Third Semester B.E. Degree Examination, Dec.09/Jan.10 Network Analysis

Time: 3 hrs.

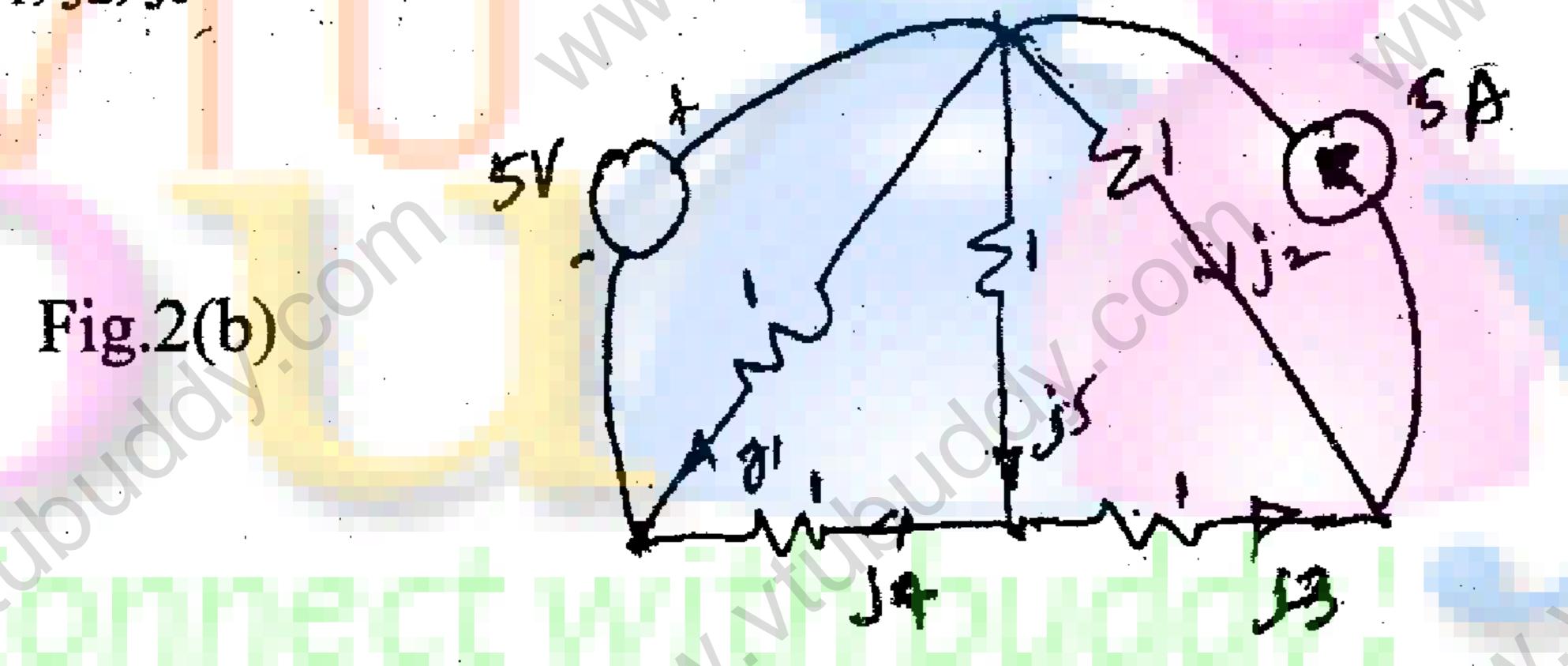
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

