

Booklet No. :

ME - 16

Mechanical Engineering

Duration of Test : 2 Hours			Max. Marks: 120
	Hall Ticket No.		
Name of the Candidate :			
Date of Examination :	OMR Ans	wer Sheet No.	:
Signature of the Candidate	- //	Signature	of the Invigilator

INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes.
- Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- Each question carries one mark. There are no negative marks for wrong answers.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- No part of the Booklet should be detached under any circumstances.
- The seal of the Booklet should be opened only after signal/bell is given.

ME-16-A

MECHANICAL ENGINEERING (ME)

If 2, 1+2i are the eigen values of a third order matrix A, then the third eigen value is

(C)

(C)

(C)

If f(x) = (x-1)(x-2) satisfy Lagrange Mean Value theorem at c in the interval [1,3],

(C) |A|=+1

2 + 3i

2

(D)

(D)

(D)

1/2

A system of homogeneous linear equations AX = 0 has a nontrivial solution if

(A) |A|=-1 (B) |A|≠0

(B)

(B)

(B) 1

1+i

If $x = r\cos\theta$, $y = r\sin\theta$, z = z, then the value of $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} =$

1.

2.

(A) 1-2i

then c =(A) 3

5.	If y	$=cx-c^3$ is	the gener	ral solution	of the dif	ferential equa	ation		
	(A)	y'' - xy'	-y=0		(B)	$(y')^3 - xy'$	+y=0		
	(C)	y'' - xy'	-y=0		(D)	y' = 0			
6.	The	complemen	tary func	tion of y -	-2y + y =	$x^2e^x\cos x$ is			
	(A)	$c_1 \cos x + c$	sinx		(B)	$c_1e^x+c_2e^{-x}$	6		
	(C)	$(c_1 x + c_2)$	e*		(D)	$(c_1x+c_2)x$,,,		
7.	If X	is a Poissor	n distribu	ted variable	e and P()	$(X = 0) = \frac{1}{e^2}$	then the	probability	distribution
	funct	tion is							
	(A)	$\frac{e^{-2}2^x}{x!}$	(B)	$\frac{e^{-3}3^x}{x!}$	(C)	$\frac{2^{x}}{x!}$	(D)	$\frac{1}{x!}$	
8.		e mean and ability distri			omial dist	ribution are	4 and 3	3 respective	ly, then the
		$C_{x}^{8}\left(\frac{3}{4}\right)^{x}$				$C_{x}^{16}\left(\frac{3}{4}\right)^{x}$	7		
	(C)	$C_{x}^{8}\left(\frac{1}{4}\right)^{x}$	$\left(\frac{3}{4}\right)^{8-x}$		(D)	$C_{x}^{16}\left(\frac{1}{4}\right)^{x}\left(\frac{1}{4}\right)^{x}$	$\left(\frac{3}{4}\right)^{16-x}$		
9.	One	root of the	equation	$f(x) = 2x^2$	-5x + 2 =	0 lies in the	interval	1	
	(A)	(0,1)	(B)	(1, 2)	(C)	(-1,0)	(D)	(-2,0)	
Set	- A				2				ME

10.	The method of successiv	e approximation	$n x_{k+1}$	$=\phi(x_k)$ conve	erges if	f.	
	(A) $ \phi'(x) < 1$ (B)	$ \phi'(x) > 1$	(C)	$ \phi(x) > 0$	(D)	$ \phi(x) < 2$	
11.	resultant force system is	ody under a sys		- 20	fies the	condition	in which the
	(A) Positive (C) Zero			Negative Either Positive	ve or N	legative or l	Zero
12.	maximum when the sma						ving body is
	(A) static (C) about to move		1000	about to com in uniform m		ilt	
13.	A cylindrical disk of r stationary flat surface. T rotation is						
	(A) 4 kg.m ² (B)	3 kg.m ²	(C)	2 kg.m ²	(D)	1 kg.m ²	
14.	The velocity of a part acceleration after 2 second		ear m	otion is give	n by	$V = 2t^3 - 3t$	² m/sec. Its
	(A) 8 m/s ² (B)	15 m/s ²	(C)	21 m/s ²	(D)	12 m/s ²	
15.	A gear wheel of pitch of tangential acceleration o				accele	eration of 6	rad/s ² . The
		3.0 m/s ²		5.0 m/s ²	(D)	6.0 m/s ²	
16.	Two bodies of masses M passing over a smooth hanging in air. If mass gravitational acceleration	pulley. Mass m M is moving d	lies	on smooth ho	rizonta	al plane and	mass M is
		2g	(C)	2g/3	(D)	3g/2	
17.	A body of mass 5 kg is with another body of ma move together as a sin velocity of the system af	ss 10 kg movin gle entity with	g in the	he same direct	ion at	5.5 m/s. Bo	th the bodies
	(A) 5.5 m/sec (B)	7 m/sec	(C)	7.8 m/sec	(D)	10 m/sec	
18.	The state of stress at a po (A) Scalar (B) Vector (C) Tensor (D) Any of the above of		-21				
Set .	- A		3				ME
Det.			•				ME

