APPSC & AEE – 2012 Civil Engineering (Paper – III)

01.	1. The limiting value of cant gradient for all gauges is				
	(1) 1 in 360	(2) 1 in 720	(3) 1 in 1000	(4) 1 in 2000	
Ans	:: (1)				
02.	If 'R' is the radius of a ci (1) $\frac{C^2}{C}$	rcular curve, then the (2) $\frac{C}{C}$	versine on a chord of 1 (3) $\frac{C^2}{C}$	ength 'C' is given by $(4) \frac{C}{C}$	
	4R	(¹) 8R	(⁵⁾ 8R	4R	
Ans	:: (3)				
03.	The correct relation betw (1) $CL = L - SL$ (3) $L = CL - SL$	een curve lead (CL), s	witch lead (SL) and le (2) $SL = L + CL$ (4) $L = (CL + SL)/2$	ad of crossing (L) is given by	
Ans	:: (3)			\sim	
04	The grade compensation	on a A^0 curve on a bro	ad gauge railway track	is	
04.	(1) 0.20%	(2) 0.16%	(3) 0.12%	(4) 0.08%	
Ans	:: (2)				
05.	A treadle bar is used for (1) interlocking points an (3) setting marshalling ya	nd single ard signals	(2) setting points and(4) track maintenance	crossings	
Ans	:: (1)	0			
06			1.		
06.	(1) red	(2) vellow	(3) green	(4) white	
Ans	:: (3)		(3) 51001		
07.	Limiting values of Poisso	on's ratio are			
Ans	(1) -1 and 0.5 :: (4)	(2) -1 and -0.5	(3) 1 and -0.5	(4) 0 and 0.5	
08.	8. A beam of square cross-section with side 100 mm is placed with one diagonal, vertical. If the shear force acting on the section is 10 kN, the maximum shear stress is				
	(1) 1 N/mm^2	(2) 1.125 N/mm^2	(3) 2 N/mm ²	(4) 2.25 N/mm^2	
Ans	Ans: (2)				
09.	19. Slope at the end of the simply supported beam of span l with uniformly distributed load w/unit length over the entire span is given by				
	wl^2	wl^3	wl^3	wl^2	
	(1) $\overline{16EI}$	(2) $\frac{16EI}{16EI}$	$(3) \frac{1}{24 \text{ EI}}$	$(4) \frac{1}{24 \text{ EI}}$	
Ans	:: (3)				
10	A linear and to the				
10.	(1) normal thrust only		(2) shear force only		

(3) normal thrust and shear force (4) None of these

Ans: (1)

11. If a circular shaft is subjected to a torque "T" and moment 'M', the ratio of maximum bending stress and maximum shear stress is

(1) $\frac{2M}{T}$ (2) $\frac{M}{2T}$ (3) $\frac{M}{T}$ (4) $\frac{2T}{M}$ Ans: (1)

12. If the diameter of a shaft subjected to torque alone is doubled, then horse power P can be increased to
(1) 16 P
(2) 8 P
(3) 4 P
(4) 2 P

Ans: (1)

- 13. A shaft turns at 150 rpm under a torque of 1500 Nm. Power transmitted is (1) $15 \pi kW$ (2) $10 \pi kW$ (3) $7.5 \pi kW$ (4) $5 \pi kW$ Ans: (3)
- 14. In a particular material, if the modulus of rigidity is equal to the bulk modulus, then the Poisson's ratio will be
 - (1) $\frac{1}{8}$ (2) $\frac{1}{4}$ (3) $\frac{1}{2}$ (4) 1

Ans: (1)

15. The number of independent equations to be satisfied for static equilibrium of a plane structure is (1) 1 (2) 2 (3) 3 (4) 4
Ans: (3)

Ans: (3)

- 16. Castigliano's first theorem is applicable
 - (1) for statically determinate structures only
 - (2) when the system behaves elastically
 - (3) only when principle of superposition is valid
 - (4) None of the above

Ans: (2)

17. If one end of the prismatic beam AB with fixed ends is given a transverse displacement ' Δ ' without any rotation, then the transverse reactions at A or B due to displacement is

