

Booklet No.:

AS - 15

Aerospace Engineering

Duration of Test: 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	nswer Sheet No. :
Signature of the Candidate	<u></u>	Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

AS-15-A

AEROSPACE ENGINEERING

,	lutions if	anom oquatio	ns in n variables will have infinite nun
01 50.	r(A) = r(A:b) = n	(B)	r(A) < r(A:b) = n
(C)	r(A) = r(A:b) < n	(D)	none

- 2. The largest eigen value of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix}$ is

 (A) 3 (B) 6 (C) 2 (D) 0
- 3. If the function $f(x) = \frac{1}{x}$ satisfies Lagranges mean value theorem at the point c in the interval [1,4] then

 (A) c = 2 (B) c = 1 (C) c = 0 (D) none
- 4. A stationary point for the surface z = xy(1-x-y) is (A) (-1,-1) (B) (1/3, 1/3) (C) (1, 1) (D) (0, 1)
- The value of $\oint_{\mathbf{C}} y^2 dx x^2 dy$ where c is the boundary of the triangle whose vertices are (1,0), (0,1) and (-1,0) is $(A) 2/3 \qquad (B) 1/3 \qquad (C) 2 \qquad (D) -2/3$
- 6. The particular integral of the differential equation $(D-2)^2 y = e^{2x} + 3$ is $x^2 3 = \frac{x}{2} e^{2x} + 3$
 - (A) $\frac{x^2}{2}e^{2x} + \frac{3}{4}$ (B) $\frac{x}{2}e^{2x} + 3$ (C) 0 (D) $e^{2x} + 3$
- 7. If F(s) and G(s) are Laplace transforms of f(t) and g(t), then the inverse Laplace transform of the product F(s) G(s) is $\frac{1}{c}$
 - (A) $\int_{0}^{1} f(u)g(t-u)du$ (B) $\int_{0}^{1} f(u)g(t-u)du$ (C) f(t)g(t) (D) None
- 8. The convergence condition of the iterations $x_{n+1} = \phi(x_n)$ is

 (A) $|\phi'(x_n)| > 1$ (B) $|\phi'(x_n)| = 0$
 - (C) does not depend on ϕ (D) $|\phi'(x_n)| < 1$

	х	0	1	2	3	4
	f(x)	2	2	4	8	14
((A) 20	2.		(B) 44	4

10. For a differential equation
$$\frac{dy}{dx} = x^2 + y$$
 subject to $y(0) = 1$ the next approximation with Picard iteration method is

(A)
$$y_1 = 1 + x + \frac{x^3}{3}$$

(B)
$$y_1 = 1 - x^2$$

(C)
$$y_1 = 1 + x^2$$

(B)
$$y_1 = 1 - x^2$$

(D) $y_1 = 1 + 2x + \frac{x^2}{2}$

11. Pressure Altitude

- (A) Pressure differential with respect to Pressure at Sea Level
- (B) Physical distance between aircraft and reference (e.g. Sea Level)
- (C) Difference in density with International Standard Atmosphere (ISA) temperature
- Distance between Center of Earth and parallel surfaces around the spherical earth Gravitational potential same on a surface

12. Indicated Airspeed

- airspeed measurement from difference in pressures
- airspeed correcting for instrument errors
- airspeed corrected for Compressibility effects (C)
- actual relative speed between aircraft and airmass, corrected for difference in density at different altitudes

13. Maximum glide endurance is

- minimum angle of decent (A)
- (B) minimum rate of descent

max glide rate

(D) minimum sink rate

14. Elevator control effectiveness of an airplane determines the

- (A) turn radius
- (B) rate of climb
- (C) most forward location of the centre of gravity
- (D) after location of the centre of gravity

15. True Airspeed is

- (A) airspeed measurement from difference in pressures
- airspeed correcting for instrument errors (B)
- airspeed corrected for compressibility effects
- actual relative speed between aircraft and airmass, corrected for difference in density at different altitudes

