is used in two different orientations as shown in figure:

Bending moments applied in both causes ... a same. The maximum bending stresses induced in cases (A) and (B) are related as

- $(1) \sigma_A = \sigma_B \qquad (2) \sigma_A = 2\sigma_B \qquad (3) \sigma_A = \frac{\sigma_B}{2} \qquad (4) \sigma_A = \frac{\sigma_B}{4}$

Ans: (2)

- 75. The ratio of flexural strength of a square section with its two sides horizontal to its diagonal horizontal is
 - (1) $\sqrt{2}$
- (2) 2
- (3) $2\sqrt{2}$
- (4) $\frac{\sqrt{2}}{5}$

Ans: (1)

Previous AEE Paper
a rectangular beam is equal

		: 10 :	Previous AEE Paper
76. The ratio of max	imum shear stress to t	he average shear stress	in case of a rectangular beam is equal
to (1) 1.5 Ans: (1)	(2) 2.0	(3) 2.5	(4) 3
77. The nature of di (1) linear Ans: (1)	stribution of horizonta (2) parabolic	l shear stress in a recta (3) hyperbolic	angular beam is (4) elliptic
78. Section modulus	s of a circular section a	bout an axis through it	s centre of gravity is
(1) $\frac{\pi}{32}$ d ³	(2) $\frac{\pi}{16} d^3$	(3) $\frac{\pi}{8}$ d ³	(4) $\frac{\pi}{64}$ d ³
Ans: (1)	16	8	04
$2 \times 10^5 \text{N/mm}^2$, th (1) 200N/mm^2 Ans: (1)	en the maximum bend (2) 100 N/mm ²	ing stress induced will (3) 10,000N/mm ²	(4) 1000 N/mm ²
80. A beam of squar occurs at	-	40	horizontally. The maximum shear stress
(1) the N.A.	(2) $\frac{3}{8}$ d from top	(3) $\frac{3}{8}$ d from N.A.	(4) at the extreme fibres
Where $d = depth$ Ans: (2) 81. Torsional rigidit (1) $\frac{T}{\ell}$		200	$(4) \frac{T}{r}$
Ans: (3)	, 7,	U	1
(1) from surface(2) from surface(3) from centre t	a circular shaft due to to to centre parabolically to centre linearly o surface parabolically o surface linearly	,	
83. If two shafts of t	the same length, one of	which is hollow, trans	smit equal torques and have equal

maximum stress, then they should have equal

(1) angle of twist

(2) polar modulus of section

(3) polar moment of inertia

(4) diameter

Ans: (2)

		:11:	Prev	ious AEE Paper
shear stress ind		on undergoes a twist of 1	0 in a length of 1.2m. If the 0.8×10^{5} MPa, the radius	ne maximum
mm should be $(1) \frac{270}{\pi}$	$(2) \frac{\pi}{270}$	(3) $\frac{180}{\pi}$	$(4) \frac{\pi}{180}$	
Ans: (1)				
	U		meter and maximum shear of power developed betwe	
(1) 16	$(2) \frac{16}{}$	(3) 1	(4) 3	

Ans: (3)

86. The differential equation which gives the relation between BM, slope and deflection of a beam is

(1) $EI \frac{d^2y}{dx^2} = \frac{M}{I}$

 $(2) \frac{d^2y}{dx^2} = M$

 $(3) EI \frac{d^2y}{dx^2} = M$

 $(4) EI \frac{dy}{dx} = \frac{M}{F}$

Ans: (3)

87. A rolled steel beam having a span of 4m carries a point load of 20kN at 3m from the left support. If the moment of inertia of the section is $1 \times 10^7 \text{ mm}^4$ and $E = 200 \text{kN/mm}^2$, then the deflection of the beam under the point load is equal to

(1) 25 mm

(2) 7.5 mm

(3) 13.33 mm

(4) 50 mm

Ans: (2)

88. A cantilever of length 'l' carries a udl of w per unit m, over the whole length. If the free end be supported over a rigid prop, the reaction of the prop will be