(1)
$$\frac{6 \text{EI} \Delta}{l^2}$$
 (2) $\frac{6 \text{EI} \Delta}{l^3}$ (3) $\frac{12 \text{EI} \Delta}{l^2}$ (4) $\frac{12 \text{EI} \Delta}{l^3}$

Ans: (4)

18. In column analogy method, the area of analogous column for a fixed beam of span 'L' and flexural rigidity EI is taken as
(1) L/EI
(2) L/2EI
(3) L/3EI
(4) L/4EI

(1) L/EI (2) L/2EI (3) L/3EI (4) L/4EAns: (1)

(1) the beam is prismatic (2) there is no settlement of supports

- (3) there is no discontinuity such as hinges with the span
- (4) the spans are equal

Ans: (3)

20. What is the degree of static indeterminacy of the structure shown in figure?

24. A fixed beam AB of span L is subjected to a clockwise moment M at a distance 'a' from end 'A'. Fixed end moment at end 'A' will be

(1) $\frac{M}{L^2}(L-a)(L-3a)$	$(2) \frac{M}{L^2} a \left(2L - 3a \right)$
$(3) \frac{Ma}{L^2} (L-a)$	(4) $\frac{M}{L^2}(L-a)(2L-a)$
• (4)	

```
Ans: (4)
```

- 25. The absolute maximum bending moment in a simply supported beam of span 20 m due to a moving udl of 4 t/m spanning over 5 m is
 - (1) 87.5 t-m at the support
 - (3) 3.5 t-m at the mid point

- (2) 87.5 t-m near the mid point
- (4) 87.5 t-m at the mid point

Ans: (4)

26.	The degree of static indeterminacy of a rigid jointed space frame is					
	(1) $m + r - 2j$	(2) m + r $- 3j$	(3) $3m + r - 3j$	(4) 6m + r - 6j		
Ans	s: (4)					
27.	7. A symmetrical parabolic arch of span 20 m and rise 5 m is hinged at the springings. If supports uniformly distributed load of 2 tones per meter run of the span. The horizontal thrust in tones at each of the springings is					
	(1) 8	(2) 16	(3) 20	(4) Zero		
Ans	Ans: (3)					
28.	The horizontal thrust du proportional to	e to rise in temperature	e in a semi-circular two	hinged arch of radius R is		

(1) R (2) R^2 (3) 1/R (4) $1/R^2$ Ans: (4)

29. In the frame shown in the figure, the support 'D' settles by 'δ'. The fixed end moment in the horizontal member of the frame will be (other symbols have the usual meaning)

30. Figure shows a portal frame with one end fixed and other hinged. The ratio of the fixed end $M_{\rm pc}$.

- 31. The amount of irrigation water required to meet the evapotranspiration needs of the crop during its full growth is called
 - (1) effective rainfall
 - (3) consumptive irrigation requirement
- (2) consumptive use
- (4) net irrigation requirement

Ans: (3)

Previous AEE Paper

 32. Hydrograph is the graphical representation of (1) runoff and time (3) ground water flow and time Ans: (1) 	(2) surface runoff and time(4) rainfall and time		
 33. Cyclonic precipitation is caused by lifting of at (1) Pressure difference (3) Natural topographical barriers Ans: (1) 	n air mass due to (2) Temperature diff (4) None of these	air mass due to (2) Temperature difference (4) None of these	
 34. If it rains between 2 PM and 3 PM and the entit the outlet, then the time of concentration will b (1) 15 minutes Ans: (4) 	ire basin area just start be (3) 30 minutes	s contributing water at 3 PM to (4) 60 minutes	
 35. The elementary profile of a dam is (1) a rectangle (3) an equilateral triangle Ans: (4) 	(2) a trapezoidal(4) a right angled tria	angle	
 36. In a chute spillway, the flow is usually (1) uniform (2) sub critical Ans: (4) 	(3) critical	(4) supercritical	
 37. Vertical drop fall is satisfactory for a height u (1) 0.5 m (2) 1.5 m 38. A land is known as water logged (1) When the permanent wilting point is reach (2) when the gravity drainage has ceased (3) when capillary fringe reaches the root zon (4) none of these Ans: (3) 	npto (3) 3.5 m ned ne of plants	(4) 5.0 m	
 39. A hyetograph is a graphical representation of (1) rainfall intensity and time (3) discharge and time Ans: (1) 	(2) rainfall depth and(4) cumulative rainfa	l time Ill and time	
40. The peak of a 4-hour flood hydrograph is 240 which is constant is 40 m ³ /sec, then the peak (1) 20 m ³ /sec (2) 25 m ³ /sec) m ³ /sec. If the rainfall of 4-hour unit hydrogr (3) 30 m ³ /sec	excess is 80 mm and base flow raph will be (4) 35 m ³ /sec	