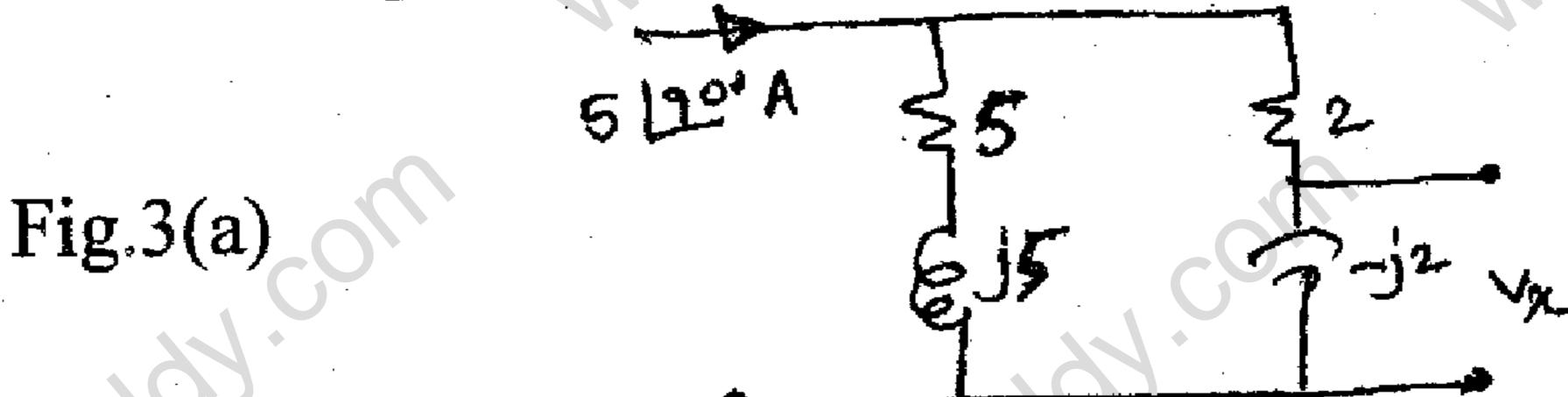
1 a. Write the mesh equations for the circuit shown in Fig.1 and solve for currents i₁, i₂ and i₃. (10 Marks)

Fig.1(a)
$$10A(7) = 3.1$$
 3.1


b. The node voltage equations of a network are

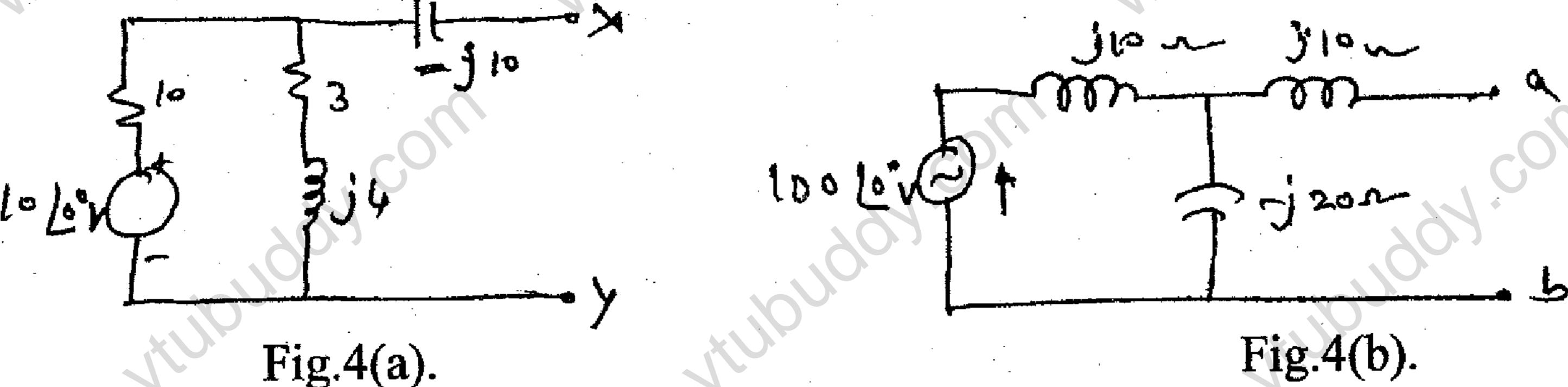
$$\left(\frac{1}{5} + \frac{1}{2}j + \frac{1}{4}\right) v_1 - \frac{1}{4} v_2 = \frac{50|\underline{0}^{\circ}}{5} \text{ and } -\frac{1}{4} v_1 + \left(\frac{1}{4} - \frac{1}{j2} + \frac{1}{2}\right) v_2 = \frac{50|\underline{90}^{\circ}}{2}. \text{ Derive the network.}$$
(10 Marks)

a. Define the following terms with respect to the network topology. Give examples.


