

Booklet No.:

CE - 15

Civil Engineering

Duration of Test: 2 Hours			Max. Marks: 12	U
	Hall Ticket No.			
Name of the Candidate :				_
Date of Examination :	OMR A	nswer Sheet No. :		_
Signature of the Candidate		Signature o	of the Invigilator	_

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

CE-15-A

CIVIL ENGINEERING (CE)

- 1. A system of n simultaneous equations AX = 0 in n unknowns has nontrivial solution if
 - $(A) \mid A \mid \neq 1$
- (B) |A| < n
- (C) |A| = 0
- (D) A^{-1} exists
- One eigen vector of the matrix $A = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$ is $X = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ 2.
 - (A) $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ (B) $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$ (C) $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ (D) $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$

- **3.** The shortest distance of the plane lx + my + nz = p from the origin is
 - (A) $\frac{p}{\sqrt{l^2 + m^2 + n^2}}$ (B) $\frac{p}{\sqrt{l + m + n}}$ (C) $\frac{1}{\sqrt{l^2 + m^2 + n^2}}$ (D) 0
- If C is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then the value of $\frac{1}{2} \oint_C (xdy ydx)$ is 4.

 - (A) πab (B) $\frac{\pi ab}{2}$
- (C) ab^2 (D) $\pi a^2 b$
- The value of $\frac{1}{D^2-4}\sin^2 x$ is 5.

- (A) $-\frac{1}{4}\sin^2 x$ (B) $\frac{1}{8} + \cos 2x$ (C) none (D) $(-1)\frac{1}{8} + \frac{1}{16}\cos 2x$
- The Laplace transform of $e^{2x} x^2$ is 6.
- (A) $\frac{1}{(s-2)^3}$ (B) $\frac{1}{(s+2)^3}$ (C) $\frac{2}{(s-2)^3}$ (D) $\frac{2}{(s+2)^3}$
- The residue of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at the pole z = -2 is 7.
- (B) $-\frac{1}{2}$ (C) $\frac{4}{9}$
- $(D) \quad 0$
- If a random variable X has the PDF $f(x) = (1 p)^{x-1}p$, x = 1, 2, ... and 0 . Then8. the mean of X is
 - (A) p + 1
- (B) $p^2 + p$ (C) p
- (D) 1

14.15.	force elast (A)	es. If the barsicity of the tw 5:4 major and m	s have to wo mate (B)	rials is 4:5	(C) es at a j	4:9 point are 5 M	(D) IPa (cont is	the ratio of moduli of 16:25 mpressive) and 3 MPa 8 MPa
14.	force elast	es. If the bars icity of the tw	s have i vo mate	rials is				
	Т	hara of diff	erent m	aterials are of				ojected to same tensile
13.	Pois	son's ratio, t in the rest are	he num	ber of consta	ants rec		determi	Rigidity modulus and ined experimentally to four
12	(A)		(B)	maximum	, ,	minimum	, ,	minimum or maximum
12.	mon	nent at the sec	ction is			_	-	zero, then the bending
	(C) (D)	load at R		bending mon	nent val	ues at P and l	R	
11.			shear f t R	n PQ is subje orce diagram				at R, the centre of the
	(C)	$f'(x_n) > 1$			(D)	$f''(x_n)f(x_n)$	$(f') \ge [f']$	$(x_n)^2$
		$f''(x_n)f(x_n)$				$f'(x_n) < 1$	3 \ n	V
10.	The	condition for	conver	gence of iterat	tion sch	neme $x_{n+1} = x_n$	$\frac{f(x_n)}{f'(x_n)}$	$\frac{0}{0}$ is
	(A)	$e^{0.2}$	(B)	$e^{-0.2}$	(C)	0.2	(D)	0

Monthly-breakdowns of a computer is a random variable having Poisson distribution

9.