Ans: (3)

(1) $\frac{\sum ap^3}{\sum a^2}$

42. For medium silt whose average grain size is 0.16 mm, Lacey's silt factor is likely to be (1) 0.30(2) 0.45(3) 0.70(4) 1.32**Ans: (3)**

43. According to Indian standards, the number of raingauge stations for an area of 5200 km^2 in plains should be

(1) 10(4) 30(2) 15(3) 20**Ans: (1)**

(2) $\frac{\sum ap}{\sum ap}$

The maximum permissible limit for fluoride in drinking water is 44. (1) 0.1 mg/litre(2) 1.5 mg/litre (3)5(4) 10 mg/litre **Ans: (2)**

45. Standard EDTA (ethylene diamine tetra acetic acid) solution is used to determine the (1) hardness of water (2) turbidity of water (4) residual chlorine in water

(3) dissolved oxygen in water

Ans: (1)

Turbidity is measured on 46. (1) Standard silica scale (2) Standard cobalt scale (4) Platinum cobalt scale (3) Standard platinum scale

Ans: (1)

The length of rectangular sedimentation tank should not be more than 47. (2) 2 B(1) B(3) 4 B(4) 8 B Ans: (3)

- Orthotolidine test is used for determination of 48. (1) dissolved oxygen (2) residual chlorine (3) biochemical oxygen demand (4) None of these
- **Ans: (2)**

49. The suitable layout of distribution system for a city with roads of rectangular pattern is (1) grid iron system (2) dead end system (2) ring system (4) radial system **Ans: (1)**

50. A sewer that receives the discharge of a number of house sewers is called (1) house sewer (2) lateral sewer (3) intercepting sewer (4) submain sewer

Ans: (2)

51. The correct relation between theoretical oxygen demand (TOD), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) is given by (1) TOD > BOD > COD(2) TOD > COD > BOD(3) BOD > COD > TOD (4) COD > BOD > TODAns: (2) 52. In a BOD test 1.0 ml of raw sewage was diluted to 100 ml and the dissolved oxygen concentration of diluted sample at the beginning was 6 ppm and it was 4 ppm at the end of 5-day incubation at 20°C. The BOD of raw sewage will be (1) 100 ppm (2) 200 ppm (3) 300 pmm (4) 400 ppm **Ans: (2)** 53. The minimum dissolved oxygen which should always be present in water in order to save the aquatic life is (1) 1 ppm (2) 4 ppm (3) 10 ppm (4) 40 ppm **Ans: (2)** 54. Temporary hardness in water is cased by the presence of (1) Bicarbonates of Ca and Mg (2) Sulphates of Ca and Mg (3) Chlorides of Ca and Mg (4) Nitrates of Ca and Mg **Ans: (1)** 55. Blue baby disease (methemoglobinemia) in children is caused by the presences of excess (1) chlorides (2) nitrates (3) fluorides (4) lead **Ans: (2)** Two samples of water, A and B have pH values of 4.4 and 6.4 respectively. How many 56. times more acidic is sample A than sample B? (1)0(2) 50(3) 100(4) 200Ans: (3) 57. Dechlorination of water is achieved by adding (1) Sodium thiosulphate (2) Sodium sulphate (3) Sodium biosulphate (4) None of these **Ans: (1)** The efficiency of a sedimentation tank does not depend upon 58. (1) depth of the tank (2) detention time (3) length of the tank (4) horizontal velocity of water **Ans: (1)** 59. Which one of the following would contain water with the maximum amount of turbidity? (1) lakes (2) oceans (3) rivers (4) wells **Ans: (3)** 60. The waste stabilization ponds can be (1) aerobic (2) anaerobic (3) facultative (4) all of the above

Ans: (4)