In a shaft under pure torsion the shear stress is given as 100 MPa. The principle stresses

On the plane which carries maximum normal stress, the shear stress is zero.

On the plane, which carries maximum shear stress, the normal stress is zero.

A cantilever beam is subjected to a couple at its free end. Labeling BM for Bending

The principle stress axes and principle strain axes coincide for an isotropic material.

(C) 0, 100

(D) +200, -200

In a structural element made of linear elastic material

Stiffness and flexibility are not related.

Stiffness is equal to flexibility.

(A) +100, -100 (B) +50, -50

Moment and SF for shear force.

(B) (C)

(D)

(B)

(C)

22.

Stiffness is directly proportional to flexibility. Stiffness is inversely proportional to flexibility.

21. Pick the incorrect statement from the following four statements:

Principle planes are mutually orthogonal.

23.	trans	verse load p	parallel t	o Y-axis. T	he width	of the bear	m measu	axis. It is subjected to red parallel to Z-axis is of the beam is paralle
	to (A)	X axis	(B)	Y axis	(C)	Z axis	(D)	Either X or Y axis.
24.								a hallow shaft such tha inner diameter D _i is one
	fourt	h of the out	er diame	ter (ie. D _i =0	0.25 D _o).	Rest of the	variables	s remains unaltered. The
		ess of the h				5 200		793
	(A) 2	256	(B)	$\frac{63K}{64}$	(C)	$\frac{3K}{4}$	(D)	15K 16
25.				sists of 8 lin		ning pairs ar	nd 2 slidi	ng pairs. The number o
	(A)		(B)			2	(D)	-1
26.	while	the couple	r and fix	ed links an	e equal a		When be	nks are equal and longe oth the input and outpu
			(B)		(C)			Infinity
	(A)	20	100		7			

27.	rotat	es at N rpm	with res	pect to the	fixed link	ning pair and while the sl The Coriolis	ider rec	iprocates	along the ax	cis
	(A)	0	(B)	2NV	(C)	π NV/30	(D)	π NV/15		
28.	prim same speed (A)	e mover. Ke mass as the d will be Reduced to	eping ever originate origi	erything sar	ne the fly ouble the (B)		laced by the coef y 100 9	y another of	ne having t	he
	(C)	Remains s	ame		(D)	Reduced to	50 %			
29.	Whe	re F is the co	ontrol Fo	orce, r is the governor is	radius o	nor is given left rotation for a > 0 & b <	the ball	ls, a and b	are constan	
30.	beco (A)		ım and t	he magnitud	le of the s (B)	nagnitude of secondary un Maximum Neither Mi	balance	d force wi	ll be	ce
31.		ging with a		eel of any nu		oid interferent teeth must be 15		t	volute pinio	on
32.	whee (A)				tively. T	ntial gear the he speed of the 61 rpm Can't say w	he crow	n wheel w		er
33.	(A) (B)	Acceleration Acceleration Acceleration	on is ma on is Zer on is mi	ximum and ro and Veloc	Velocity city is mi Velocity	nimum is Zero	ugh the	mean posi	tion	
34.	posit (A)	ion the net for Zero Opposite to	orce on	the bob is	(B)	In the direct Upwards			is at its me	an
35.		ring mass da	imper sy	stem has M	l = 1 kg,	C = 2 N.sec	m and	K = 4 N/n	n. What is t	he
	(A)		(B)	0.25	(C)	2	(D)	0.5		
Set -	- A				5				N	1E