 $(4) \frac{7w\ell}{8}$

Ans: (3)

89. Radius of curvature of the beam is equal to

 $(1) \frac{ME}{I} \qquad (2) \frac{M}{EI}$

(3) $\frac{EI}{M}$

 $(4) \frac{MI}{E}$

Ans: (3)

90. A simply supported beam span 3,m is subjected to a central point load of 5kN, then the slope at the mid span is equal to

(2) $\frac{256}{EI}$

(3) $\frac{40}{48EI}$

(4) Zero

	: 12 :	Previous AEE Paper
91. The ratio between	the change in volume and original volume of t	the body is called
(1) tensile strain	(2) compressive strain (3) volumetric strain ((4) shear strain
Ans: (3)		

(1) $E = \frac{3K + C}{6KC}$	(2) $E = \frac{6KC}{K + 3C}$	$(3) E = \frac{3KC}{3K + C}$	(4) $E = \frac{9KC}{3K + C}$
Ans: (4)	K+3C	SK + C	
_	f a conical bar due to	-	
$(1) \frac{\gamma \ell^2}{6E}$	$(2) \frac{\gamma \ell^2}{2E}$	$(3) \frac{\gamma \ell^2}{2E}$	$(4) \frac{\gamma \ell^2}{E}$
•	veight of the material		
Ans: (1)			
		he direction of applied	
(1) shear strain Ans: (2)	(2) lateral strain	(3) longitudinal stra	ain (4) volumetric strain
workingstres	s defined as the ratio	of ultimate load	
(1) $\frac{\text{working stress}}{\text{ultimate stress}}$			- I
(3) $\frac{\text{ultimate stres}}{\text{working stres}}$	ss ss	$ \frac{\text{design safe load}}{\text{design safe load}} $ (4) $ \frac{\text{design safe load}}{\text{ultimateload}} $	1
Ans: (3)	"IN"		
	a temperature change	=	(4)
(1) αt Ans: (1)	$(2) \alpha/t$	(3) t/α	$(4) \alpha + t$
	_	f uniform cross-section d equal to the weight	n produced under its own weight to the of the bar is
(1) 1	(2) 2	$(3) \frac{1}{2}$	$(4) \frac{1}{4}$
Ans: (3)		_	·

92. The ratio between tensile stress and tensile strain or compressive stress and compressive strain is

(2) modulus of elasticity

(4) modulus of subgrade reaction

Ans: (2)

termed as

(1) modulus of rigidity

93. Relation between E, K and C is given by

(3) bulk modulus

99.	. Two bars A and B are of equal length but B has an area half that of A and bar A has young's
	modulus double that of B. When a load 'P' is applied to the two bars, the ratio of deformation
	between A and B is

- $(1)\frac{1}{2}$
- (2) 1

- (3) 2
- $(4) \frac{1}{4}$

Ans: (4)

100. The elongation of beam of length 'l' and cross-sectional area 'A' subjected to a load 'P' is δl . If the modulus of elasticity is halved, the new elongation will be

- (2) $2(\delta l)$
- $(3) \delta l$
- (4) $\sqrt{2}\delta l$

Ans: (2)

101. A 16m diameter central hole is bored out of a steel rod of 40mm diameter and length 1.6m. The tensile strength because of this operation

- (1) increases
- (2) remains constant (3) decreases
- (4) None of these

Ans: (3)

102. The force P for equilibrium of the bar shown in the figure is

- (1) 60kN
- (2) 40kN
- (3) 120kN
- (4) 20kN

Ans: (4)

103. The relationship between Young's modulus and shear modulus when $\frac{1}{2} = 0$, is

- (1) E = 2C
- (3) E = 2C+1
- (4) C = 2E

Ans: (1)

104. If a rigidly connected bar of steel and copper is coiled, the copper bar will be subjected to

- (1) compression (2) shear
- (3) tension
- (4) None of these

Ans: (3)

105. The force required to punch a 10mm diameter hole in a mild steel plate 10mm thick, if the shear strength of mild steel is 360MPa is

- (1) $9\pi kN$
- (2) $36\pi kN$
- (3) $18\pi kN$
- (4) 2.25kN

Ans: (2)

4	4	
	/I .	