Set -	A		4	AS							
	(D)	Stick fixed dynamic longitudina	al stabilit	ty							
	(C)	Stick fixed static directional sta	•								
	(B)	Stick free static longitudinal sta	•								
	(A)	Stick fixed static longitudinal st	•								
22.	Phug	goid mode is associated with									
	(D)	an of the above									
	(C) (D)	all of the above	vei a iii00	der being tested							
	(C)	for optical flow visualization ov		_							
	(A) (B)	to measure the velocity distribu		e							
41.	(A)	to measure the pressure distribu									
21.	Schl	ieren technique could be used in	a wind ti	ınnel							
	(D)	Increasing the offset distance between the aerodynamic center and C.G. of the airplane									
	(C)	Increasing the stiffness of the w	U								
	(B)	· ·		ne C.G. of the airplane and center of twist							
	(A)	Increasing the offset distance be	etween tl	ne aerodynamic center and center of twist							
20.	Criti	cal aileron reversal speed can be	increase	d by							
	(C)	Artificial Horizon	(D)	Turn-bank indicator							
		Vertical speed indicator	(B)	Altimeter Turn bonds in diseaser							
		ade in flight?	(D)	A lki ma aka m							
19.			nstrume	nts is used on an aircraft to determine its							
	(D)	full throttle, jets at L/d max, pro	ps slow	er than L/d max							
	(C)	full throttle, jets faster than L/D max, props at L/D max									
	(B)										
	(A)	, I I									
18.	How	do jets and props achieve max a	_								
	(C)	negative dynamic stability	(D)	static stability							
	(A)	· ·	(B)	netural stability							
17.		each oscillation it would never re	eturn to i	but continued to climb to a higher position its equilibrium position, the ball posses							
	(C)	neutral stability	(D)	neutral dynamic stability							
	(A)	•	(B)	static stability							
10.	it Po	ossess	-	-							
16.	If the	e ball oscillates about the equilibr	rium pos	ition and the oscillations never dampen out,							

	(B)	Sweep forward, dihedral and low wing							
	(C)	Sweep forward, an	hedral and high	wing					
	(D)	Sweep back, dihed	lral and high wi	ng					
24.	A su	personic airplane is	expected to fly	at bot	h subsonic aı	nd supe	ersonic spee	ds during	g its
	whol	e flight course. Whi	ich one of the fo	ollowi	ng statements	s is TR	UE?		
	(A)	Airplane will expe	rience less stab	ility in	pitch at supe	ersonic	speeds that	n at subso	onic
		speeds.							
	(B)	Airplane will feel	no change in pi	tch sta	bility.				
	(C)	Airplane will exp	perience more	stabili	ty in pitch	at sup	ersonic spe	eeds than	n at
		subsonic speeds.							
	(D)	Pitch stability can	not be inferred f	rom th	ne informatio	n give	n.		
25.	Whe	n the airflow over th	he propeller bla	des of	a failed engi	ne kee	ps the prop	eller turn	ing,
	this i	s known as							
	(A)	Wind milling		(B)	Propeller br	aking			
	(C)	Reverse thrust		(D)	Contra rota	ting			
26.	Coor	dinate turn in a hori	-						
	(A)	increased side slip		(B)	gain in altit				
	(C)	zero side slip angle	e	(D)	loss of altitu	ude			
27.	Trim	ming of an airplana	maans						
41.		ming of an airplane	illealis						
	(A)	$\frac{C_L}{C_D}$ is maximum							
		Rate of climb is m	ovimum						
	(B)	Pitching moment a		ravity	is zero				
	(D)	Maximum rate of		zravity	is zero				
	(D)	Waximum rate or v							
28.	One	engine inoperative of	condition is asso	ociated	d with				
	(A)	Rudder (B)	Elevator	(C)		(D)	Aileron		
	` ′	,		` /		` '			
29.	NAC	CA 4412 implies the	maximum cam	ber of	airfoil occur	s at			
	(A)	4% of chord		(B)	40% of cho				
	(C)	12% of chord		(D)	20% of cho	rd			
30.	Whi	oh one of the follow	ing is favourable	a for s	n airnlana ta	lea off	2		
30.	(A)	ch one of the follow Head wind	ilig is lavoulaul	(B)	Cross wind	KC-011	•		
	(A) (C)	Tail wind		(D)	Tail wind a	nd cros	ee wind		
	(C)	ran wind		(D)	Tan wind a	iiu cios	ss willu		
31.	Whic	ch of the following	oump is general	ly use	d to pump hi	ghlv vi	scous fluid	?	
-	(A)	Air lift pump	1 6	(B)					
	(C)	Centrifugal Pump		(D)	Screw Pum	_	•		
_{Са4} Г	A			_					40
Set - [A			5					AS

Which one of the following is the most stable configuration of an airplane in roll?