36.	mag	nification fa	ctor whe	n the excitati	on frequ	iency is 2	rad/sec?		N/m. What is the
	(A)	1	(B)	Infinity	(C)	2	(D)	0.5	
37.	the r	e with amp	litude of velocity equency	0.1 m and w of 10 m/sec.	Modeli Modeli	th 10 m/s ing this as	a support	he vehi motion	ed as a harmonic cle travels along problem what is ad/sec
20	A el	ander shaft	cumparta	d in short be	neinae	has a ariti	cal croad	M mm	When the short
38.		ings are rep	laced wit	h long bearin	gs the c		ed will be	N/2	When the short
39.		ne design o	f machine	component	s if the	factor of	safety is	increase	d it leads to the
	(A)	Size	(B)	Cost	(C)	Induced	Stress (D)	All the	e above.
40.	A co	by yieldir	ade of bri	ittle material max = Syt	subjecte (B)	ed to pure by fracti	shear fails are when t	max = S	yt/2
	(C)	by fractu	re when t	$m_{\text{max}} = S_{\text{yt}}$ $m_{\text{max}} = S_{\text{ut}}/2$	(D)	by yield	ing when	$t_{\text{max}} = S$	out/2
41.				n notch sen) form stress					ss concentration
	(A)	$q = \frac{k_r}{k_t}$	(B)	$q = \frac{k_t - 1}{k_r - 1}$	(C)	$q = \frac{k_r - K_r}{K_t}$	$\frac{1}{1}$ (D)	$q = \frac{k}{k}$	$\frac{1}{1} + \frac{1}{1}$
42.	(A)	he combina Needle be Cylindrica	aring		(B)	Spherica Journal b	l roller bea		the following is
43.	(A) (B) (C)	Increase in	n speed of n friction the effort	ess of spring f engagement torque at ma for disengage	t ximum s	and the second	clutch lead	s to	
44.	A br (A) (B) (C) (D)	External : Huge external The break	force is no ernal force cing force	energizing we of necessary e is required and the frict and the frict	to opera to disention force	gage the b	rake noment in		
45.	tensi		Assuming	uniform stre	ess distri			ess in th	
				- CONTRACTOR OF THE PARTY OF TH	*200		30.00		
Set -	A				6				MI

46.	Mer	cury does n	ot wet the	glass. This is	due to	the property	of the l	iquid, known a	IS
		Cohesion				Surface tens			
	(C)	Adhesion			(D)	Viscosity			
47.	A fl	uid in equil	brium ca	n't sustain					
		Shear stre			(B)	Tensile stres	ses		
	(C)	Compress	ive stress	es	(D)	Bending stre	esses		
48.	Cho	ose the wro	ng statem	ent					
	(A)	to a shear	ing force.	in the second				amount of its	resistance
	(B)			decreases wi					
				marily to inte					
	(D)	Viscosity	of the liq	uid is apprecia	ably aff	ected by char	ige in p	ressure.	
49.	Whe			a <mark>liquid, is dis</mark>	placed	slightly then i	it oscill	ates about	
	(A)				200	Center of bu	*		
	(C)	Meta cent	ег		(D)	Gravitationa	l cente	r	
50.				he radial com					
	(A)	Zero	(B)	Maximum	(C)	Minimum	(D)	Non-zero and	finite
51.	The	velocity pro	ofile for to	urbulent flow	through	n a closed con	duit is		
	(A)	Linear	(B)	Parabolic	(C)	Hyperbolic	(D)	Logarithmic	
52.	Bou	ndary layer	separatio	n is caused by	the				
		Adverse p							
	(B)	Reduction	of pressu	re gradient to	zero.				
	(C)	Boundary	layer thic	kness reducir	ig to ze	ro.			
	(D)	Reduction	of pressu	ire to vapour	pressur	e.			
53.	The	temperatur	e in isentr	opic flow					
	(A)	Depends	on Mach	number only.					
	(B)			pends on Mac		er.			
	(C)		depend or	Mach number	er.				
	(D)	Can't say							
54.	Whi	ch of the fo	llowing is	not a dimens	ion-les	s parameter ?			
	(A)	Euler nun	nber		(B)	Fanning fric	tion fac	ctor	
	(C)	Specific g	ravity		(D)	None of the	above		
55.	A p	iece of met	al of spe ll under n	cific gravity nercury?			SCHOOL STATE	cific gravity 1	3.6. What
	(A)	About 0.4	(B)	About 0.6	(C)	About 0.5	(D)	About 0.65	
Set -	A				7				ME