61. Ans:	For a slab supported or correction factor to the (1) is always less than 1 (3) is equal to 1 (1)	n its four edges with a moments obtained by	corners held down and Grashoff Rankine's the (2) is always greater (4) None of the above	l loaded uniformly, the Marcus eory than 1 e	
62.	The permissible diagon	al tensile stress in the	reinforced brick work	is	
	(1) zero $(2) = 2 2 N (-2) = 2$, 2.	(2) about 0.1 N/mm^2		
Ans:	(3) 0.3 N/mm ⁻ to 0.7 N (1)	/mm ⁻	(4) None of the above	2	
63.	The limits of percentag	e P of longitudinal rei	nforcement in a column	n are given by	
Ans:	(1) 0.15 % to 2% (3)	(2) 0.8% to 0.4%	(3) 0.8% to 0.6%	(4) 0.15% to 0.6%	
64.	In a pile of length l , the (1) 0 207 l	points of suspension f $(2) 0.25 l$	from the ends for lifting $(3) 0.293 l$	g it are located at $(4) 0 333 l$	
Ans:	(1) 0.2077 (1)	(2) 0.25 t		(+) 0.555 i	
65.	The partial safety facto	or for steel as per IS 45	6 – 1978 is taken as		
	(1) 1.15	(2) 1.35	(3) 1.50	(4) 1.65	
Ans:	(1)		5		
66.	According to IS 456 – the limit state design of	1978, the maximum st flexural members is	rain in concrete at the	outermost compression fibre in	
	(1) 0.0020	(2) 0.0035	(3) 0.0050	(4) 0.0065	
Ans:	(2)	ofic			
67.	In a spherical dome su meridionat force is always	ubjected to concentrat ays	ed load at crown or u	uniformly distributed load, the	
	(1) Zero	(2) Tensile	(3) Compressive	(4) None of these	
Ans:	(3)				
68. Ans:	In a doubly reinforced rectangular beam, the allowable stress in compression steel is (1) equal to the permissible stress in the tension steel (2) more than permissible stress in the tension steel (3) less than permissible stress in the tension steel (4) None of these : (3)				
C 0	T C	, , 	. 1. 11 1		
69.	Loss of stress with time (1) relaxation	e at constant strain in s (2) creep	(3) ductility	(4) shrinkage	
Ans:	(1) (1)	(2) 0100p	(o) ductinty	() sminkage	
70.	In the limit state design	of concrete structures	, the strain distribution	is assumed to be	
Ance	(1) linear	(2) non-linear	(3) parabolic	(4) rectangular	
	(*)				

71. If 'P' is the prestressing force applied at a maximum eccentricity 'g' at mid span (figure), to balance the concentrated load 'W', the balancing load will be

78.	Critical path	
	(1) is always longest	(2) is always shortest
	(3) may be longest	(4) may be shortest
Ans:	(1)	
79.	The time by which a particular activity can be succeeding activities is known as	delayed without affecting the preceding and
	(1) free float	(2) Total float
Ans:	(3) Independent float(3)	(4) Interfering float
80.	Economic saving of time results by crashing	
	(1) Cheapest critical activity	(2) Cheapest non – critical activity
	(3) Costliest critical activity	(4) Costliest non – critical activity
Ans:	(1)	er l
81.	Slack time refers to	
	(1) An activity (2) Both event and activity	(2) An event
Ang	(3) Both event and activity	(4) Non of the above
Ans.	(2)	
82.	A tractor has purchase price of Rs. 4.7 lacks a one lack per year on operating costs. The salv purchased price. The capital recovery period v (1) 3.7 years (2) 4.2 years	nd could save the organization an amount of Rupees age value after the amortization period is 10% of the vill be (3) 5 years (4) 7.8 years
Ans:	(2)	
92	Site order book is used for recording	
o <i>3</i> .	(1) Instructions of the executive engineer	(2) Construction measurements
	(3) requisition of plants and equipments	(4) Indents for materials to be ordered
Ans:	(1)	
84.	The system of organization introduced by F.W	7. Taylor is known as
	(1) Effective organization	(2) Functional organization
	(3) Line organization	(4) Line and staff organization
Ans:	(2)	
85.	The original cost of an equipment is Rs. 10,00 of live years is Rs. 1,000. Its book value at the line method of evaluation of depreciation) will	0. Its salvage value at the end of its total useful life e end of two years of its useful life (as per straight l be
	(1) Rs. 8,800 (2) Rs. 7,600	(3) Rs. 6,400 (4) Rs. 5,000
Ans:	(3)	
86.	Grader is used mainly for	
	(1) Trimming and finishing	(2) Shaning and trimming
	(1) Trimming and Thirsting	(2) Shaping and trimining

87.