17.	The ratio of maximum shear stress to average shear stress of a rectangular beam section to that of a circular beam section is in the proportion of								
	(A)	9:8	(B)	8:9	(C)	3:4	(D)	2:3	
18.	In a v (A) (B) (C) (D)	uniform hoop uniform hoop compression i	comp tensionside		tside	e pipe is subjec	ted to		
19.	appli	ed torque 60 kl	N m a it end 40 kN	t a distance of are respectively	2 m fr y (B)	om the left end	l. The		
20.	made	n both ends of a free, the value P/16		ippling load is	he crip		(D)	ne end of the column is	
21.	If a three hinged parabolic arch carries a uniformly distributed load over the entire span, then any section of the arch is subjected to (A) normal thrust only (B) normal thrust and shear force (C) normal thrust and bending moment (D) normal thrust, shear force and bending moment								
22.	load	at the centre. I entre of the bea	f the van wil		h of th		•	ected to a concentrated, then the deflection at 6.25%	
23.	The f (A) (C)	Force method in compatibility equilibrium of	of def			kinematically	admis	ssible strains	
24.	The land (A)	kinematic indet one	ermin (B)	acy of a single two	-	frame fixed at three		ase is) zero	
25.	beam	of circular sec	ction o	of diameter D is	S			section of size D and a	
G , [(A)	$3\pi/8$	(R)	8/3π	(C)	$16/3\pi$	(D)	$3\pi/16$	
Set - [A				4			CE	

26.	The maximum bending moment under a particular point load among a train of point loads crossing a simply supported girded occurs when that load is (A) at mid-span (B) at one-third span (C) at one-quarter span										
	· ·	t and the	e point of CG of the train of loads are								
27.	A propped cantilever beam of span intensity w/unit length all through the (A) $wL^2/8$ (B) $wL^2/2$	e span, th	aded with a uniformly distributed load of e bending moment at the fixed end is $wL^2/12$ (D) $wL^2/24$								
28.	A fixed beam of 6 m span supports to one end. The bending moment under (A) 400 kN m (B) 300 kN m	each load	loads of 300 kN each at 2 m and 4 m from l is 250 kN m (D) 200 kN m								
29.	Strength of concrete increases with (A) increase in water-cement ratio (C) decrease in curing time	(B) (D)									
30.	Factors of safety for steel and concrete in RCC should be based on (A) yield stress and ultimate stress respectively (B) ultimate stress and yield stress respectively (C) yield stress (D) ultimate stress										
31.	In the limit state method, balanced de (A) smallest concrete section and m (B) largest concrete section and ma (C) smallest concrete section and m (D) largest concrete section and m	naximum aximum a ninimum	area of reinforcement rea of reinforcement area of reinforcement								
32.	Minimum clear cover in mm to the respectively, are (A) 10, 15, 20 and 25		el bars in slab, beam, column and footing 15, 25, 40 and 75								
	(C) 15, 25, 30 and 40	` ′	20, 35, 40 and 75								
33.	The following two statements are reinforced RCC beam: I. Failure takes place by crushing II. The neutral axis moves up as the Of the statements	of concre	•								
	(A) I and II are false(C) I and II are true	(B) (D)	I is true but II is false I is false but II is true								
Set - [A	5	CE								

