
 

 

FLUID MECHANICS 
LAMINAR FLOW AND VISCOUS FLOWS 

 
Viscosity plays an important role.  
Low velocity flows. 
Laminar flow - where each fluid layer glides over the adjacent layer. 

Shear stress (τ) = µ(du/dy). 
Ex., Flow of viscous fluid through circular pipe, two parallel plates, bearings etc.,  

 

NO SLIP CONDITION 

 
In ideal fluids, when fluid passes over a boundary, it slips over the boundary 

and velocity distribution is uniform over the boundary. 
In real fluids, due to viscosity, there is no relative motion between the boundary and 
fluid. The fluid at the boundary has the same velocity as the boundary – This is 
known as “No Slip Condition”.  

In a real fluid flow with stationary boundary, the velocity is zero at the 
boundary and increases as we go away from the boundary. This change in velocity 
gives rise to a velocity gradient and hence the viscous shear resistance opposing the 
motion. Due to this resistance to motion, power is required to maintain flow of real 
fluids. Hence, in many fluid flow problems, effect of viscosity cannot be neglected 
near the boundaries.  

 
LAMINAR AND TURBULENT FLOWS 

 
Depending upon the relative magnitudes of the viscous forces and inertia 

forces, flow can exist in two types- Laminar Flow and Turbulent Flow 

 
REYNOLDS EXPERIMENTS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. Reynolds Experiments 
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The nature of dye filament was observed at different velocities: 
1. At low velocities, the dye remained in the form of straight stable filament 

parallel to the axis of the tube:  (a) – The flow is laminar. 
2. At higher velocities, dye filament showed irregularities and wavy nature: (b)- 

The flow is transitional.  
3. With further increase in velocity, the filaments become more and more 

irregular, and finally dye is diffused over the complete cross section: (c) The 
flow is turbulent. 

At low velocities, flow takes place in number of sheets or laminae. This flow is 
called Laminar Flow. At high velocities, the flow is disturbed and inter-mixing of 
particles takes place. The flow is called Turbulent Flow.   
   

TYPES OF FLOW AND LOSS OF HEAD 
 

Loss of head, hf is measured in a pipe of length (L) for various values of 

velocity (v) in the pipe and (hf/L) vs (v) is plotted in a log – log plot  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Types of Flow and Loss of Head 
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Loss of head (hf) is measured in a pipe of length (L) for various values of flow 

velocity (v) in the pipe and (hf/L) Vs (v) are plotted on a log – log scale. At low 

velocities, up to point (B), the curve is a straight line. (hf) is proportional to (v) up to 

point (B). We see transition up to point (C). After (C) again, the curve obtained has a 
slope varying from 1.75   to 2.  

Up to (B), it is one type of flow called the laminar flow in which (hf) is 

proportional to (v). Beyond (C), it is another type of flow in which (hf) is proportional 

to (Vn) where n=1.75 to 2. This is called turbulent flow. However, if the velocity is 
reduced from a high value, line BC is not retraced. Instead, the points lie along line 
CA.   

Point (B) is called as higher (or upper) critical point and the corresponding 
velocity is called as upper critical velocity. Point (A) is called as lower critical point 
and the corresponding velocity is called as lower critical velocity. Reynolds Number, 
which is the ratio of inertia force to viscous force is the criterion which decides 
whether the flow is laminar or turbulent. 

Re= (ρVL/µ)= (VL/ν). For pipes, L=d, the diameter of the pipe which is a 
characteristic dimension.  

The Upper Critical Reynolds Number corresponding to point (B) is not definite. 
Its value depends upon how carefully the initial disturbance affecting the flow is 
prevented. Normally, Upper Critical Reynolds Number for pipe flow is about 4000. 
(Note: with proper precaution, values as high as 50,000 can be achieved. 

The Lower Critical Reynolds Number corresponding to point (A) is definite. 
For a straight pipe, its value is about 2000. This Reynolds Number is the true Critical 
Reynolds Number, which is the dividing line between the laminar and turbulent flows. 
The Reynolds Number below which the flow is definitely laminar is called the Critical 
Reynolds Number ( For pipe flow, Re (critical) around 2000.  
   

LAMINAR FLOW 

 
Definition: The flow in which the particles of fluid behave in orderly manner 

with out intermixing with each other and the flow takes place in number of sheets, 
layers or laminae, each sliding over the other is called as laminar flow.   
 