56.	Acco	ording to kinetic theory of gase	es, the abso	lute zero temperature can be attained when
	(A)	Volume of gas is zero	(B)	Kinetic energy of molecules is zero
	(C)	Specific heat of gas is zero	(D)	Mass is zero
57.	Whi	ch of the following is correct ?	,	
	(A)	Only gases have two values of	of specific l	neat.
	(B)	Both gases and liquids have	two values	of specific heat.
	(C)	Specific heat value is constant	nt irrespecti	ve of state of substance.
	(D)	Only liquids have two values	of specific	heat.
58.		eat exchange process in which wn as	h product	of pressure and volume remains constant is
	(A)	Adiabatic process	(B)	Throttling process
		Isentropic process	(D)	Hyperbolic process
59.	The	absolute temperature of an id	deal diaton	nic gas is quadrupled. What happens to the
	aver	age speed of molecules ?		COST AS CO.
	(A)	Quadruples	(B)	Doubles
	(C)	Triples	(D)	Increases by a factor of 1.41
61.	(A) (B) (C) (D) Whice (A) (B) (C)	Both Stirling and Ericson cyc	the mass of the d the amound the amound the amound the are revected are irrevecycle are re-	f the ice will increase. ice will decrease. int of ice will remain constant. int of ice will decrease. rsible. iersible. iversible.
62.	Read	the following Statements:		
	(i)			n Diesel cycle efficiency for the same use in Otto cycle combustion is at constant
	(ii)			n Diesel cycle efficiency for the same use in Otto cycle maximum temperature is
	(iii)			n Diesel cycle efficiency for the same e in Otto cycle heat rejection is lower.
	(A)	Only (i) is correct		Both (i) and (iii) are correct
	(C)	Only (iii) is correct	(D)	Both (ii) and (iii) are correct.
Set -	A		8	ME

ME

- 63. Read the following Statements:
 - Thermal conductivity of air with rise in temperature increases.
 - Thermal conductivity of non-metallic amorphous solids with decrease in temperature decreases.
 - (iii) Thermal conductivity of solid metals with rise in temperature normally increases.
 - (A) All (i), (ii) and (iii) are correct
- (B) Only (i) and (iii) are correct
- (C) Only (ii) and (iii) are correct
- (D) Only (i) and (ii) are correct
- 64. The concept of overall heat transfer coefficient is used in heat transfer problem of
 - (A) Conduction and convection
- (B) Conduction and radiation
- (C) Convection and radiation
- (D) Conduction, convection and radiation
- 65. Which of the following statement is correct pertaining to thermal diffusivity?
 - (A) It is a function of temperature
 - (B) It is inversely proportional to thermal conductivity
 - (C) It is property of material
 - (D) It is a dimensionless parameter
- 66. In free convection heat transfer transition from laminar to turbulent flow is governed by the critical value of the
 - (A) Prandtl number, Grashoff's number
 - (B) Reynold's number, Grashoff's number
 - (C) Reynold's number, Prandtl number
 - (D) Reynold's number
- The by-pass factor for a cooling coil
 - (A) May increase or decrease with increase in velocity of air passing through it depending upon the condition of air entering.
 - (B) Decreases with increase in velocity of air passing through it.
 - (C) Increases with increase in velocity of air passing through it.
 - (D) Remains unchanged with increase in velocity of air passing through it.
- 68. Which of the following statement is correct?
 - (A) The minimum temperature to which water can be cooled in a cooling tower is wet bulb temperature.
 - (B) The minimum temperature to which water can be cooled in a cooling tower is dew point temperature of air.
 - (C) The minimum temperature to which water can be cooled in a cooling tower is ambient temperature of air.
 - (D) The minimum temperature to which water can be cooled in a cooling tower is dry bulb temperature of air.