34.	For a	two-way slab,	limit	ing deflection of	of the	slab is			
	(A)	a function of t	the she	ort span	(B)	a function of	the lo	ng span	
	(C)	independent o	of the s	spans	(D)	dependent on	both t	the spans	
35.		nply supported ided for pre-str		_	unifo	rmly loaded an	ıd is pı	re-stressed. The	tendon
	(A)	straight, above			(B)	straight, below	w cent	troidal axis	
	(C)	parabolic, con	vexit	y upward	(D)	parabolic, cor	nvexit	y downward	
36.		maximum sler		ess ratio of a	comp	pression memb	oer ca	arrying both de	ad and
	(A)	180	(B)	200	(C)	250	(D)	350	
37.	Gene	erally the purlin	is are	placed at the pa	anel po	oints so as to a	void		
	(A)	axial force in	rafter		(B)	shear force in	rafter	•	
	(C)	deflection in r	after		(D)	bending mom	ent in	rafter	
38.	Lacii	ng bars in steel	colun	nns should be o	design	ed to resist			
	(A)	•		ie to 2.5% of th	_				
	(B)	C		.5% of the colu					
	(C)	2.5% of the co	olumn	load					
	(D)	shear force an	d ben	ding moment of	lue to	2.5% of the co	lumn 1	load	
39.	In a ¡	olate girder, the	e web	is primarily de	signed	l to resist			
	(A)	torsional mon			(B)	shear force			
	(C)	bending mom	ent		(D)	diagonal buck	kling		
40.	The	sections when a	arrang	ed in the decre	asing	order of their s	shape 1	factors are	
		I, circular, dia	_		_		_		
	(C)	diamond circu			(D)	diamond, I, c			
41.	Loes	s is an aeolain	depos	it consisting of	•				
	(A)	fine sand – siz	-	_	(B)	clay-size part	icles		
	(C)	silt- size parti			(D)	colloidal part			
42.	The	void ratio of a s	soil sa	mple is 1, the	orosit	ty of the sampl	e is		
	(A)	0.2	(B)	0.3	(C)	0.4	(D)	0.5	
43.	-	porosity of a co		-	ound to	be 80% and i	its spe	ecific gravity is	2.7, the
	(A)	0.34	(B)	0.92	(C)	1.0	(D)	1.5	
Set -	A				6				CE

44.	On analysis of particle size distribution of a soil, it is found that $D_{10} = 0.1$ mm, $D_{30} = 0.3$ mm and $D_{60} = 0.8$ mm. The uniformity coefficient and curvature coefficient are respectively								
	(A) (C)	8 and 3 2.67 and 3			(B) (D)	2.67 and 1.125 8 and 1.125	5		
45.	its vo	olume. The voice	l ratio	of the soil is				er occupies one-h	alf of
	(A)	1	(B)	2	(C)	3	(D)	4	
46.	satisf	fy the relation	, · · •	·	ŕ	C	•	L), of a cohesive	e soil
	(A)	LL>PL <sl< th=""><th>(B)</th><th>LL>PL>SL</th><th>(C)</th><th>LL<pl<sl< th=""><th>(D)</th><th>LL<pl>SL</pl></th><th></th></pl<sl<></th></sl<>	(B)	LL>PL>SL	(C)	LL <pl<sl< th=""><th>(D)</th><th>LL<pl>SL</pl></th><th></th></pl<sl<>	(D)	LL <pl>SL</pl>	
47.	m/s. the p	If the head loss ile is	s throu	igh the soil is	2 m, t	the quantity of	seepa	m/s and $K_V = 2 \times$ ge per metre leng	
	(A)	$2 \times 10^{-5} \text{ m}^3/\text{s}$	(B)	$4 \times 10^{-5} \text{ m}^3/\text{s}$	(C)	$8 \times 10^{-5} \text{ m}^3/\text{s}$	(D)	$16 \times 10^{-5} \text{ m}^3/\text{s}$	
48.		saturated clay w				J/m ³ , if the wat		le is at ground sur	rface,
	(A)	60	(B)	- 66	(C)	30	(D)	- 30	
49.		m thick clay w degree of cons				-		equired to achiev by is	e the
	(A)	12 years	(B)	48 years	(C)	72 years	(D)	96 years	
50.	The in (A)	-	tive e	ffort provide in 2.5	mod	ified Proctor tes	st to st (D)	tandard Proctor to 4.5	est is
51.	In a tri-axial compression test (1) failure occurs along the weakest plane (2) the stress distribution on the failure plane is more uniform (3) complete control of drainage is possible (4) the stresses on the failure plane are directly measured Of these statements, (A) 1, 2 and 3 are correct (B) 2, 3 and 4 are correct (C) 3, 4 and 1 are correct (D) 4, 1 and 2 are correct								
52.		eate the False st anular soils, the Degree of satu State of comp Coarseness of Particle shape	e value ration action grains	e of Φ' depend s			ctors :		
Set -	A				7				CE