Characteristics of Laminar Flow:  

1. Particle of fluid behave in disciplined manner. No inter-mixing of particle.Flow 
takes place in layers which glide over one another. 

2. Velocity of flow at a point is nearly constant in magnitude and direction. 
3. Viscous force plays an important role in fluid flow (as compared to other 

forces).  
4. Shear stress is obtained by the Newton’s Law of Viscosity. 
5. Any disturbance caused is quickly damped by viscous forces 
6. Due to No-slip condition, velocity across the section is not uniform. Velocity 

gradient and hence, the shear stress gradient is established at right angles to 
the direction of flow. 

7. Loss of head is proportional to the velocity of flow. 
8. Velocity distribution is parabolic in nature (pipe flow)  

 
 
 
 



 4

 
 
 
Practical examples of laminar flow: Flow of oil in lubricating mechanisms, 

capillary tubes, blood flow in vein etc.,  

 
SHEAR AND PRESSURE GRADIENT IN LAMINAR FLOW 

 

Because of No-Slip Condition at the wall, different layers move over each 
other with different velocities in the flow near the wall. The relative motion between 
the layers gives rise to shear stress.  Shear stress varies from layer to layer and it is 
maximum at the wall.                                           

Shear stress (τ) = µ(du/dy) 
Shear stress gradient exists across the flow. Also, along the flow, pressure 

will vary to maintain the flow and pressure gradient exists along the flow.  
 

RELATION BETWEEN SHEAR AND PRESSURE GRADIENTS IN 

LAMINAR FLOW  

 
Consider the free body of the fluid element with sides (dx, dy, dz) as shown in 

the Fig.  For ex, in the flow inside a pipe. 

(τ) = Shear stress; p=pressure  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. Shear and Pressure Gradients in Laminar Flow  
 

Various forces acting on the element are shown in Fig. For steady uniform 
flow, there is no acceleration and the sum of forces acting in the direction of motion 
must be equal to zero. (Forces in +(x) direction are taken as positive) 
Pressure forces + Shear forces =0 
[p. dydz – {p + (∂p/∂x)dx}dydz] +[{τ+(∂τ/∂y)dy} dxdz – τdxdz] = 0 
Simplifying,  
–(∂p/∂x)dxdydz + (∂τ/∂y)dxdydz = 0; Dividing by dxdydz, the volume of the 
parallelepiped,  

   (∂p/∂x) = (∂τ/∂y) 

 
 
 
 



 5

 
 

 
 
For a two- dimensional steady uniform laminar flow, the pressure gradient in 

the direction of flow is equal to the shear stress gradient in the normal direction. 

Since p=p(x)  and τ  = τ (y) only, and according to the Newton's law of viscosity,  

(τ) = µ(du/dy); we get (∂p/∂x) = µ(∂2u/∂y2)  
Problems on steady uniform laminar flows can be analyzed by integrating this 

equation. 

 

LAMINAR FLOW THROUGH A CIRCULAR PIPE 

 
Consider a steady laminar flow of fluid through a horizontal circular pipe as shown. 
Consider a concentric cylindrical element having radius (r) and length (dx)  
Note: Shear stress resists motion. 

 

 
  

 

 

 

 

 

 

 
Fig. Laminar Flow through Circular Pipe 

 
 
Since the flow is steady and uniform, there is no acceleration and the sum of 

all forces acting on the element in x-direction must be zero. 

p.π r2 –(p+(∂p/∂x)dx) πr2 – τ2πrdx = 0 

Or     –(∂p/∂x)dx πr2 – τ2πrdx =0 

Or     τ = –(∂p/∂x)(r/2); Gives the variation of shear stress with respect to radius. 
At the center, r=0, and shear stress is zero. At the pipe wall, r=R, the shear stress is 

maximum.  τo = –(∂p/∂x)(R/2) 
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Fig. Velocity and Shear Stress Distributions 

 

 

VELOCITY DISTRIBUTIONS 

 
According to the Newton's Law of Viscosity,  

(τ) = µ(du/dy); But y= (R– r) and ∂y =–∂r 

Therefore, (τ)= –µ(∂u/∂r) = –(∂p/∂x)(r/2) 

Therefore, (∂u/∂r) = (1/2µ)( ∂p/∂x)r 
Integrating w.r.t. (r) we get,     

u= (1/2µ)( ∂p/∂x)(r2/2) +C ; where   C=Constant 

(∂p/∂x) is independent of (r) 
Now, let us find constant C 
At r = R, that is at the wall, u=0. 