106. The shear on principal plane is (1) minimum (2) maximum (3) zero **Ans: (3)**

107. If a body carries two unlike principal stresses, the maximum shear stress is given by

- (1) sum of the principal stresses
- (2) difference of the principal stresses
- (3) half the difference of the principal stresses
- (4) half the sum of the principal stresses

Ans: (3&4) (Options are vague, Using different logics. The options are 3&4 are correct

108. The radius of Mohr's circle for two unlike principal stresses of magnitude σ is

 $(2) \sigma$

(3) $\frac{\sigma}{4}$

(4) infinity

Ans: (2)

109. A solid circular shaft is subjected to a maximum shearing stress of 140MPa. The magnitude of maximum normal stress developed in the shaft is

(1) 140MPa

(2) 80MPa

(4) 60MPa

Ans: (1)

110. If the principal stresses at a point in a strained body are σ_x and σ_y ($\sigma_x > \sigma_y$), then the resultant stress on a plane carrying the maximum shear stress is equal to

(1) $\sqrt{\sigma_x^2 + \sigma_y^2}$

(2) $\sqrt{\sigma_x^2 - \sigma_y^2}$ (3) $\frac{\sqrt{\sigma_x^2 + \sigma_y^2}}{2}$ (4) $\frac{\sqrt{\sigma_x^2 - \sigma_y^2}}{2}$

Ans: (3)

111. A body is subjected to two normal stresses 20 kN/m² (tensile) and 10 kN/m² (compressive) acting mutually perpendicular to each other. The maximum shear stress is

(1) 30 kN/m^2

 $(2)5 \text{ kN/m}^2$

 $(3) 15 \text{ kN/m}^2$

 $(4) 10kN/m^2$

Ans: (3)

112. Principal planes will be free of

(1) normal stress

(2) shear stress

(3) both normal and shear stresses

(4) None of these

Ans: (2)

113. On two perpendicular planes there are normal stresses, σ_1 and σ_2 and shear stress q. If $q^2 = \sigma_1 \sigma_2$, the major and minor principal stresses respectively are

(1) $\sigma_1 + \sigma_2$ and zero

(2) $\sigma_1 + \sigma_2$ and $\sigma_1 - \sigma_2$

(3) Zero and $\sigma_1 - \sigma_2$

(4) $\sigma_1 - \sigma_2$ and $\sigma_1 + \sigma_2$

Ans: (1)

114. Angle between the principal planes is

- $(1) 270^{0}$
- $(2) 180^{0}$
- $(3) 90^0$
- $(4) 45^0$

Ans: (3)

115. For a two-dimensional stress system the coordinates of the centre of Mohr's circle are

$$(1) \left[\frac{\sigma_{x} - \sigma_{y}}{2}, 0 \right] \qquad (2) \left[\frac{\sigma_{x} + \sigma_{y}}{2}, 0 \right] \qquad (3) \left[0, \frac{\sigma_{x} - \sigma_{y}}{2} \right] \qquad (4) \left[0, \frac{\sigma_{x} + \sigma_{y}}{2} \right]$$

$$(2) \left\lceil \frac{\sigma_{x} + \sigma_{y}}{2}, 0 \right\rceil$$

$$(3) \left[0, \frac{\sigma_{x} - \sigma_{y}}{2} \right]$$

$$(4) \left[0, \frac{\sigma_x + \sigma_y}{2} \right]$$

Ans: (2)

116. For a maximum bending moment, shear force at that section should be

(1) zero

(2) maximum

(3) minimum

(4) None of the above

Ans: (1)

117. For uniform shear force throughout the span of a simply supported beam, it should carry

- (1) a concentrated load at the mid-span
- (2) a couple anywhere in the sections
- (3) udl over its entire span
- (4) two concentrated loads equally spaced

Ans: (2)

118. Maximum bending moment in a cantilever carrying a concentrated load at the free end occurs

(1) at the fixed end

(2) at the free end

(3) at the mid span

(4) None of these

Ans: (1)