53.	The total active thrust on a vertical wall 3 m height retaining a horizontal sand backfill (unit weight = 20 kN/m^3 , angle of internal friction = 30°), when the water table at the bottom of the wall is								
	(A)	30 kN/m	(B)	35 kN/m	(C)	45 kN/m	(D)	75 kN/m	
54.	The (A) (B) (C) (D)	steady seepag sudden drawd steady seepag	ge cond lown c ge and	dition condition sudden drawdo	own co	pes of an earth onditions respe	ctively		
55.	at a		a cla	yey soil which				g is 1.5 m wide and is N/m ³ , the safe bearing	
	(A)	133 kN/m^2	(B)	140 kN/m^2	(C)	160 kN/m^2	(D)	420 kN/m^2	
56.	on th		purely	cohesionless		_		quare footing founded footing being equal to	
	(A)	0.75	(B)	1.0	(C)	1.33	(D)	1.75	
57.	Ultir	nate settlement	t of foo	otings on cohes	sive sc	oils is best estin	nated ı	using the data from	
	(A) (C)	plate load test		et	(B) (D)	consolidation standard pene		n test	
58.	when	-	of load	ding is 200 kN	m^2 . T	The settlement	_	test on a cohesive soil totype shallow footing	
	(A)	1.5 cm	(B)	3 cm	(C)	5 cm	(D)	16.67 cm	
59.	The (kN)		mpres	sive strength o	of clay f 0.6, i	is 120 kN/m ²	-	of fully saturated clay. skin friction capacity 106 kN	
.	.	. 1. 6			C				
60.	1. 2. 3.	a cohesionles lowering of g ch of the above	l place s fill p round are co	ed over a cohes laced over a co water table wi orrect?	ionles ompres th resu	s soil deposit ssible cohesive alting ground so 1 and 3 only	ubside	nce	
Sot [<u> </u>	1 unu 2 omy	(D)	2 and 5 omy		1 and 5 only	(1)		
Set - [A				8			CE	

70.	The flow in a rectangular channel is subcritical. If the width is constricted at a certain section by a smooth transition, under unchoked flow condition, the water surface								
	(A)			ection will rise				ection will drop	
	(C)	at the upstrear	n sect	ion will rise	(D)	at the upstream	n sect	ion will drop	
71.		sequent depth r de number befo		•	-		ectang	gular channel is 5. The	
	(A)	$\sqrt{5}$	(B)	$\sqrt{15}$	(C)	$\sqrt{35}$	(D)	√120	
72.	over		an eri	for of -1% in				n error of 2% in head then the percentage of	
	(A)	4	(B)	3	(C)	2	(D)	1	
73.	The	number of π-pa	ramet	ers needed to e	xpres	s the function,	F (A,V	V, t, v, L) = 0 are	
	(A)	5	(B)	4	(C)	3	(D)	2	
74.	anoth	ner, the resultin	g flov	v pattern can be	e repre	esented by a far		re superposed on one	
	(A) (C)	parallel straight	ht line	es	(B) (D)	circles hyperabolas			
	(C)	paraooras			(D)	пурстиооная			
75.	Ident (A)	ify the correct Pumps operat boost the head	ing in		the d	ischarge and p	oumps	operating in parallel	
	(B)			series boost th	e head	d and pumps of	peratir	ng in parallel boost the	
	(C) (D)		-		-	rallel boost the rallel boost the		arge	
76.		ne connecting p	oints	having equal t	ime o	f travel of surf	face ru	nnoff to the catchment	
	(A)	isochrone	(B)	isovel	(C)	isopleth	(D)	isohyet	
77.	The	method used to	check	the consistence	cy of r	aingauge recor	d is		
	(A)	normal ratio			(B)	double mass of	urve		
	(C)	moving average	ge		(D)	Thiessen poly	gon		
78.	Φ –		at the				_	runoff was 3 cm. If the f uniform rainfall in 9	
	(A)	9 cm	(B)	4.5 cm	(C)	6 cm	(D)	7.5 cm	
Set - [A				10			CE	