0=(1/4µ)( ∂p/∂x)R2 +C 

Or C= –(1/4µ)(∂p/∂x) R2  

u=(1/4µ)( ∂p/∂x)(r2-R2)  or  

u=(1/4µ)(- ∂p/∂x)(R2-r2) 
 

Since µ, (∂p/∂x) and R are constant, u varies with square of r. 
Thus, for steady laminar flow through a circular pipe, the velocity variation across the 
section is parabolic in nature. 
At r=R, u=0 
At r=0,i.e.,at center of the pipe, u=umax   

umax = (R2/4µ)(- ∂p/∂x) 

u=(1/4µ)(- ∂p/∂x)(R2-r2) 

  =(R2/4µ)(-∂p/∂x)[1-(r/R)2] 

But (R2/4µ)(- ∂p/∂x)= umax Therefore, u= umax [1-(r/R)2] 

Gives the velocity distribution in the pipe, which is parabolic. 
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DISCHARGE AND AVERAGE VELOCITY 
 

Discharge (q) across a section is found by integrating the discharge (dq) 
passing through an annular ring of width (dr) situated at a distance ( r) from the 
center. Discharge through the annular ring=area of the ring X velocity at radius (r) 

dq=2πr dr [(1/4µ)(- ∂p/∂x)(R2-r2)] 
Total discharge,  

q =0∫R (R2-r2) r dr [(1/4µ)(- ∂p/∂x) 2π] 

=(π /2µ) (-∂p/∂x) [(R2 r2 /2)-(r4/4)]0R  

=(π/2µ) (-∂p/∂x) [(R4 /2)-(R4/4)] 

q= (πR4 /8µ) (-∂p/∂x)  
Average velocity= uav 

=(q/area of pipe)=(q/ πR2) 

uav= (πR4 /8µ) (-∂p/∂x) (1/ πR2) 

= (R2/8µ) (-∂p/∂x); But (R2/4µ)(- ∂p/∂x)= umax. Therefore, uav =[umax/2] 

Thus, in case of steady laminar flow through a circular pipe, average velocity 
is half of max. Velocity.  
The radius at which the local velocity is equal to the average velocity is given by: 

u= umax [1-(r/R)2]= uav=  (umax /2) 

   [r2 /R2]= 0.5    or  r=0.707R 
Thus the average velocity occurs at a radial distance of 0.707R from the center of 
the pipe.  
Pressure drop over a given pipe length: We know that, 

uav = (R2/8µ) (-∂p/∂x)  

(-∂p/∂x)= [(8µ uav) /R2] 

-dp=[(8µ uav) /R2] dx Integrating from 1 to 2 

∫-dp = ∫ [(8µ uav) /R2] dx At 1, p=p1, x=x1; At 2, p=p2, x=x2 
 

 

 

 

 

 

 

 

 

 

 

Fig. Pressure Drop over a Length of Pipe. 
 

(p1 – p2) = [(8µ uav) /R2] (x2 – x1) 

L= (x2 – x1) 

(p1 – p2) = [(8µ uav) /R2] (L) --------Eq.(1)    

Since D=2R,    (p1 – p2) = (32µ uavL/D2) 
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Further, uav = [4q/ πD2]; Substituting for uav , We get  

(p1 – p2) = [128µqL/(πD4)] -----Eq.(2) 

Equations.(1) or (2) are called Hagen-Poiseuille’s equation for steady uniform 
laminar flow through a circular pipe. 
To obtain H-P equation, we can also use 

   q= (πR4 /8µ) (-∂p/∂x)  

-dp = (8µq/ πR4)dx = (128µq/ πD4)dx 
Integrating between (1) and (2) 

(p1 – p2) = [128µqL/πD4]  

But (4q/ πD2) = uav 
Therefore,  

(p1 – p2) = [32µuavL/D2] - -----Eq.(3) 

Another version of Hagen-Poiseuille’s Equation  

 
 

LAMINAR FLOW THROUGH A CIRCULAR PIPE  

 
For a two- dimensional steady uniform laminar flow, the pressure gradient in 

the direction of flow is equal to the shear  

 