88. Capital recovery factor at 15% p.a. discrete compounding for 4 years is 0.35. Rs. 10,000 deposited now at 15% p.a. discrete compounding will yield an amount 'X' at the end of each 4 – year – period in perpetuity. The value of 'X' is (1) Rs. 7,500 (2) Rs. 6,666 (3) Rs. 6,000 (4) Rs. 9,000 Ans: (1)

89. A machine costs Rs. 16,000. by constant rate of declining balance method of depreciation, its salvage value after an expected life of 3 years is Rs. 2,000. The rate of depreciation is (1) 0.25 (2) 0.30 (3) 0.40 (4) 0.50
Ans: (4)

90. The relation between 'D' in hectares/cumec, depth of water ' Δ ' in meters and the base period B in days is given by

(1) $\Delta = \frac{1.98 \text{ B}}{\text{D}}$ (2) $\Delta = \frac{8.64 \text{ B}}{\text{D}}$ (3) $\Delta = \frac{5.68 \text{ B}}{\text{D}}$ (4) $\Delta = \frac{8.64 \text{ D}}{\text{B}}$ Ans: (2)

91. If P is the percentage of water required for normal consistency, water to be added for determination of initial setting time is (1) 0.75 P (2) 0.85 P (3) 0.085 P (4) 0.075 P
Ans: (1)

92. According to IS 399 – 1963, the weight of the timber is specified at (1) 10% moisture content (2) 12% moisture content (3) 8% moisture content (4) 14% moisture content
Ans: (2)

93. Due to attack of dry rot, the timber
(1) Shrinks
(2) Cracks
(3) Reduces to powder
(4) Reduces its weight

94. Ans:	Plywood is made from (1) Bamboo fibre (3) Common timber (3)		(2) Teak wood only(4) Asbestos sheets	
95. Ans:	For a 50 kg bag of ceme (1) 22.5 liters (1)	ent, water required is (2) 20.5 liters	(3) 18.5 liters	(4) 23.5 liters
96. Ans:	The standard size of a b (1) $19.5 \text{ cm} \times 9.5 \text{ cm} \times$ (3) $19 \text{ cm} \times 9 \text{ cm} \times 9 \text{ cm}$ (3)	rick is 9.5 cm n	 (2) 18 cm × 8 cm × 8 (4) 18.5 cm × 8.5 × 8. 	cm 5 cm
97. Ans:	Initial setting cement is (1) 3 CaO.SiO ₂ (3) 3 CaO.Al ₂ O ₃ (3)	caused due to	(2) 2 CaO.SiO ₂ (4) 4 CaO.Al ₂ O ₃ .Fe ₂ O	03
98. Ans:	Clay and silt content in (1) 25% (2)	a good brick earth mus (2) 30%	st be at least (3) 40%	(4) 50%
 99. Ans: 100. Ans: 101. Ans: 	For construction of stru (1) Pure lime (4) Cement is said to be of (1) It is not smooth whe (2) It's colour is greenis (3) A handful of cemen (4) None of the above (3) The most valuable timb (1) Sal (4)	ctures under water the (2) Fat lime good quality if en rubbed in between fi sh gray t thrown into a bucket er may be obtained fro (2) Re Sander	type of lime used is (3) Quick lime ingers of water does not float m (3) Sandle	(4) Hydraulic lime (4) Teak
102. Ans:	Soundness test of cemer (1) Durability (3) Quality of free lime (3)	nt determines	(2) Tensile strength(4) Initial setting	
103. Ans:	A badly mixed cement (1) Bleeding (3)	concrete results in (2) Honeycombing	(3) Segregations	(4) None of above