79.		ify an indirect moving-boat ultrasonic me	metho	•	gauging from the following: (B) electromagnetic method (D) slope-area method			
80.		a catchment w ned by summa				-	disch	arge of the S – curve
	(A)	$36 \text{ m}^3/\text{s}$	(B)	$100 \text{ m}^3/\text{s}$	(C)	$278 \text{ m}^3/\text{s}$	(D)	$400 \text{ m}^3/\text{s}$
81.	peak	of $100 \text{ m}^3/\text{s}$. T	he uni	it hydrograph r	efers t	to a catchment	area o	
	(A)	0.36 km^2	(B)	3.6 km^2	(C)	36 km^2	(D)	360 km^2
82.	storn resul	n of same inte ting peak disch	nsity narge i	as used in the	desig	n but of durat	ion th	rational formula. If the rice larger occurs, the
	(A)	$3.33 \text{ m}^3/\text{s}$	(B)	$5 \text{ m}^3/\text{s}$	(C)	$10 \text{ m}^3/\text{s}$	(D)	$30 \text{ m}^3/\text{s}$
83.	A linear reservoir is one in which the (A) storage varies linearly with elevation (B) storage varies linearly with the outflow rate (C) storage varies linearly with time (D) storage varies linearly with the inflow rate							
84.		volume stored of 2 m ² and of			n of ac	uifer with a po	orosity	of 0.3, cross-sectional
	(A)	1.2 m^3	(B)	2.4 m^3	(C)	4 m^3	(D)	8 m^3
85.	If du	-	ctares/	cumec and bas	se peri	iod is 120 day	s for a	an irrigated crop, then
	(A)	0.864 m	(B)	0.432 m	(C)	1 m	(D)	10 m
86.	•	meter and Tens antities	siomet	er are used to 1	measu	re respectively,	, one o	of the following groups
	(A)	evaporation a	-	-	niratia	n		
	(B) (C)			nd evapotrans _] and capillary p	-			
	(D)	velocity and v	apour	pressure				
87.	Lace	y's waterway f	or a d	ischarge of 100	0 m ³ /s	and a silt factor	or of 1	is
	(A)	10.25 m	(B)	47.5 m	(C)	90.75 m	(D)	111 m
Set -	A				11			CE

88. Base width of elementary profile of a gravity dam of 15 m high, built of materi specific gravity 2.25 and resisting only hydrostatic force is									of	
	(A)	6.67 m	(B)	10 m	(C)	13.42 m	(D)	15 m		
89.								ownstream cutoff is		
	(A)	zero	(B)	unity	(C)	zero or unity	(D)	infinity		
90.	A sp	rinkler irrigatio	on sys	tem is suitable	when					
	(A)	the land grad	ient is	steep and the s	soil is	easily erodible				
	(B)	the soil is hav	ing lo	w permeability	y					
	(C)	the water tabl	le is lo)W						
	(D)	the crops to b	e grov	wn have deep r	oots					
91.	Use	of coagulants s	such as	s alum						
	(A)	results in redu	uction	of pH of the tr	eated	water				
	(B)	results in incr	ease o	of pH of the tre	ated w	ater				
	(C)	results in no	change	e in pH of the t	reated	water				
	(D)	may cause an	incre	ase or decrease	of pH	I of the treated	water			
92.	Hardness in water is caused by									
	(A)	Nitrates			(B)	Fluorides				
	(C)	Sodium chlor	ride		(D)	Calcium and	Magne	esium		
93.				treats 6000 m ³ dosage would		ater per day. If	it co	nsumes 20 kg chlori	ine	
	(A)	3 mg/l	(B)	3.75 mg/l	(C)	4.25 mg/l	(D)	3.33 mg/l		
94.	The	maximum perr	nissib	le quantity of le	ead in	water for drink	king pu	arpose is		
	(A)	0.01 ppm	(B)	1 ppm	(C)	0.5 ppm	(D)	0.1 ppm		
95.	The	device used to	meası	are the odour o	f wate	r is				
	(A)	Jackson's tur	bidim	eter	(B)	Thermometer				
	(C)	Hydrometer			(D)	Osmoscope				
96.	Whice filter		wing	operational pro	oblem	s relate to the	functi	oning of rapid grav	ity	
	1.	Inadequate m	edia c	omprising filte	er bed					
	2.	Mud balls								
	3.	Negative hea	d							
		ch of the above		orrect?						
		1, 2 and 3			(C)	2 and 3 only	(D)	1 and 3 only		
Set -	A				12				CE	