LOSS OF HEAD 
 

 
 
 
 
 
 
 
 
 

Fig. Loss of Head 
 
Specific weight (γ) = ρg 

(p1 – p2) = [32µuavL/D2]  

Loss of Head, hf = [(32µuavL)/( γD2)]  

      = [(128µqL)/( γπD4)]  
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FRICTION FACTOR (f) 

 
The loss of head due to friction in pipe is given by Darcy- Weisbach equation  

hf = [(4fLuav2)/(2gD)] = [(32µuavL)/(ρgD2)] 

Simplifying, we get  
f =  16(µ/rDuav) = [16 / Re] ; Therefore, the value of the friction factor for a steady 

laminar flow through a circular pipe,              f = [16 / Re]  

 
POWER REQUIRED TO MAINTAIN THE FLOW 

 
Power = Rate of doing work = (Force × Distance) /Time = Force × Velocity 

Force = (-∂p/∂x)AL where A= Area of Pipe and  
L = Length of pipe. 

Power (P)= (-∂p/∂x)AUL ; where AU = q, the discharge, U= Average Flow Velocity. 

(-∂p/∂x) = (p1 – p2)/L ; Therefore,  

Power (P) = (p1 – p2)q ; But (p1 – p2) = ρghf  

Therefore, Power (P) = ρgqhf  
 

For laminar flow through an inclined pipe,  
 
 

 
 
 
 
 
 
 
 
 

Fig. Laminar Flow through an Inclined Pipe, 

 
We have      u=(1/4µ)(- ∂p/∂x)(R2-r2) 

Or                u=(1/4µ) ρg (-∂h/∂x)(R2-r2) 

Power (P) = ρgq (h1 – h2)  where h1 and h2 are peizo-metric heads = [(p/ρg) + z]  
 

 
 
 
 
 
 
 
 
 
 
 
 



 10 

 
 
Problem-1  
Calculate the loss of head in a pipe having a diameter of 15cm and a length of 2km. 
It carries oil of specific gravity 0.85 and viscosity of 6 Stokes at the rate of 30.48 lps 
(Assume laminar flow). 

(p1 – p2) = [128µqL/πD4] ; (p1 – p2)= ρgqhf  

hf = (p1 – p2)/ρg = [128µqL/ρgπD4]  

(µ/ρ) = ν = 6 Stokes = 6×10–4 m2/s;   (Stoke = 1cm2/sec.) 
Substituting,  

hf= (128×6×10–4×0.03048×2000)/ (π×9.81×0.154) 

Loss of head (hf) =  300 m 

 
Problem - 2  
Calculate the power required to maintain a laminar flow of an oil of viscosity 10P 
through a pipe of 100mm diameter at the rate of 10 lps if the length of the pipe is       

1 km.   (assume laminar flow) (1 Ns/m2 = 10 Poise) 

∆P = [128µqL/πD4]   

= (128×1×10×10–3×103)/(π× 0.14)  

= 4.075×106 N/m2 

Power = ∆P×q = 4.075×106×10×10-3 = 40.75kW 
 
Problem-3.  
Oil of viscosity 8P and specific gravity 1.2 flows through a horizontal pipe 80mm in 

diameter. If the pressure drop in 100m length of the pipe is 1500 kN/m2, determine,  
1. Rate of flow of oil in lpm. 
2. The maximum velocity 
3. The total frictional drag over 100m length of pipe  
4. The power required to maintain flow. 
5. The velocity gradient at the pipe wall. 
6. The velocity and shear stress at 10mm from the wall. 

We have (-∂p/∂x)  

  = 1500×1000/100 = 15,000 N/m2/m  

Average velocity = uav=(R2/8µ)(- ∂p/∂x) = (0.042/8×0.8)(15,000) = 3.75m/s.  

