		D	D				
		К.	D.				
		JE Question p	aper 2010				
]	Based o	n Memo	ry			
ι.	Contraction of the second second			ingle ABC with base BC			
	where $B = (2, 4)$			10.21			
	1) 6	2) 3	3) 4	4) 5			
 If the distance between the points (na, nb) and between the points (5a, 5b) and (a, b), then 'n' is ended. 							
	a) 11 or -13	2) 11	3) 13	4) 17 or -15			
3.	ABC is a tringle	ABC is a tringle whose centroid is G. If A is $(-3, 1)$ B is $(2, b)$, C is $(a, -4)$ and					
	G is $(1, -1)$ then	find 'a' and 'b'.					
	1) $a = 4, b = 0$		2) $a = 0, b = -$	4			
	3) a = 3, b = 2	2-	4) $a = 5, b =$	2			
١.	An angle is equal to $\frac{3\pi}{5}$ radians. What is its measure in degrees?						
	1) 145°	2) 72°	3) 108°	4) 120°			
5.	The equation of	a straight line is 2	2x-3y+2 = 0. What is	s its slope?			
	2	2) 2	3) 2	4) 2			
	1) $\frac{-}{3}$	2) -2	3) 2	$4) = \frac{1}{3}$			
) .	Service and the service of the servi		ich satisfy the inequa	uity-			
	$-\frac{1}{5} - \frac{3x}{10} + 1$	$<\frac{2}{5}, x \in \mathbb{R}$					
	1) $(x : x \in \mathbb{R}, 0.3)$	$3 \le x < 9$	$2) (x : x \in \mathbb{R},$	$-4 \le x < -2)$			
		$\geq x > -2)$	4) $(x : x \in R,$				

I

7.	Read the law given below	and identify	the same:			
	The mass on any substance liberated from an electrolyte is directly proportional to the quantity of charge passing through the solution.					
	1) Avogadro's law					
	2) Faraday's first law of e	lectrolysis				
	3) Faraday's second law o	f electrolysis				
	4) Kirchhaoff's law of ele	ctricity				
8.	The value of Avogadro's c	constant is-				
	1) 6.022×10^{23} per mole		2) 58.04 × 10 ⁻² μ	per mole		
	3) 69.51×10^{-18} per mole	е	4) 6.022 × 10 ¹⁴ p	er mole		
9.	In an experiment, 295 m passes for 30 minutes. Fin	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	1) 32.77 a 10-8 kg/ coulo	mb	2) 58.4 kg/ coulo	mb		
	3) 109.5×10^8 kg/ coulon	ıb	4. $\frac{1}{32.77 \times 10^{-8}}$	kg/ coulomb		
10.	Which one of the following is the correct unit of angular velocity?					
	1) m/ minute 2) cn	n/ sec ²	3) cm/sec	4) radians/ sec		
11.	The force by which a bod	y is attracted	towards the centre	of the earth is called		
	1) Gravitational force 2) Mass					
	3) Momentum		4) Impulsive forc	e		
12.	The maximum displacement	ent of a vibrat	ing body from its m	ean position is called		
	1) Gyration 2) W	avelength	3) Amplitude	4) Impulse		
13.	The kinetic energy of a body depends upon-					
	1) Mass, gravity and height		2) Its mass alone			
	3) Its velocity alone 4) Both mass and velocity					
14.	A ball weighing 25 grams is thrown vertically into the air. It takes 15 seconds to reach its highest point. How much time would it take to reach the ground from its highest point?					
	1) More data are required for calculation					
	2) Less than 15 seconds					
	3) More than 15 seconds					
	4) 15 seconds					