119. The given figure shows the shear force diagram for the beam ABCD. Bending moment in the portion BC of the beam

- (1) is zero
- (2) varies linearly from B to C
- (3) parabolic variation between B and C
- (4) is a non zero constant

Ans: (4)

120. At the point of contra flexure in a beam

(1) B.M. is zero

(2) B.M. changes its sign

(3) S.F. is zero

(3) Both S.F and B.M. change sign

Ans: (2)

121. The kinetic energy correction factor α is a measure of effect of non-uniform distribution of velocity which is caused on account of viscous and other resistances. It is expressed by

$$(1) \frac{1}{A} \int_{A} \left(\frac{v}{V}\right)^{2} dA$$

(2)
$$\frac{1}{\Delta} \int \left(\frac{\mathbf{v}}{\mathbf{V}}\right) d\mathbf{A}$$

$$(1) \frac{1}{A} \int \left(\frac{v}{V}\right)^2 dA \qquad (2) \frac{1}{A} \int \left(\frac{v}{V}\right) dA \qquad (3) \frac{1}{A} \int \left(\frac{v}{V}\right)^3 dA \qquad (4) \frac{1}{A} \int \left(\frac{V}{V}\right)^3 dA$$

$$(4) \frac{1}{A} \int \left(\frac{V}{V}\right)^3 dA$$

Ans: (3)

122.	Α	stagnation	point i	is a	point	where
		~	P		P	

(1) pressure is zero

- (2) total energy is zero
- (3) total energy is maximum
- (4) velocity of flow reduces to zero

Ans: (4)

123. Cavitation in fluid flow occurs when

- (1) the total energy suddenly increases
- (2) total energy decreases suddenly
- (3) velocity head reduces to zero
- (4) pressure of flow decreases to a value close to its vapour pressure

Ans: (4)

124. The momentum correction factor β is used to account for

- (1) change in pressure
- (2) change in mass rate of flow
- (3) change in total energy
- (4) non-uniform distribution of velocities at inlet and outlet sections

Ans: (4)

- 125. The change in moment of momentum of fluid due to flow along a curved path results in
 - (1) a dynamic force which passes through the centre of curvature
 - (2) a torque
 - (3) a change in energy
 - (4) a change in pressure

Ans: (2)

126. The velocity head representing the kinetic energy per unit weight of fluid is denoted by

(1)
$$v^2$$

(2)
$$\frac{v^2}{2}$$

$$(3) \sqrt{2gh}$$

$$(4) \ \frac{v^2}{2g}$$

Ans: (4)

127. A prandtl type pitot tube is used to measure the

- (1) velocity of flow at the required point in a pipe
- (2) pressure difference between two points in a pipe
- (3) total pressure of liquid flowing in a pipe
- (4) discharge through a pipe

Ans: (1)

- 128. While using the pitot-tube, it must ensured that its alignment is such that
 - (1) its horizontal leg is at right angles to the direction of flow
 - (2) its opening faces the downstream direction
 - (3) its opening faces upstream and the horizontal leg is perfectly aligned with the direction of flow
 - (4) the horizontal leg be inclined at 45⁰ in plan

Ans: (3)