Set - A 9

- Stanton number is defined as
 - (A) The ratio of Prandtl number and the product of Nusselt number and Reynold's
 - (B) The ratio of Prandtl number and the product of Nusselt number and Raleigh's
 - (C) The ratio of Reynold's number and the product of Nusselt number and Prandtl
 - (D) The ratio of Nusselt number and the product of Reynold's number and Prandtl
- The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner radius
 - (A) Decreases

(B) Increases

(C) Constant

- (D) May increase or decrease
- 71. Which of the following statements is correct?
 - (A) High value of Prandtl number indicates Rapid heat transfer by forced convection to natural convection.
 - (B) High value of Prandtl number indicates Rapid diffusion of momentum by viscous action compared to diffusion of energy.
 - (C) High value of Prandtl number indicates relative heat transfer by conduction to convection.
 - (D) High value of Prandtl number indicates relative heat transfer by radiation to convection.
- 72. Which of the following is not true pertaining to four stroke internal combustion engine?
 - (A) Because of one power stroke in two revolutions, lesser cooling and lubrication requirement, thus lesser rate of wear and tear compared to two stroke cycle engine.
 - High initial cost compared to two stroke cycle engine
 - (C) Volumetric efficiency lesser compared to two stroke cycle engine, due to less time available for induction.
 - (D) Part load efficiency is better than two stroke cycle engine.
- Mechanical efficiency of the internal combustion engine is defined as
 - (A) Ratio of indicated work to the energy supplied by the fuel.
 - (B) Ratio of shaft work obtained to the energy supplied by the fuel.
 - (C) Ratio of power obtained at the shaft to the indicated power.
 - (D) Ratio of power obtained at the shaft to the actual volume inhaled during suction stroke.
- 74. Read the following Statements:
 - Regenerative cycle thermal efficiency is always greater than simple Rankine cycle.
 - The maximum percentage gain in Regenerative feed heating cycle thermal efficiency, increases with more number of feed heaters.
 - In a regenerative feed heating cycle, the optimum value of fraction of steam extracted for feed heating decreases with increase in Rankine cycle efficiency.
 - (A) Only (i) and (ii) are correct
- (B) Only (i) and (iii) are correct
- (C) All above statements are correct (D) Only (ii) and (iii) are correct.

Set - A 10 ME

75.	The	work output of the	oretical Otto cyc	le	
		Increases with inc			x
	(B)	Decreases with in	crease in pressur	re ratio	3
	(C)	Decreases with in	crease in compre	ession	ratio
		None of the above			
76.		overall efficiency			the ratio of (or head of water) actually supplied to the
		turbine		-	
	(B)				he energy imparted to the wheel
	(D)				ergy imparted to the wheel ergy actually supplied by the turbine
	(D)	rower produced i	by the turbine to	the en	ergy actually supplied by the turbile
77.	Any	change in load is a	djusted by the ac	djustin	g the following parameter on turbine
		Blade velocity			Flow
	(C)	Net head		(D)	Relative velocity at the inlet
78.			a turbine is the	speed	of an imaginary turbine, identical with the
		n turbine, which			
	(A)	Develops unit por	wer under unit no	band	
		Delivers unit disc Delivers unit disc			
		Develops unit por			1
79.		ose the wrong state			i
	127.52	difference.	- 5		time it flows through a finite temperature
	(B)	temperature to lo	w temperature, to	emper	y transferred by heat transfer from high ature difference should be increased.
	(C)			oes is	always less than the reversible work.
	(D)	None of the above	e.		
80.	Free	zing temperature o	f water decreases	s with	
	(A)				Increases or decreases with pressure
	(C)	Decrease in press	ure		Increase in pressure
81.	Allo	y steel which is wo	ork hardenable a	nd wh	ich is used to make the blades of bulldozers,
					ng equipment contain iron, carbon and
		Chromium (B			Manganese (D) Magnesium
82.				using	universal testing machine, the parameters
		ally measured inclu			
		True stress and tr			
	100	Poisson's ratio an			
	(C) (D)	Engineering stres Load and elongat		g strai	n
Cat				11	ME
Set -	A			11	ME