i) Tree; ii) Graph; iii) Sub graph; iv) Tieset; v) Cutset. (08 Marks)

b. For the network shown in Fig.2(b), write the graph and obtain the tieset schedule considering j₁, j₂, j₅ as tree branches. Also calculate all branch currents. (12 Marks)

3 a. In the circuit shown in Fig.3(a), find v_x and prove reciprocity theorem.

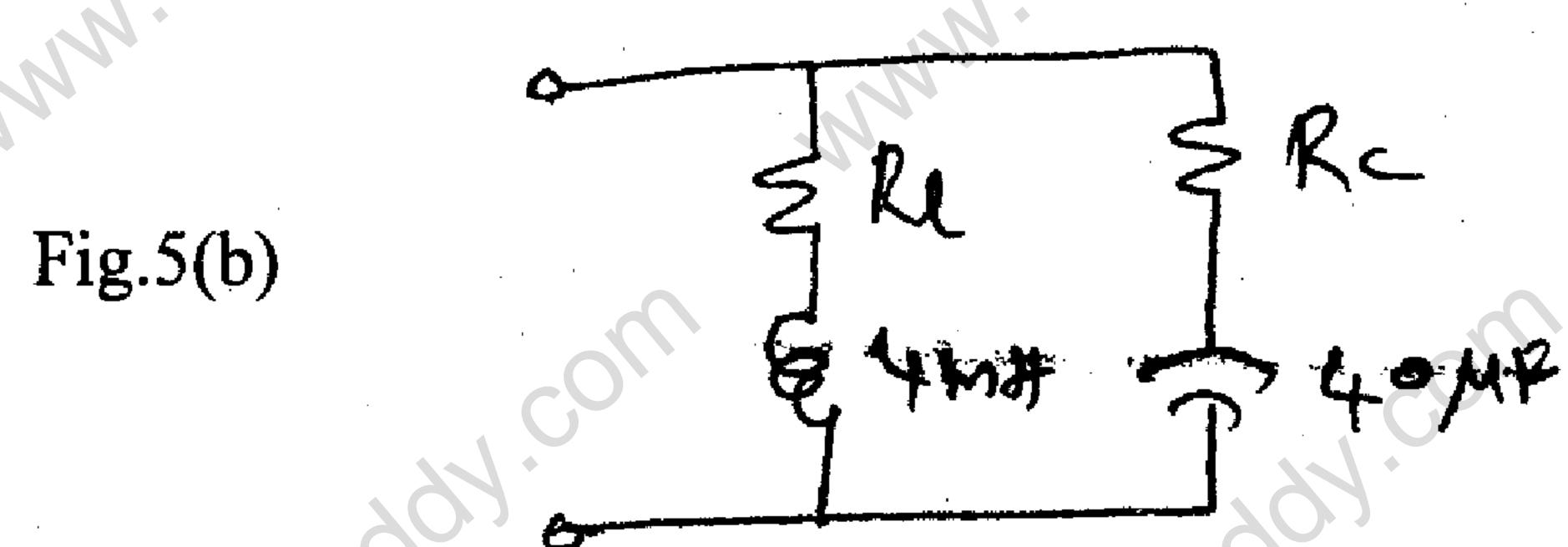

(10 Marks)

b. State and explain super position theorem with a suitable example.