97.	Which of the following reasons are responsible for adoption of post-chlorination of water?											
	1.	Chlorine dem	and is	reduced.								
	2.	Possibility of	taste a	and odour form	ation	is reduced.						
	3.	Possibility of	forma	tion of carcino	genic	compounds is	reduc	ed.				
	4.	Chloramines a	are for	med.								
	(A)	1, 2, 3 and 4			(B)	1, 2 and 3 onl	y					
	(C)	1 and 4 only			(D)	2, 3 and 4 onl	y					
98.		most suitable r system is	netho	d of analysis o	f wate	er distribution	systei	m for long and n	arrow			
		Circle method	[(B)	Equivalent pip	oe me	thod				
	(C)	Hardy-Cross 1	netho	d	(D)	Electrical ana	lyser	method				
99.	Sewa	Sewage treatment units are normally designed for										
	(A)	5 – 10 years	(B)	15 – 20 years	(C)	30 - 40 years	(D)	40 - 50 years				
100.	Most	t suitable section	n of s	ewer for both c	ombi	ned and separat	te syst	tems is				
	(A)	semi-elliptical			(B)	circular						
	(C)	horse-shoe sh	aped		(D)	egg shaped						
101.		-						velocity of flow	in the			
		sewers will hav 1:2	(B)	2:1	(C)) (D)	A • 1				
	(A)	1.2	(D)	2.1	(C)	1.4	(D)	4.1				
102.		ng sewage trea mum amount o			whic	h one of the fo	ollowi	ing treatment uni	ts has			
	(A)	Detritus chann	nel		(B)	Primary sedin	nentat	ion tank				
	(C)	Secondary sec	liment	tation tank	(D)	Activated sluc	lge pr	rocess aeration tar	nk			
103.	The	drop manholes	are pr	ovided in a sev	verage	e system when	there	is				
	(A)	change in alig										
	(B)	change in size										
	(C)	-		ion of ground l								
	(D)	change from g	gravity	to pressure sy	stem							
104.			both	sedimentation	and	digestion proc	esses	of sludge take	place			
		ltaneously is	_		(= \)	- 1 00 1						
	(A)	Skimming tan	k		(B)	Imhoff tank						
	(C)	Detritus tank			(D)	Digestion tank	ζ.					
105.			as a w	ater content of	f 99%	. The concentr	ation	of suspended sol	lids in			
	the s (A)	ludge is 10 mg/l	(B)	100 mg/l	(C)	1000 mg/l	(D)	10,000 mg/l				
Set -	A	S	` /	_	13	G	` /	, 6	CE			
) - I	4.								CE			

106.	Consider the following statements:									
	1.	Noise pollution	on can	be reduced us	ing do	uble – glas	ss window	panes		
	2.	Glass absorbs			_			-		
	3.	The air trapp noise	ed in	the double –	glass s	ystem acts	as an ins	sulator and redu	ces the	
	4. The noise totally reflects back due to two layers of glass									
	Whic	ch of these stat	ement	s are correct?						
	(A)	1, 2, 3 and 4			(B)		•			
	(C)	1 and 3 only			(D)	2 and 4 or	nly			
107.		ater supply o					vith 0.5 p	opm of chlorin	e. The	
		2.25 kg		4.5 kg			(D)	25 kg		
108.	Gree	nhouse effect i	s cons	sidered to be d	ue to t	he increase	d levels of	f		
		Carbon mono			(B)					
	(C)	Sulphur dioxi			(D)	Chloroflu	ırocarbons			
109.	Larg	e calorific valu	ie of so	olid wastes inc	licates	its amenah	oility for			
2071	_	composting					•	land filling		
110.	The	secondary poll	utant a	among the air i	oolluta	nts, NO, S	O ₂ , soot a	nd O ₂ , is		
	(A)		(B)	SO_2	(C)	soot	(D)	3		
111.		ber in highway	-	ment is provid			•			
	(A)	centrifugal fo			(B)	drainage				
	(C)	sight distance	;		(D)	off-tracki	ng			
112.	Two bitumen samples P and Q have softening points 45° C and 60° C respectively.									
		sider the follow	-		41 4 C	0 41		,		
	I. II.			be lesser than						
	II. Penetration value of P will be more than that of Q under standard conditions The correct option evaluating the above statements is									
	(A)	Both I and II		_	(B)		d II are FA	ALSE		
	(C)	I is FALSE at			(D)		E and II is			
113.	Inat	flexible pavem	ent							
1101	(A)	-		e stresses decr	ease w	ith depth o	of the lave	r		
	(B)	-		e stress is max		-	•	•		
	, ,	(C) tensile stresses get developed								
	· · ·					ven traffic load is dependent on the location of				
		load on the pa								
Set -	A				14				CE	
L										