00.		temperatu cture, is k	re and then co	ooling s	lowly to room	tempe	ritical temperature lir erature to form a pearli Annealing	
84.		screw an teel screw screw an	d mild steel no and phospho d cast iron nu	ut r bronze t		ds used	for the screw and nut	
85.					nieved by mea	ans of	base structure made	of
	which one of the (A) Low carb		ng material?		Nadular iron			
	(C) Grey cast			4.5	Nodular iron White cast in			
86.							sand moulds. Shrinka of pattern to that of t	
	(A) 0.97	(B)	0.99	(C)	1.01	(D)	1.03	
87.	(C) It provide (D) It reduces Misrun is a cas (A) A very hi (B) Insufficie	s rapid fill er to provi es cleaner s splashin ting defec- igh pourir ent fluidit	ling of mould de in the mou metal g and turbuler et which occur g temperature y of the molte	cavity old nce rs due to e of the n metal	metal	cause		
	(C) Absorption(D) Improper		t of the moul					
89.	Which of the fo	allowing:	are produced l	hy shish	casting ?			
0,,	(A) Hollow c	astings w	ith thick walls	(B)	Hollow casti	ngs wi	th thin walls	
	(C) Thin cast				Thick castin			
90.				s consis	ts of central s	prue to	feed metal into caviti	es
	through a num		ial gates	(D)	C		41.0	
	(A) Centrifug (C) True cent		sting		Semi-centrif Precision cas		isting	
91.	In rolling a stri		n two rolls, th	e positi	on of the neut	ral poi	nt in arc of contact do	es
	(A) Amount	of reducti	on	(B)	Diameter of	rolls		
				(TV)	Materials of	malla		
	(C) Coefficie	nt of rolls		(D)	Materials of	rons		

92.		pen die forgir barreling effe							essed without
		1.986		1.686		1.386		0.602	
93.		operation in wn as	which	oil is perm	eated into	the pores	of powde	er metallur	gy product is
	(A)	0.97	(B)	0.99	(C)	1.01	(D)	1.03	
94.	Whi	ch one of the	followi	ng manufac	turing pro	ocesses rec	quires the	provision o	f gutters
	20	closed die fe investment				centrifug impact ex			
95.	The	collapsible to	oth pas	te tubes are	manufact	tured by			
	(A)	direct extru	sion		(B)	piercing			
	(C)	impact extra	ision		(D)	indirect e	extrusion		
96.	In w	hich one of th	ne follo	wing weldin	ng technic	ues is vac	uum envir	onment is r	required ?
		Ultrasonic v				Laser bea			
	(C)	Plasma are	welding		(D)	Electron	beam weld	ding	
97.	High	alloy steel c	ompone	ents are prel					
	70.0	heat affecte				total ener		nption	
	(C)	total time of	weldin	ıg	(D)	welding :	stresses		
98.		ch one among			ding proc	esses uses	non-consu	mable elec	trode ?
		Gas metal a				Submerg			
	(C)	Gas tungste	n arc w	elding	(D)	Flux coat	ted arc we	lding	
99.	The	type of coate	d electro	ode most w	idely used	for weldi	ng low car	rbon steels	
	(A)	Cellulose	(B)	Acidic	(C)	Rutile	(D)	Oxide	
100.		strength of a							
	(A)	decreases w	ith incr	ease in gap	between	the joining	surfaces.		
		increases w							
		decreases up increases up							
101.		orthogonal cu							. If the chip
		1.33 m/sec				2.5 m/sec		3 m/sec	
102.	The	percentage of	total e	nergy dissip	ated due	to friction	at the tool	chip interf	ace is
	(A)	30	(B)	42	(C)	58	(D)	70	
103.		indexing of th			spindle l	athe is don	ne using		
		Geneva med						nechanism	
	(C)	Rack and pi	nion me	echanism	7.00	Whit wo	rth mechan	nism	
Set -	A				13				ME