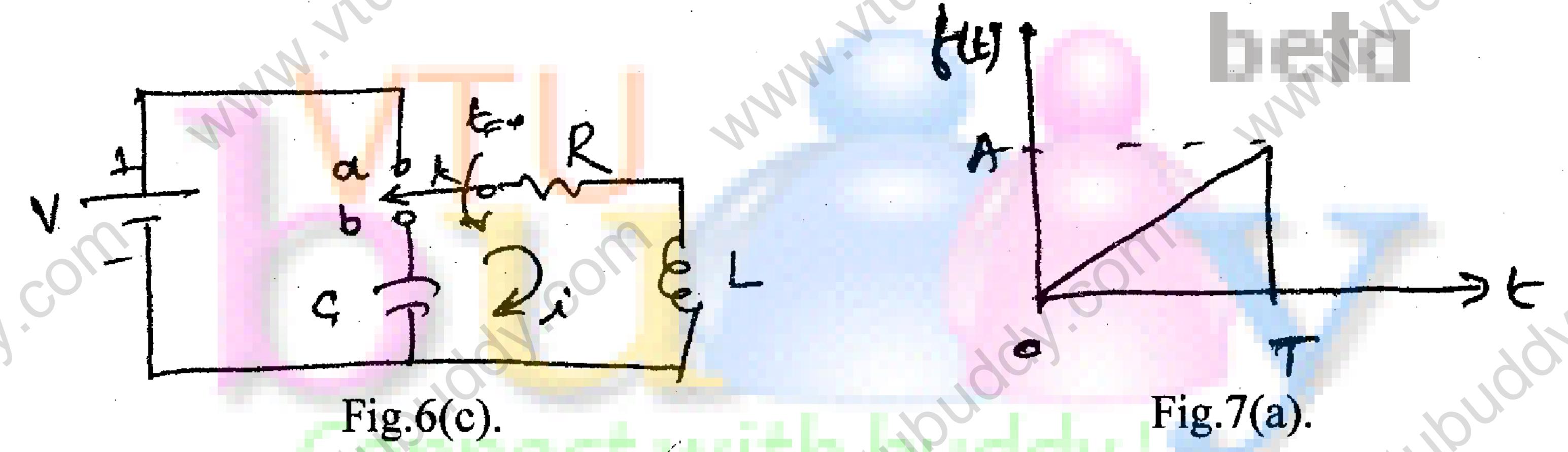
(10 Marks)

4 a. Obtain the Thevenin's equivalent network for the circuit in Fig.4(a) between the terminals X and Y. (10 Marks)

b. What should be the value of pure resistive load to be connected across the terminals a and b in the network shown in Fig. 4(b), so that maximum power is transferred to the load? Calculate the maximum power.


(10 Marks)

PART – B


- that for a series RLC resonant circuit the selectivity fo: resonate frequency f1 and f2 are half power frequency. (08 Marks)

 - Determine R_L and R_C for which the circuit shown in Fig.6 resonates at all frequencies.

(06 Marks)

- It is required that a series RLC circuit should resonate at 1 MHz. Determine values of R, L and C if bandwidth of the circuit is 5 kHz and its impedance is 50 Ω at resonance. (06 Marks)
- Explain the importance of study of initial conditions in electric circuit analysis.
 - Explain the behaviour of R, L and C elements for transients. Mention their representation at the instant of switching. (06 Marks)
 - In the circuit shown in Fig.6(c), the switch is moved from 'a' to 'b' at t = 0. Find the values of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$, if $R = 1 \Omega$, L = 1 H, $C = 0.1 \mu F$ and V = 100 V. Assume steady state is achieved when k is at 'a'. (08 Marks)

- Obtain the Laplace transform of saw took waveform shown in Fig.7(a). (06 Marks)
 - b. Find the Laplace transform of i) $\delta(t)$; ii) t; iii) e^{-at}. (06 Marks)
 - c. Find f(0) and $f(\infty)$ using initial value and final value theorem for the function given below.

$$F(s) = \frac{s^3 + 7s^2 + 5}{s(s^3 + 3s^2 + 4s + 2)}.$$
 (08 Marks)

a. Find y parameters for the network shown in Fig.8(a). (08 Marks)

- Determine the 'h' parameters for the network shown in Fig.8(b). (08 Marks)
- c. Mention the application of Transmission parameters; ii) 'h' parameters; iii) 'z' parameters. (04 Marks)