104. Inner part of a timber log surrounding the pitc (1) Annual ring (2) Cambium layer	h is called (3) Medullary sheath (4) Heart wood
Ans: (4)	
 105. Portland Pozzolana cement possesses (1) Lower heat of hydration (3) Lower shrinkage on drying Ans: (4) 	(2) Water tightness(4) All the above
106. If P, Y and Z are the weights of the cement, fi and W/C is the water cement ratio, the minim obtained by the equation. (1) 0.1 P + 0.3 Y + 0.1 Z = (W/C) × P (2) 0.2 D + 0.1 V + 0.01 Z = (W/C) × D	the aggregates, and coarse aggregates respectively um quantity of water to be added to first batch, is (2) $0.2 P + 0.5 Y + 0.1 Z = (W/C) \times P$
(3) $0.3 P + 0.1 Y + 0.01 Z = (W/C) \times P$ Ans: (1)	$(4) 0.5 P + 0.3 Y + 0.01 Z = (W/C) \times P$
107. The main advantage of steel member, is(1) Its high strength(3) Its waterightness	(2) Its long service life(4) All the above
Ans: (4)	
108 As per ISI rolled steel beam sections are clas	sified into
(1) Three series (2) Four series	(3) Five series (4) Six series
Ans: (3)	R
109 With a percentage increase of carbon in steel	decreases
(1) Hardness (2) Ductility	(3) Brittleness (4) Strength
Ans: (2)	
110. The critical load for a column of length ' <i>l</i> ' hir given by	nged at both ends and having flexural rigidity EI, is
(1) $P_{\rm C} = \frac{\pi^2 \text{EI}}{\ell^3}$ (2) $P_{\rm C} = \frac{\pi^2 \text{EI}}{\ell^2}$	(3) $P_{\rm C} = \frac{\pi (\rm EI)^2}{\ell^2}$ (4) None of these
Ans: (2)	
111. Slenderness ratio of compression member is (1) $\frac{\text{Moment of Inertia}}{\text{Radius of gyration}}$ (3) $\frac{\text{Radius of gyration}}{\text{Radius of gyration}}$	 (2) Radius of gyration Effective length (4) Moment of Inertia
Area of cross – section	Area of cross-section
Ans: (2)	

112. The most economical section for a column is

(1) Hexagonal
(2) Rectangular
(3) Tubular section
(4) Solid round

113.	. If W and L are the total superimposed load and the span of a plate girder in meters, the approximate self weight of the girder, is taken as				
	(1) $M = \frac{WL}{300}$	(2) $M = \frac{WL}{100}$	(3) $M = \frac{WL}{400}$	$(4) M = \frac{WL}{200}$	
Ans:	(1)				
114.	According to IS 800 – than	71, the minimum thick	ness of vertically stiffe	ened web plate shall not be less	
	(1) d/95	(2) d/250	(3) d/225	(4) d/200	
Ans:	: (4)				
115.	Stiffness are used in a	plate girder			
	(1) To reduce compres	sive strength	(2) To reduce the she	ear stress	
	(3) To avoid the buckli	ng of web plate	(4) To take the bearing	ng stress	
Ans:	(3)			C C	
116.	The minimum pitch of	rivet holes of diameter	'd' should not be less	than	
	(1) 1.5 d	(2) 2.5 d	(3) d	(4) 2d	
Ans:	: (2)				

117. In propped cantilever loaded as shown in figure, the plastic hinge will form at

118. A uniform beam shown in figure has the plastic moment M_p for span AB and 0.9 M_p for span BC. The correct virtual work equation is

(1)
$$M_{P}.\theta + M_{P}\left(\theta + \frac{2\theta}{3}\right) = W.2\theta$$

(2) $M_{P}\theta + M_{P}\theta + 0.9 M_{P}\frac{2\theta}{3} = W.2\theta$
(3) $M_{P}.\theta + 0.9 M_{P}\left(\theta + \frac{2\theta}{3}\right) = W.2\theta$
(4) $M_{P}\theta + 0.9 M_{P}\left(\theta + \frac{2\theta}{3} + \frac{2\theta}{3}\right) = W.2\theta$

Ans: (3)

119. A steel beam of rectangular cross – section is clamped at both ends. Plastic deformation is just observed when the udl on the beam is 10 kN/m. At the instant of collapse, the load on the beam will be