129. The coefficient of discharge 'C_d' of a venturi meter lies within the limits

$$(1) 0.7 - 0.9$$

$$(2) 0.6 - 0.8$$

$$(3) 0.75 - 0.95$$

$$(4) 0.95 - 0.99$$

130. Ans:	When the venturi meter (1) same (1)	is inclined, the (2) more	_	n flow it will gi less	ive the reading as (4) no relation
131. Ans:	The velocity of liquid fl (1) remains constant (2)	owing through (2) decreases	_	nt portion of a vincreases	venturi meter (4) no relationship
132. Ans:	The head loss is more in (1) nozzle meter (3) inclined venture met (4)		(2) venture (4) orifice		
133.		low, and the side	de piezome (2) non-uni		
Ans:	(2)				
Ans:	velocity of flow, and what (1) Anemometer (3) A mouthpiece and an of 'H'. The discharge through (1) the same as that of the (3) more than that of the	nich is used med (2) Orifice med rifice, both of to ough the mouthphe orifice	asure the veter (3) the same dipiece will be	locity of liquid Current meter ameter 'd', are e n that of the ori	(4) Rotameter discharging under the same head
Alls:	(3)	S			
	As compared to a rectar discharge through the late (1) $\frac{2}{3}C_d\sqrt{2g}\tan\theta.H^{\frac{5}{2}}$ (3) $\frac{8}{15}C_d\sqrt{2g}\tan\theta.H^{\frac{3}{2}}$	atter being	C	$\sqrt{2g} \tan \theta.H^{\frac{5}{2}}$	w discharges more accurately, the
Ans:	13		3		
137.	A Cippoletti weir is a (1) rectangular weir wit (2) high triangular notel (3) trapezoidal notch wi (4) trapezoidal notch wi	h ith 45 ⁰ slopes	ed at 1H : 4V	V	

138.	. The time taken for a tank, filled to a height 'h' above its flat base, to empty through an orifice in the base varies as the following power of 'h'.					
	(1) 1	$(2) \frac{1}{2}$		$(3) -\frac{1}{2}$	$(4) \frac{1}{3}$	
Ans:	(2)					
	The equation of state for (1) $\frac{P}{V} = RT$		_		$(4) \frac{P}{\rho} = T$	
Ans:	(3)					
140.	If the compression or e nor takes heat from its s	surroundings, th	-	ess is said to be		
Ans:	(1) Isothermal(2)	(2) Adiabatic		(3) Isobaric	(4) None of	mese
	For an adiabatic process (1) PV = a constant (3) $\frac{P}{\rho^{K}}$ = a constant	5,	$(2) PV$ $(4) \frac{P}{K^{f}}$	n = a constant = = a constant	9.	
Ans:	(3)			100		
142.	Momentum equation is (1) compressibility effe (3) viscous effects		(2) fric	nt of etional effects mentum flux		
Ans:	` '	~	(A)			
143. Ans:	The velocity of elastic p (1) sonic velocity (3) square root of sonic (1)	. 6	(2) hal	d medium is equal t f of sonic velocity lk Modulus	co	
144. Ans:	Mach number is given by (1) Acoustic speed Stream speed (3) product of gas const (2)		ature	(2) Stream speed Acoustic speed (4) half of Bulk M		
145. Ans:	Mach cone is possible in (1) Stationary fluids (3) Transonic flow (4)	n		(2) Subsonic flow (4) Supersonic flo	W	

- 146. The range of Mach number for a subsonic flow is
 - (1) 0 < M < 1
- (2) 0.3 < M < 1
- (3) 0.8 < M < 1.2
- (4) M > 1

Ans: (2)

- 147. The differential form of continuity equation for one dimensional steady flow compressible fluids with usual terms is
 - $(1) \frac{d\rho}{\rho} + \frac{dA}{A} = 0$

 $(2) \frac{dA}{A} = \frac{d\rho}{\rho} + \frac{dV}{V}$

 $(3) \frac{dA}{\rho} = \frac{dV}{V} - \frac{d\rho}{\rho}$

 $(4) \frac{dA}{A} = -\frac{d\rho}{\rho} - \frac{dV}{V}$

Ans: (4)

- 148. For flow in a nozzle discharging from a tap "choking" condition occurs, when the flow the nozzle exit is
 - (1) subsonic
- (2) supersonic
- (3) critical
- (4) transonic

Ans: (3)

- 149. Effect of compressibility of a fluid can neglected if Mach number is
 - (1) equal to 1

- (2) greater than 1
- (3) less than 1 but greater than 0.4
- (4) less than 0.4

Ans: (4)

- 150. Laminar flow through a circular tube studied experimentally by
 - (1) Newton

- (2) Pascal
- (3) Hagen and Poiseuille
- (4) Prandtl

Ans: (3)

Key Prepared by
ACE Engineering Academy