(A) Sweep back, anhedral and low wing

	(B) (C) (D)	Long period and strong damping Short period and weak damping Short period and strong damping		
	. ,			
33.		Seting is associated with	(D)	The same decreased and the same state of
	(A) (C)	A steady amplitude oscillation Quasi steady amplitude oscillation	(B)	Unsteady amplitude oscillation Critically damped oscillation
	(C)	Quasi steady amplitude oscillation	(D)	Critically damped oscillation
34.	Cho	ose the appropriate limiting load fac-	tors fo	or designing a fighter.
	(A)	$-1.8 \le n \le 4.4$	(B)	$-1.25 \le n \le 3.1$
	(C)	$-4.5 \le n \le 7.75$	(D)	$-2 \le n \le 14.5$
35.	Aero	odynamic center of an airfoil is the p	oint a	hout which
	(A)	•	(B)	
	(C)	Pitching moment is positive	(D)	Pitching moment is negative
36.	Min	imum rate of sink is associated with		
30.	(A)	minimum power	(B)	minimum thrust
	(C)	minimum drag	(D)	minimum lift
	()	S	· /	
37.	V-n	diagram is a plot of		
	(A)	Velocity Vs normal force	(B)	volumetric flow Vs normal force
	(C)	Velocity Vs load factor	(D)	Volumetric flow Vs load factor
38.	End	urance of a jet propelled airplane		
	(A)	increases when altitude increases	(B)	decreases when altitude increases
	(C)	is maximum at service ceiling	(D)	does not depend on altitude
39.	The	aerodynamic center of a wing se	ction	is at 25% of Mean Aerodynamic Chord
		•		g is given a sweep back of 35°, the probable
	-	tion of aerodynamic center in terms		
	(A)	20% (B) 25%	(C)	35% (D) 70%
40	C4a4	X_1	$-X_2$	What are V and V 9
40.	Stati	c margin is defined as $\frac{X_1}{Mean \ Aerod}$	lynam	$\frac{1}{16 \ chord}$. What are \mathbf{A}_1 and \mathbf{A}_2 ?
	(A)	X_1 = location of neutral point & X		•
	(B)	X_1 = location of neutral point & X		
	(C)		cent	er & X_2 = location of center of gravity
	(D)	None		
Set -	A		6	AS
·				

Which one of the following is TRUE with respect to Phugoid mode of an aircraft?

41.	For cyclic boundary conditions choose of	one of	the following:	
	(A) flow through CD nozzle			
	(B) flow through turbine blades			
	(C) flow through jet engine combusto(D) flow over a circular cylinder	I		
	(D) How over a circular cylinder			
42.	For specifying adiabatic condition, the f	follow	ing boundary condition is appropriate:	
	(A) Dirichet boundary condition			
	(B) Von Neumann boundary condition	n		
	(C) Wall temperature specification			
	(D) Both (A) & (C)			
43.	In case of shock capturing methods, the		-	
	(A) time dependent technique	(B)	space marching technique	
	(C) shooting technique	(D)	interpolation methods	
44.	Lift on a delta wing is			
	(A) calculated from Prandtl-Lancheste	er liftii	ng line theory	
	(B) calculated from high angle of attack		ng line theory	
	(C) computed from empirical formula			
	(D) calculated from Polhamus's suction	on ana	logy	
45.	Downwash along the span of a wing have	ving e	liptical lift distribution	
	(A) Increases with increase in span			
	(B) Increases with increase in wing ar	rea		
	(C) Does not change			
	(D) Decreases with increase in velocit	z y		
46.	The component of a transonic airplane f	or wh	ich transonic area rule applied is	
	(A) Nose (B) Wing	(C)	Tail (D) Fuselage	
47.	Induced drag of an airplane can be reduced	ced by		
	(A) Boundary layer fence	(B)	Spoilers	
	(C) Winglets	(D)	Decreasing aspect ratio	
48.	Prandtl – Glauret rule gives the relation	betwe	en	
	(A) Viscous and inviscid flow			
	(B) Compressible and incompressible	flow		
	(C) Transonic and subsonic flow			
	(D) Transonic and supersonic flow			
49.	Velocity potential is valid for			
	(A) Viscous flow	(B)	Real flow	
	(C) Rotational flow	(D)	Irrotational flow	
Set -	. A	7		AS