(1) 10 kN/m (2) 15 kN/m (3) 20 kN/m (4) 30 kN/m No Answer Nearest option is (2)

120. One of the criteria for the effective width of flange of T – beam is

$$b_{f} = \frac{\ell_{o}}{6} + b_{w} + 6D_{f}$$

In the above formula, l_0 signifies

- (1) Effective span of T beam
- (2) distance between points of zero moments in the beam
- (3) Clear span of the beam
- (4) Distance between points of maximum moments in the beam

Ans: (2)

121.	The trap used for a water closet is called		
	(1) Gully trap		
	(3) Intercepting trap		

(2) Anti – siphon trap(4) P – trap

Ans: (4)

122. A soil has a bulk density of 22 kN/m² and water content 10%. The dry density of soil is (1) 18. 6 kN/m² (2) 20.0 kN/m² (3) 22.0 kN/m² (4) 23.2 kN/m² Ans: (2)

123. Which of the following is a measure of particle size range?
(1) Effective size
(2) Uniformity co – efficient
(3) Co – efficient of curvature
(4) None of the above

Ans: (2)

124. If the plasticity index of a soil mass is zero the soil is
(1) Sand(2) Silt(3) Clay(4) Clayey silt

Ans: (1)

125. According to IS – classification, the range of silt size particles is(1) 4.75 mm to 2.00 mm(3) 0.425 mm to 0.075 mm(4) 0.075 mm to 0.002 mm

Ans: (4)

- 126. Which one of the following clays behaves like dense sand ?
 - (1) Over consolidated clay with a high over consolidation ratio
 - (2) Over consolidated clay with a low over consolidation ratio
 - (3) Normally consolidated clay (4) Under consolidated clay

Ans: (1)

127. Relationship between dry density γ_d , percentage of air voids η_a , water content w and specific gravity G of any soil is

(1)
$$\gamma_{d} = \frac{(1+\eta_{a})G\gamma_{w}}{1+wG}$$

(2) $\gamma_{d} = \frac{(1+\eta_{a})G\gamma_{w}}{1-wG}$
(3) $\gamma_{d} = \frac{(1-\eta_{a})G\gamma_{w}}{1+wG}$
(4) $\gamma_{d} = \frac{(1-\eta_{a})G\gamma_{w}}{1-wG}$

Ans: (3)

Ans

128. The ratio of the undisturbed shear strength to the remoulded shear strength, in cohesive soils under undrained conditions is

129. The critical height of unsupported vertical cut in a cohesive soil is given by

(1)
$$\frac{4c}{\gamma} \tan\left(45^{\circ} + \frac{\phi}{2}\right)$$

(3) $\frac{4c}{\gamma} \cot\left(45^{\circ} + \frac{\phi}{2}\right)$

Ans: (1)

- 130. A plate load test is useful to estimate
 - (1) Bearing capacity of foundation
 - (3) Both (1) and (2)

(2) Settlement of foundation

(4) None of these

(2) $\frac{2c}{\gamma} \tan\left(45^{\circ} + \frac{\phi}{2}\right)$ (4) $\frac{2c}{\gamma} \cot\left(45^{\circ} + \frac{\phi}{2}\right)$

Ans: (3)

131. The correct increasing order of the surface areas of the given soils is

(1) Silt, sand, colloids, clay
(2) Sand, silt, colloids, clay
(3) Sand, silt, clay colloids
(4) Clay, silt, sand, colloids

132. For a given soil sample, $C_c = Co$ -efficient of gradation $C_u = Co$ -efficient of uniformity $D_{10} =$ effective size $D_{30} =$ diameter through which 30 percent of the total soil mass is passing. If $C_c = 1.0$, $C_u = 4.0$, then the value of D_{30} / D_{10} would be (1) 2.00 (2) 1.75 (3) 1.50 (4) 1.25 **Ans: (1)**

133. The total settlement of a compressible soil stratum 2 m deep and having a coefficient of volume compressibility of 0.02 cm²/kg under a pressure increment of 2 kg/cm² will be (1) 2 cm (2) 4 cm (3) 8 cm (4) 10 cm
Ans: (3)