104.				ing the cutt		d reduces the	tool l	ife to one fou	orth of the
	(A)			1/3	(C)	1/4	(D)	1/7	
105.	degr	ee of freedo		in jig or fix the value o	f 'n' is		108/1	ict the work p	iece in 'n'
	(A)	6	(B)	8	(C)	9	(D)	12	
106.	of th	e hole is in	dicated by	y		53		the position of	f tolerance
	(A)	Letter G	(B)	Letter f	(C)	Number 7	(D)	Number 8	
107.	each	other			, the fol	lowing pair c	an be u	ised in conjun	ction with
		sine bar a		-071//		bevel protra			
		slip gauge				sine bar and			
108.	the b then limit	the upper of the bore	.00 mm limit is 2:	and 25.021 5.033 mm. V	respectiv	ely. When th	e bore	er (maximum is designated as 25H6, then	as 25H8,
	(A)	25.001	(B)	25.005	(C)	25.009	(D)	25.013	
109.	The (A)	-		that does not		latum for its s Run out	pecific	ation is	
		Perpendic			4	Flatness			
110.	with	pitch of 2	mm. The	basic length	unit for	this drive is		rees drives a l	
	(A)	10 micron	is (B)	20 microns	(C)	40 microns	(D)	100 microns	
111.	(A) (B) (C)	Simultane Simultane Independe	eous contro	napes on CN ol of x, y, z ol of x, y ax ol of x, y, z a ol of x, y axe	axes es xes	nes requires			
112.	For g	The second secon		irface we rec	•				
	(A) (B)	The Carlotte of the Carlotte o		on the surfac	ce				
	(C)			es defining s	surface				
	(D)					ontrol points			
113.			-	suitable for in large vol					
	(B)			of several va					
	(C)			nilar features					
	(D)	large varie	ety of pro	ducts in larg	e volume	28			
Set -	A				14				ME

114.	If the demand for an item is doubled and the ordering cost halved, the economic order quantity							
	(A) remains unchanged (C) is doubled			increased by factor of √2 is halved				
115.	A company has an annual demand of 1000 units, ordering cost of ₹ 100 order, and carrying cost of ₹ 100 unit-year. If the stock out costs are estimated to be nearly ₹ 400 each time the company runs out-of-stock, the safety stock justified by the carrying cost will be							
	(A) 4 (I	3) 20	(C)	40 (D)	100			
116.	Vehicle manufacturing assembly line is an example of							
	(A) Product layout	(B)	Process layout					
	(C) Manual layout		(D)	Fixed layout				
117.	Production flow analysis (PFA) is a method of identifying part families that uses data from							
	(A) Engineering drav	wings	(B)	Production schedul	e			
	(C) Bill of materials		(D)	Route sheets				
119.	variable cost of Rs. 1 per piece. Process III has fixed cost of ₹ 40 and variable cost of ₹ 2 per piece. Process IV has fixed cost of ₹ 10 and variable cost of ₹ 4 per piece. If company wishes to produce 100 pieces of the component, from economic point of view it should choose (A) Process I (B) Process II (C) Process III (D) Process IV A dummy activity is used in PERT network to describe (A) Precedence relationship (B) Necessary time delay (C) Resource restriction (D) Resource idleness							
	A CONTRACTOR OF THE CONTRACTOR							
120.	The project activities, precedence relationships and durations are described in the table. The critical path of the project is							
	Activ	vity Prec	edence	Duration (in	day)			
	P		-	3				
	Q		-	4				
	R		P	5				
	S		Q	5				
	T		R, S	7				
	U		R, S	5				
	V		T	2				
	W		U	10				
	(A) P-R-T-V (B) Q-S-T-V (C) P-R-U-W (D) Q-S-U-W							

15

ME

Set - A

SPACE FOR ROUGH WORK

Set - A 16 ME

MECHANICAL ENGINEERING (ME) SET-A

Question No	Answer	Question No	Answer
1	D	61	Α
2	Α	62	C
3	C	63	D
4	D	64	Α
5	В	65	C
6	C	66	Α
7	A	67	C
8	D	68	Α
9	A	69	D
10	Α	70	Α
11	C	71	В
12	С	72	C
13	В	73	C
14	D	74	A
15	В	75	A
16	С	76	D
17	В	77	В
18	С	78	A
19	В	79	В
20	A	80	D
21	С	81	C
22	A	82	D
23	C	83	D
24	A	84	В
25	В	85	C
26	C	86	A
27	D	87	D
28	A	88	В
29	C	89	В
30	В	90	A
31	В	91	D
32	В	92	C
33	D	93	C
34	A	94	A
35	D	95	C
36	A	96	D
37	В	97	D
38	C	98	C
39	С	99	C
40	C	100	D

41	C	101	A
42	В	102	A
43	A	103	A
44	C	104	A
45	A	105	C
46	В	106	A
47	A	107	C
48	D	108	D
49	С	109	D
50	A	110	A
51	D	111	C
52	В	112	C
53	A	113	C
54	D	114	A
55	C	115	C
56	В	116	A
57	A	117	В
58	D	118	В
59	В	119	A
60	В	120	D