50.	Aero	dynamic effi	iciency o	of a lifting su	rface is	represented	by		
	(A)	D/L	(B)	$C_L^{1/2}/C_D$	(C)	$C_L^{3/2}/C_{\rm D}$	(D)	L/D	
51.		sonic drag ri		ated to					
	(A)	sonic boom			(B)	shock stall			
	(C)	very high a	ngle of a	ıttack	(D)	none			
52.		Mach Numb		s are known					
	(A)	inviscid flo			(B)	irrotational			
	(C)	incompress	ible flow	/S	(D)	isentropic f	lows		
53.		ntial flows ar							
	(A)	irrotational			(B)	viscous flo			
	(C)	shear flows			(D)	laminar flo	WS		
54.		e resultant w nwash.	ind over	an aerofoil	flying a	t 300 km/h	is tilted	l by 1.2°, de	termine the
	(A)	-1.746 m/s	(B)	100 m/s	(C)	-100 m/s	(D)	1.746 m/s	
55.	total (A) (B) (C) (D)		ient expe	erienced by t	he wing	is 0.5, the li	ft coeff	icient will be	
56.		circulation at 3.75 m ² /s	the mid	-point of a f		•	e strear	m of speed 30	0 m/s 1s
	(A) (C)	2			(B) (D)	2	S		
57.	layer of th	ncompressible thickness is e fluid alone location, in	1 mm a is incre	t a location beased by a fall be	where th	e Reynolds 4, then the b	numbei ooundai	r is 1000. If t	the velocity
58.	Amb	ient Pressure	e is the						
	(A)	Pressure of contact with		_	edium si	uch as a flu	id or a	gas which	comes into
	(B)	Pressure of	the atmo	osphere at th	e altitud	e at which th	ne aircra	aft is flying	
	(C)	Pressure as	the resu	lt of the velo	city thro	ough a fluid	or gas		
	(D)	The feeling	in a rest	aurant or nig	ghtclub				
Set -	A				8				AS

59.	The	reinforcement used in Ceramic Mat	rix Co	omposite is in the form of
	(A)	long fiber	(B)	short fiber/whiskers
	(C)	silicon carbide and boron nitride.	(D)	silicate
60.	If the	e load passes through the shear cent	er of 1	the section of a beam, then there will be
	(A)	no bending of the beam	(B)	only bending
	(C)	bending and twisting	(D)	only twisting
61.	Aero	odynamics of a spinning cricket ball	is rel	ated to
	(A)	Bernoulli's principle	(B)	Magnus effect
	(C)	Kutta condition	(D)	Newton's second law
62.	Stall	ing in an incompressible flow is due	e to	
	(A)	Sudden expansion	(B)	Flow separation
	(C)	Adiabatic compression	(D)	Isentropic expansion
63.	Lifti	ng flow over circular cylinder is obt	tained	by the combination of
	(A)	Uniform flow + source + vortex	(B)	Uniform flow + sink + vortex
	(C)	Source + Sink + Uniform flow	(D)	Uniform flow + doublet + vortex
64.	The	induced drag is minimum for the pl	an for	rm which is
		Rectangular (B) Elliptic		Parabolic (D) Square
65.	The	following equation is widely used	for c	computation of steady transonic flows over
	and a	airfoil using relaxation techniques:		·
	(A)	Sprieter's equation	(B)	Murman-Cole equation
	(C)	Poisson's equation	(D)	Prandtl's equation
66.				puter with infinite accuracy be denoted by
				n computed by using a real machine with
			solutio	on of the PDE by 'A', then we may write
		retization error as	(C)	
	(A)	A-D (B) $N-D$	(C)	D-N (D) $A-N$
67.		nerical panel methods are applicable		
	(A)	steady, incompressible and invisci		
	(B)	unsteady, incompressible and invi		
	(C)	steady, compressible and inviscid		
	(D)	unsteady, compressible and invisc	id flo	ws
68.		ficial viscosity is added to numerica		
	(A)	create viscous effect to an inviscid	l equa	tion
	(B)	create compressibility		
	(C)	dissipate the solution		
	(D)	reduce discretization error		
Set -	A		9	AS