1

I

Г

	1) Pressure gaug	PC	2) Internal com	bustion engines			
124	3) Potentiometer		4) Electric mot				
16.				arth's atmosphare due to earth's surface is called			
	1) Tsunami		2) Solar heating	ş			
	3) Green-house e	effect	4) Seismic effe	ct			
17.	Why is it recom closed rooms?	mended that peop	le should not use ch	narcoal or gas stoves in			
	1) The electrical	wiring in the room	n may catch fire				
	2) The stoves wi	ll get extinguished					
	3) It can cause ca	3) It can cause carbon monoxide poisoning					
	4) The stoves may burst						
18.	The most effective way to improve safety in a vast organisation like the Indian Railways is to						
	1) Ignore small acts of negligence by the staff						
	2) Carry out frequant checks						
	3) Educate the staff at all levels						
	4) Punish default	ing staff					
19.	The density of w	ater is maximum a	t				
	1) 100°C	2) 0°C	3) -273°C	4) 4°C			
20.	Which one of the	following quantit	ies does not have a u	nit?			
	1) Velocity	2) Density	3) Specific Gra	vity 4) Mass			
21.	A Swimmer find	ls it easier to swim	in sea water than in	plain water. Why?			
	1) Sea water has less contamination						
	2) Sea waves hel	p a swimmer to sw	vim				
	3) Sea water has	higher density that	n plain water				
	3) Sea water has higher density than plain water4) Sea has a much higher volume of water						

22.	Humidity refers to-						
	1) Both temperature and moisture contents of the air						
	2) Temperature of	2) Temperature of the air					
	3) Moisture conte	ent of the air					
	4) Presure of the	air					
23.	Boyle's law state	s that-					
	1) Volume is dire	ctly proportional to t	emperature				
	2) Pressure is inv	ersely proportional to	o temperature				
	3) Pressure is dir	ectly proportional to	temperature				
	4) Presure is inve	ersely proportional to	valume				
24.	Purity of milk is	confirmed by-					
	1) Barometer	2) Lactometer	3) Altimeter	4) Hygroscope			
25.	A stick is dippe property of-	d in a vessel conta	uining water. It ap	opears bent due to the			
	1) Reflection		2) Newton's Lay	w of Motion			
	3) Refraction		4) Buoyancy				
26.	The temperature	The temperature on the surface of the sun is about-					
	1) 8 × 10 ¹⁵ °C	2) 500°C	3) 6000°C	4) 1000°C			
27.	The planet farthe	st from the Sun is-					
	1) Pluto	2) Mercury	3) Jupiter	4) Neptune			
28.	Which one of the	following is measur	ed on the 'RICHTE	ER SCALE'?			
	1) The speed of a rocket 5 seconds after take off						
	2) The intensity of thunderstorm						
	3) The intensity of an earthquake						
	4) The speed at w	which a player serves	the ball in Lawn T	ennis			
29.	As a train approa phenomenon is e	13 2	y or shrillness of its	s whistle increases. This			
	1) Big Bang The	ory	2) Doppler Effe	ct			
	3) Charles' Law		4) Archimedes I	Principle			

1

	1) Stress	2) Flexbility	3) Stiffness	4) Strain				
31.	The term accelera	O MARKA CARACTERINA	5) buildess	i) bruin				
	1) Maximum spee		2) Rate of chang	e of time				
	3) Rate of change	of velocity	4) Rate of chang					
32.	-			m/sec ² . What distance				
	•	avel in 10 seconds?						
	1) 250 metres	2) 100 metres	3) 150 metres	4) 200 metres				
33.		-	40%. If 10,000 jou one by the engine w	les of heat energy are ould be-				
	1) 40,000 Joules	2) 10,000 Joules	s 3) 25,000 Joules	4) 4,000 Joules				
34.	ml to a final volu	me of 300 ml. At th		an initial volume of 10 ion, the pressure of the pressure of the gas?				
	1) 9 atmosphere	2) 1 atmosphere	3) 3 atmosphere	4) $\frac{1}{3}$ atmosphere				
35.	There are three no through them?	There are three non-collinear points. How many circles can be drawn passing through them?						
	1) Infinite	2) One	3) Two	4) Three				
36.	What do you unde	What do you understand by the term 'Absolute Pressure'?						
	1) It is the atmospheric pressure at mean sea level							
	2) It is the atmospheric pressure expressed in kg/ cm ²							
	3) It is the pressure equal to the algebraic sum of atmospheric and gauge pres sures							
	4) It is the pressur	re as seen on the ga	uge of a pressure me	easuring instrument				
Dir	ections (Qs. 37 to 3	39): Study the foll questions.	oiwng number sequ	uence to answer these				
	5147398572	2631586385	2243496					
37.	How many odd nu odd number?	imbers in the above	e sequence are imme	ediately followed by an				
			3) 3	4) 4				