Discharge (q) = (πD2/4)uav = 0.01885 m3/s 

= 18.85 lpm = 1131 lpm.               (D=0.08m) 
Max. Velocity (umax) = 2 uav = 7.0 m/s (at the center line) 

Wall shear stress (τo)= –(∂p/∂x)(R/2)=300N/m2 

Total frictional drag for 100m-pipe length (FD) 

= τo πDL = 7540N  = 7.54kN           (L=100m) 

Power required to maintain flow (P) = FD× uav = 28.275 kW ;  

Also, P= q∆P = 0.01885×1500= 28.275 kW. 
 Velocity gradient at pipe wall  

τo = µ(∂u/∂y)y=0 

(∂u/∂y)y=0 = (τo/µ) = 300/0.8 = 3.75/s  

(10P = 1 N-m/s2) 
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Velocity and shear stress at 10mm from the wall (y=10mm, r=30mm) 

At r=30mm, shear stress (τ) = τo (30/40) = 225N/m2   

OR (τ) = (-∂p/∂x)(r/2) = 225N/m2 

 Local velocity (at r=30mm)  

   u= umax [1-(r/R)2] = 3.28m/s. 

 
Problem-4   

Oil is transported from a tanker to the shore at the rate of 0.6m3/s using a pipe of 

32cm diameter for a distance of 20km. If the oil has the viscosity of 0.1Nm/s2 and 

density of 900 kg/m3, calculate the power necessary to maintain flow. 

(p1 – p2) = [128µqL/πD4] 

Power (P) = (p1 – p2) q 

 
 

 

LAMINAR FLOW BETWEEN PARALLEL PLATES  

– BOTH PLATES FIXED 

 
Plates are at distance (B) apart. Consider a fluid element as shown with sides 

(dx, dy, dz). The flow is a steady and uniform. There is no acceleration.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. Laminar Flow through Parallel Plates 
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Sum of all forces in the direction of motion is zero.  

Pressure forces + Shear forces =0 
[p. dydz – {p + (∂p/∂x)dx}dydz] +[{τ+(∂τ/∂y)dy} dxdz – τ dxdz] = 0;        
Simplifying,  
–(∂p/∂x)dxdydz + (∂τ/∂y)dxdydz = 0; Dividing by dxdydz, The volume of the 
parallelepiped,  

   (∂p/∂x) = (∂τ/∂y) 
According to the Newton's law of viscosity,  

(τ) = µ(du/dy); Therefore, (∂p/∂x) = µ(∂2u/∂y2) 

 (∂2u/∂y2) = 1/µ (∂p/∂x) ; Since (∂p/∂x) is independent of (y), integrating the above 
equation, we get  

(∂u/∂y) = 1/µ (∂p/∂x)y + C1 ; Integrating again,  

  u = 1/2µ (∂p/∂x)y2 +C1y + C2  

C1 and C2 are constants of integration. 

At y=0,  u=0; Therefore, C2 = 0; At y=B (at the upper plate); u=0. 

0 = 1/2µ (∂p/∂x)B2 + C1B   OR  C1 = 1/2µ (–∂p/∂x)B ; Substituting,  

u = 1/2µ (–∂p/∂x) [By – y2]  
 

This equation shows that the velocity distribution for steady laminar flow 
between fixed parallel plates is parabolic. 

(∂p/∂x) – Pressure decreases in the direction of flow and [–(∂p/∂x)] is a positive 
quantity. 
Max. Velocity occurs mid-way between the plates and can be obtained using 
y=(B/2). 

Umax= B2/8µ (–∂p/∂x)  

 
DISCHARGE AND AVERAGE VELOCITY  

 

Consider an elemental strip of height (dy) situated at a distance (y) from the 
bottom plate as shown. Consider unit width normal to the plane of paper.  

 

 

 
 
 
 
 
 

Fig. Discharge and Average Velocity 
 
Velocity of fluid passing through the strip,   

u = 1/2µ (–∂p/∂x) [By – y2]  
Discharge through the strip per unit width =  
dq = Area ´ Velocity 

     = dy × 1× 1/2µ (–∂p/∂x) [By – y2]  
Discharge (q) per unit width of plate 
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q = 
0∫

B [1/2µ (–∂p/∂x) [By – y2]dy  

Integrating, q = 1/2µ (–∂p/∂x)[B3/2 – B3/3] 

OR          q= (B3/12µ) (–∂p/∂x) 
Average velocity = uav = (q/Area) 

Area = B × 1; uav = (B2/12µ) (–∂p/∂x) 

Since Umax= B2/8µ (–∂p/∂x); uav = (2/3) Umax  
In the case of steady laminar flow between two fixed parallel plates, the 

average velocity is equal to (2/3) maximum velocity 

 

 