69.	In nu	merical grid generation th	e condition for orthogonality of grids is defined as	S
	(A)	$x_{\xi}x_{\eta} + y_{\xi}y_{\eta} = 0$	$(B) x_{\xi}x_{\eta} - y_{\xi}y_{\eta} = 0$	
	(C)	$x_{\xi}y_{\eta} + x_{\xi}y_{\eta} = 0$	$(D) x_{\xi} y_{\eta} - x_{\xi} y_{\eta} = 0$	

- **70.** Numerical grid generation is carried out for the following reason :
 - (A) descritization of flow domain
 - (B) controlling the flow domain
 - (C) specifying the boundary conditions for flow domain
 - (D) defining flow variables inside the flow domain
- 71. (i) In the stiffness method of analyzing indeterminate structures, displacements are taken as the unknown quantities.
 - (ii) In the flexibility method of analyzing indeterminate structures, forces are taken as the unknown quantities.
 - (iii) The stiffness method is limited to structures that behave in a linearly elastic manner.
 - (iv) The flexibility method is limited to structures that behave in a linearly elastic manner.

Which of the above statements are true?

- (A) All the four statements(B) (iii) alone(C) (iii) and (iv)(D) (i), (ii) and (iii)
- 72. A simply-supported beam of 2 m length is subject to a linearly varying distributed load of zero intensity at the left end to 50 N/m at the right end. The support reactions are R_1 at the left end and R_2 at the right end
 - (A) $R_1 = 33.33 \text{ N}$ (B) $R_2 = 16.66 \text{ N}$ (C) $R_1 = 16.66 \text{ N}$ (D) $R_1 = 25 \text{ N}$
- **73.** A given column is constrained to bend in the x-y plane. Its cross-section should be chosen such that
 - (A) the moment of inertia for bending in the x-y plane is large
 - (B) the moment of inertia for bending in the x-z plane is large
 - (C) the cross-section area is minimum for a given value of moment of inertia for bending in the x-z plane
 - (D) (B) and (C) both are correct
- **74.** Which of the following statements below represent Maxwell's reciprocal theorem?
 - (A) the deflection at point A due to a load acting at point B is equal to the deflection at point B due to the same load acting at point A.
 - (B) the angle of rotation at point A due to a force acting at point B is numerically equal to the deflection at point B due to a couple acting at point A provided the force and the couple have the same numerical value.
 - (C) both (A) and (B) are correct statements.
 - (D) both (A) and (B) are incorrect statements.

75.	For a thin-walled angle section, the shear (A) coincides with the centroid of the se (B) lies at the corner of the angle	1
	(C) depends on the applied load(D) lies on the line which connects centre	troid and angle corner
76.	• •	alled hollow rectangular section subject to a center. At which point will the shear stress be ght walls
77.	unsymmetric bending.	mmetric cross-section can never experience mmetric cross-section can never experience ments.
78.	• /	rea as solid shaft transmits (B) less torque (D) depends on the external diameter
79.	For a symmetrical section the magnitude (A) zero (B) minimum	of the cross product of inertia is (C) maximum (D) none of the above
80.	bending then the shear flow variation bet	bending moment. If the walls are ineffective in tween two boom areas is (C) constant (D) parabolic
81.	For a 3D orthotropic material, the number (A) 4 (B) 9	er of independent elastic constants are (C) 2 (D) 21
82.	orientation) an equal distance below the n (A) Symmetric Laminate	dplane, there is an identical ply (material and midplane is called (B) Unsymmetric laminate (D) Unbalanced Laminate
83.	A cantilever beam of length L is subjected shear force at its midpoint is	ed to a bending moment M at its free end. The
-	(A) M/(2L) (B) M/L	(C) 0 (D) $M/(4L)$
Set -	A 1	11 AS