134.	The determination of depends upon the con	ultimate bearing capac cept of useful	city on eccentrically loa	aded square footing
	(1) square	(2) width	(3) triangle	(4) circle
Ans: (2)			
135.	In consolidation testin (1) Compression inde	ng, curve fitting metho x	d is used to determine (2) Swelling index (4) Nora of these	
Ans: (3)	iisondation	(4) None of mese	
136.	Westergaard's analys (1) sandy soils	is for stress distribution (2) clayey soils	n beneath loaded areas (3) stratified soils	is applicable to (4) silty soils
Ans: (3)			
137.	If the true bearing of $(1) 0^{\circ}30'$	a line AB is 269° 30' th (2) 89°30'	hen the azimuth of the $(3) 90^{\circ}30'$	line AB is (4) 269°30'
Ans: (4)		0	
138.	in the quadrantal bear (1) W 23°30' N	ing system, a whole ci (2) N 66°30' W	rcle bearing of 293°30 (3) S 113°30' N	' can be expressed as $(4) \text{ N } 23^{\circ}30' \text{ W}$
Ans: (2)		Alle	
139.	Which of the followin (1) Direct method (3) Cross-sections me	ng methods of contouri	ng is most suitable for (2) Square method (4) Tachometric meth	a hilly terrain?
Ans: (4)			
140.	If a 30 m length can be measuring 1.08 km w (1) \pm 0.54 m	be taped with a precision ith the same precision $(2) \pm 0.45$ m	on of ± 0.01 m, then the will be	e standard error in $(4) \pm 0.06$ m
Ans: ((1) \pm 0.54 m 3)	$(2) \pm 0.45 \text{ m}$	$(3) \pm 0.30 \text{ m}$	(4) \pm 0.00 m
	- ,	2		
141.	If in triangle ABC, b= through the points A,	=300 m and angle ∠AF B and C will be	$BC = 60^{\circ}$, then the radius	us of the circular curve passing
Ans: ((1) 86.6 m 3)	(2) 100.0 m	(3) 173.2 m	(4) 300.6 m
142.	Which one of the foll triangulation system"	owing specifications fo	or length of base line re	efers to the "Third order
Ans: ((1) 0.5 to 3 km 4)	(2) 1.5 to 5 km	(3) 5 to 15 km	(4) 10 to 20 km
143.	If the co-ordinates of length AC is	A are 100 N and 200 F	E and those of C are 10	0 S and 200 E, then the
Ans. ((1) 400.00 4)	(2) 282.84	(3) 244.94	(4) 200.00
	-,			

144.	The maximum limit o (1) 0.4 %	f water absorption for (2) 0.6 %	aggregate suitable for (3) 0.8 %	road construction is (4) 1.0 %	
Ans: ((2)				
145.	Which of the followin	g represents hardest g	rade of bitumen?	(4) 100/100	
Ans: ((1) 30/40	(2) 60/70	(3) 80/100	(4) 100/120	
1115. (
146.	 6. For the construction of water bound macadam roads, the correct sequence of operations after spreading the coarse aggregate is (1) dry rolling, wet rolling, application of screening and application of filler (2) dry rolling, application of filler, wet rolling and application of screening. (3) dry rolling, application of screening, wet rolling and application of filler (4) dry rolling application of screening application of filler and wet rolling 				
Ans: ((2)				
147.	The thickness of bitur (1) 20 to 25 mm	ninous carpet varies fr (2) 50 to 75 mm	om (3) 75 to 100 mm	(4) 100 to 120 mm	
Ans: ((2)				
148.	Expansion joints in ce	ement concrete pavemo	ents are provided at an (3) 18 m to 21 m	interval of (4) 25 m to 30 m	
Ans: ((4)	(2) 13 m		(1) 25 III (0 50 III	
149.	A summit curve is formed at the intersection of a 3% up gradient and 5% down gradient to provide a stopping distance of 128 m. The length of summit curve needed will be				
Ans: ((1) 2/1 m (2)	(2) 298 m	(3) 322 m	(4) 340 m	
150.	Which one of the follo (1) 80/100 penetration (3) cut back	owing binders is reconnamentation asphalt	nmended for a wet and (2) tar (4) emulsion	cold climate	
Ans: (3)				

Key Prepared by ACE Engineering Academy