	on the								
vehicles/km. (C) capacity of lane to accommodate the vehicles widthwise (across the road). (D) maximum attainable speed of vehicle. 115. At an intersection, the critical lane volume on the major road increases while that of minor road remains unchanged. The green time for the signal will (A) increase for the major road and remain same for the minor road. (B) increase for the major road and decrease for the minor road. (C) decrease for both the roads. (D) remain unchanged for both the roads.	on the								
 (D) maximum attainable speed of vehicle. 115. At an intersection, the critical lane volume on the major road increases while that of minor road remains unchanged. The green time for the signal will (A) increase for the major road and remain same for the minor road. (B) increase for the major road and decrease for the minor road. (C) decrease for both the roads. (D) remain unchanged for both the roads. 116. The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The increase for the minor road and 342° 20" respectively. 									
 115. At an intersection, the critical lane volume on the major road increases while that of minor road remains unchanged. The green time for the signal will (A) increase for the major road and remain same for the minor road. (B) increase for the major road and decrease for the minor road. (C) decrease for both the roads. (D) remain unchanged for both the roads. 116. The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The increase for the minor road and are signal will 									
minor road remains unchanged. The green time for the signal will (A) increase for the major road and remain same for the minor road. (B) increase for the major road and decrease for the minor road. (C) decrease for both the roads. (D) remain unchanged for both the roads.									
 (B) increase for the major road and decrease for the minor road. (C) decrease for both the roads. (D) remain unchanged for both the roads. 116. The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The inc 	luded								
 (C) decrease for both the roads. (D) remain unchanged for both the roads. 116. The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The inc 	luded								
(D) remain unchanged for both the roads.116. The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The inc	luded								
116. The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The inc	luded								
	luded								
The bearings of lines OP and OQ are 20° 30" and 342° 20" respectively. The included angle QOP is									
(A) $321^{\circ} 50''$ (B) $162^{\circ} 20''$ (C) $69^{\circ} 30''$ (D) $38^{\circ} 10''$									
117. Reciprocal levelling eliminates the									
1. errors due to earth's curvature									
2. errors due to atmospheric refraction									
3. mistakes in taking levelling staff readings									
4. errors due to line of collimation									
Which of the statements given above are correct?									
(A) 1, 2 and 3 (B) 1, 2 and 4 (C) 1, 3 and 4 (D) 2, 3 and 4									
118. The closing error in a traverse survey can be eliminated by									
(A) Bowditch rule									
(B) transit rule									
(C) working accurately latitudes									
(D) either Bowditch rule or transit rule as applicable									
119. The plotting of inaccessible points in a plane-table survey can be done by the metho	d of								
(A) Interpolation (B) Radiation (C) Intersection (D) Traversing									
120. A 3% downgrade curve is followed by a 1% upgrade curve and rate of change of adopted is 0.1% per 20 m length. The length of respective vertical curve is	, ,								
(A) 800 m (B) 200 m (C) 100 m (D) 400 m									
Set - A 15	CE								

SPACE FOR ROUGH WORK