Set - [A				12				AS
-	(C)	bending with	twistin	g	(D)	only twistin	g		
74.	(A)	no bending of	_		(B)	only bendin		n, men mere will be	
94.	If the	load nasses th	rough	the shear ce	nter of t	he section of	a h ear	n, then there will be	
	(A) (C)	Elastic structu Beam	ıre		(B) (D)	Truss Linear struc	ture		
93.		gliano's theore		alid for	(P)	T			
	(C)	half its length	l		(D)	two and hal	f its le	ngth	
/ = •	(A)	its own length		Ordinii Willi	(B)	twice its len		- Cha 15 1100	
92.	The e	effective length	n of a c	olumn with	one end	fixed and the	e other	end is free	
91.	(A)	il is cut into tw double		es. The stiffi half	ness of c	same	(D)	quadrupled	
Ω1		•				•			
		$\varepsilon_x = \varepsilon_y$ and γ_{xy} $\varepsilon_x = -2\varepsilon_y$ and				$\varepsilon_x = -\varepsilon_y$ and $\varepsilon_x = -0.5\varepsilon_y$ a	-		
90.		$ε_x$ wo dimensions $ε_x = ε_y$ and $γ_{xy}$	-	lem the state	-	shear at a po $\varepsilon_x = -\varepsilon_y$ and		characterized by	
	(A)	30%	(B)			50%		60%	
89.	The 1	underbody can	be use	d to create _		of the car's	down	force.	
	(D)	extract the spe	-	-	eigen val	lues			
	(B) (C)	extract the lea	_						
	(A)	extract all the	_		e proble	m			
88.	Subs	pace iteration i	method	is used to					
	(C)	diameter of th	ne pipe		(D)	length of the	e pipe		
87.	The I	Reynold's Nun viscosity of th			in a pipe (B)	e is independ velocity of t		id	
86.		vorticity vectorotational		ro at every pirrotational		a flow, the floor circular	ow is s (D)		
	(A)	TL/(2GJ)	(B)	TL/(GJ)	(C)	2TL/(GJ)	(D)	4TL/(GJ)	
85.	other twist	end. If a twist at free end wil	ing mo	ment T is ap	oplied at	a distance L	/2 fron	one end and free at in fixed end, the angl	
	(A)	200 kN	(B)	150 kN	(C)	100 kN	(D)	kN-m the value of P 50 kN.	18

A cantilever 6 m long carries a point load of 100 kN at its free end and another load P at

95.	A propeller aircraft is flying at high subsonic speed. As propeller r.p.m. is increased shocks, on the propeller, would first appear at											
	(A) root of propeller blades(C) propeller hub	(B) (D)	· · · ·									
96.	Buckling of the fuselage skin can be delayed by A) increasing internal pressure B) placing stiffeners farther apart C) reducing skin thickness D) placing stiffeners farther and decreasing internal pressure											
97.	Which of the following action induce to (A) Rudder deflection (C) Elevator deflection	rsional stresses on the fuselage structure ? (B) Landing gear actuation (D) Aileron deflection										
98.	In curved beams the distribution of bend (A) linear (B) parabolic	ling st (C)										
99.	midpoint of the cantilever is		ip load P. The transverse deflection at the 6PL ³ /EI (D) 6PL ² /5EI									
100.	through the nozzle (A) is zero (B) remains constant with reduction in (C) decreases with reduction in exit pr	A) is zero B) remains constant with reduction in exit pressure C) decreases with reduction in exit pressure										
101.	On a variable pitch propeller, the largest (A) Fine pitch (C) Optimum pitch	obtai (B) (D)	nable pitch angle is known as Take-off pitch Coarse pitch									
102.	One of the reasons for combustion instability of scramjet engine is due to (A) expansion of the working medium (B) compression due to heat addition (C) compression in isolator (D) compression due to fuel injection											
103.	Choose the correct statement:											
	Bell shaped nozzles have the value of $\chi = \frac{1 + \cos \chi}{2}$ in the following range:											
	(A) 0.9 to 0.99 (B) 0.8 to 0.88	(C)	0.5 to 0.55 (D) 1 to 1.33									
104.	(A) Axial flow compressor blade passa	B) Centrifugal flow compressor blade passageC) Axial flow turbine blade passage										
Set -	A	13	AS									