PRESSURE DROP OVER A GIVEN LENGTH OF PLATES 

 
In the case of steady laminar flow between two fixed parallel plates, the average 
velocity is  
equal to   
 

 uav = (B2/12µ) (–∂p/∂x) 

(– ∂p) = [12µ uav/B2] ∂x  OR 

Integrating between sections (1) and (2) 

 
1∫

2(–∂p) = 
1∫

2 [12µ uav/B2] ∂x  

At (1), x=x1, p=p1; At(2), x=x2, p=p2  

(p1 – p2) = [12µ uav/B2] (x2 – x1)  OR  

(p1 – p2) = [12µ uav/B2] L  where L = (x2 – x1)  

 
 

LOSS OF HEAD AND SHEAR STRESS 
 

 

Loss of Head: hf = [(p1 – p2)/ρ g] = [12µ uav/ρgB2] L 

Shear stress: According to the Newton’s law, (τ) = µ(du/dy) 

(τ) = µ(d/dy)[1/2µ (–∂p/∂x) {By – y2}]  

OR   (τ) = µ[1/2µ (–∂p/∂x) {B – 2y}]  

OR   (τ) = (–∂p/∂x) (B/2 – y)  

Shows the variation of shear stress with distance (y) - (τ) = 0 at y = B/2, mid-way 
between the plates. 
Shear stress is maximum at the plates –  

(τ) = (τ
0
) at y = 0 or B. 

(τ
0
) = (– ∂p/∂x) (B/2)  

 
Laminar Flow through Inclined Plates: 

Replace (∂p/∂x) by ρg(∂h/∂x)  where 

h = z + (p/ρg) 

u = 1/2µ [–∂ (p+ ρgz)/ ∂x) {By – y2}]  
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Fig. Laminar Flow through Inclined Plates 

 
Problem-1  

Oil of specific gravity 0.92 and dynamic viscosity 1.05 poise flows between two fixed 
parallel plates 12mm apart. If the mean velocity is 1.4m/s, calculate (a) maximum 
velocity (b) velocity and shear stress at a distance of 2mm from one of the plates and 
(c) loss of head over a distance of 25m.  
For laminar flow between parallel plates, we have uav = 1.4 m/s.       

(a) umax = (3/2) uav = 2.1 m/s 

(b) Velocity at 2mm from one of the plates: 

      u = 1/2µ (– ∂p/∂x) [By – y2]; To get (∂p/∂x) 

uav = (B2/12µ) (–∂p/∂x); (–∂p/∂x) = (12µuav/B2) 

= (12×1.05×10–1×1.4)/(12×10–3)2  

= 12,250 N/m2/m; Substituting we get  
u [at y=2mm] = 1.167m/s    
(c) Loss of head in 25m length:  

hf =[12µ uav/rgB2] L =  

[(12×0.105×1.4)/(0.92×1000×9.81)(1.2×10–2)2] 25 
= 33.933m  
 
Problem 2  
Two parallel plates kept at 100mm apart have laminar flow of oil between them. The 
maximum velocity of flow is 1.5m/s. Calculate (a) Discharge per meter width (b) 
Shear stress at the plates (c) Pressure difference between two points 20m apart    
(d) Velocity gradient at the plates (e) Velocity at 20mm from the plate. Take viscosity 
of oil as 2.45 pa-s.    
 
(a) Given umax = 1.5m/s.; uav = 2/3 umax = 1m/s;  

Discharge per unit width (q) =  (B×1×uav) = 0.1m/s/m width 

(b) Shear stress at the plate:   

(τ
0
) = (– ∂p/∂x) (B/2) ;   Pa-s = N-s/m2 

 uav = (B2/12µ) (–∂p/∂x) 

(–∂p /∂x) = (12µuav)/B2 = 2490 N/m2/m 

(τ
0
)  = 147 N/m2 
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(c) Pressure difference between two points 20m apart: 

 ∆p = [12µ uav/B2] L = 58,800 N/m2 

(d) Velocity gradient at the plates:   (τ
0
) = µ(du/dy)y=0 

  (du/dy)y=0 = (τ0
)/µ = 147/2.45 = 60/s 

(e) Velocity at 20mm from plates: u( at y= 20mm)   

        = 1/2µ (–∂p/∂x) [By – y2] = 0.96 m/s 

 
 