105.	An c	An over-expanded supersonic nozzle is one, in which										
	(A)	the nozzle e	he ambient pr	essure	,							
	(B) the nozzle exit pressure is equal to the ambient pressure											
	(C) the nozzle exit pressure is lower than the ambient pressure											
	(D)											
106.		Direct fuel injection is often used in aero piston engines, in preference to float chambe carburetors. Which of these statements applies to the direct fuel injection system?										
	 (A) The fuel does not have to be vaporized (B) It cannot operate inverted (C) A throttle butterfly is unnecessary 											
	(D)											
107.	The	The operational range of Mach number for a ramjet engine is between										
	(A)	2 and 5	(B)	0.3 and 0.8	(C)	0.1 and 0.3	(D)	1.2 and 2.0				
108.	The	following typ	e of en	gine is widely	used f	or civil transp	ortatio	on by airplanes:				
	(A)	turbojet	(B)	turboprop	(C)	turbofan	(D)	piston type				
109.	The	aircraft powe	red by t	the following 6	engine	requires the l	ongest	trunway:				
	(A)	ramjet	(B)	turbojet	(C)	turboprop	(D)	turbofan				
110.	"Bla	de twist" in a	propel	ler helps to								
	(A)	make feathe	ring po	ssible								
	(B)	make the bla	ade stro	onger and light	er							
	(C)	reduce noise	e levels									
	(D)	D) even out the thrust along the length of the blade										
111.	In th	In the critical operation of supersonic inlets the normal shock position is										
	(A)	,										
	(B)	inside the in										
	(C)	outside the i										
	(D)	(D) at the exit section of the inlet										
112.				eam with cent		d, at the locati	ion of	the load				
(A) Deflection is maximum with zero slope												
	(B) Deflection is maximum with maximum slope(C) Deflection and slope are zero											
	(D) Deflection is zero with maximum slope											
Set -	A				14				AS			

113.	The	The overall air to fuel ratio in a turbojet engine is approximately													
	(A)	67	(B)	15		((C)	8		(D))	4			
114.		order of pressor is	pressure	ratio	that	can	be	achieved	in	a	sir	ıgle	sided	centri	ifugal
	(A)	24	(B)	6		((C)	42		(D))	2			
115.	For turbine blade cooling, the coolant air is tapped from the following range of stages of a multistage – axial flow compressor :														
	(A)	10 to 12	(B)	4 to 6	5	((C)	18 to 20		(D))	1 st &	z 2 nd st	ages	
116.	In an optimally expanded jet engine nozzle, the nozzle exist pressure is equal to														
	(A)	half of ambient pressure													
	(B)	ambient p	oressure												
	(C)	` ′													
	(D)	pressure a	at inlet sec	tion o	f the i	intak	e of 1	the engine							
117.	The typical value of temperature in gas turbine engine combustion chamber primary zone is about														
	(A)	2600 K	(B)	4000	K	((C)	1200 K		(D))	600	K		
118.	Flame stability is ensured when														
	(A)	•													
	(B)	B) the residence time is more than the reaction time of the medium													
	(C)														
	(D)	D) internal flow velocity is more than flame velocity													
119.	The bypass ratio in a modern turbofan engine lies in the range of														
	(A)	0.1 to 0.5	(B)	5 to 9	9	((C)	1.1 to 2		(D))	0.8 t	to 1.2		
120.	The type of compression that a working medium undergoes in a ramjet engine inlet is in the following order:														
	(A)	A) shock compression, subsonic ram compression and mechanical compression													
	(B)	(B) shock compression, mechanical compression and subsonic ram compression													
	(C)	subsonic	ram comp	ressio	n and	shoc	k co	mpression							
	(D)	D) shock compression, subsonic ram compression													
Set -	A					1:	 5								AS
- [4.					1.	-								110

SPACE FOR ROUGH WORK