38.				e which are immediately by an even number?			
	1) 5	2) 2	3) 3	4) 4			
39.	preceded and a	also immediately foll	owed by an even n				
	1) 5	2) 2	3) 3	4) 4			
40.	Study the follo 59813274	owing number sequer	ice-				
	If the first and and fourth dig the seventh co	the second digits in its, the fifth and sixth unting to your left?	digits, and so on, t	terchanged, also the third then which digit would be			
	1) 8	2) 1	3) 4	4) 7			
41.	ascending ord		being kept frist, th	le by 3 are arranged in an hen which number would			
	1) 30	2) 21	3) 24	4) 27			
42.	Find the value	of-					
	8.55 × 8.55 - 2 × 8.55 × 3.55 + 3.55 × 3.55						
	1) 27.5	2) 20	3) 25	4) 36			
43.	A husband and wife have six married sons and each of them has four children. The total number of members in the family is-						
	1) 40	2) 30	3) 36	4) 38			
Dir	ections (Qs. 44	to 46): In each of th	e letter series giver	n in these questions, some			
of t	he letters are m	issing. The missing	letters are given in	that order as one of the			
alter	rntives below it	Choose the correct a	alternative.				
44.	ba-b-aab-a-	b					
	1) babb	2) abab	3) abba	4) baba			
45.	mnonopqopqr	\$					
	1) qrstu	2) mnopq	3) oqrst	4) pqrst			
46.	c-bba-cab-a	c-ab-ac					

47.	$\frac{1}{4} \left(\frac{1}{216}\right)^{-\frac{2}{3}} \div \left($	$\left(\frac{1}{27}\right)^{-3} = ?$				
	$1)\frac{1}{9}$	$2)\frac{1}{6}$	$3)\frac{5}{36}$	$(4)\frac{1}{12}$		
Dir	ections (Qs. 48 &	49): Study the info questions:	ormation given b	below to answer these		
desc	On a playgroun cribed below facin		Nitin, Atul and P	rashant are standing as		
	i. Kunal is 40 me	tres to the right of A	tul			
	ii. Dinesh is 60 r	netres to the South o	f Kunal			
	iii. Nitin is 25 m	etres to the West of A	Atul			
	iv. Prashant is 10	0 metres to the Nort	h of <mark>Din</mark> esh			
48.	Who is to the No	orth-east of the perso	n who is to the left	of Kunal?		
	1) Prashant	2) Dinesh	3) Nitin	4) Atul		
49.				al, Dinesh and Prashant the straight distance al		
	1) 245 metres	2) 155 metres	3) 185 metres	4) 225 metres		
50.		han Rahul who is sho Rahul. Sushil is shor		Airza is taller than Harry Tho is the tallest?		
	1) Harry	2) Roshan	3) Sushil	4) Rahul		
51.		han Rahul who is sho Rahul. Sushil is shor		Airza is taller than Harry ho is the shortest?		
	1) Roshan	2) Harry	3) Mirza	4) Rahul		
52.	Which one of the uted to human be		f environmental po	ollution cannot be attrib		
	1) Uncontrolled growth of human population					
	2) Rapid industri	alisation				
	3) Rapid urbanis	ation				
	4) Volcanic erup					

L

53.	Which one of the following gases is m EFFECT?		manly responsible for the GREENHOUSE			
	1) Sulphur dioxide		2) Carbon mono-oxide			
	3) Hydrogen sulph	ide	4) Carbon dioxide			
54.	Which one of the following is a ma		or constituent of petrol?			
	1) Pentane (C5H12)	2) Octane (C_8H_{18})			
	3) Methane (CH ₄)		4) Hexane (C_6H_{14})			
55.	Which one of the f	ollowing is a wide	ely used solid lubricant?			
	1) Graphite	2) Sodium	3) Lithium 4) Zinc			
56.	The world TSUNA	MI is derived from	n whic <mark>h o</mark> f the following languages?			
	1) Sinhalese	2) Korean	3) Chinese 4) Japanese			
57.	A major nuclear power plant, loc TSUNAMI, escaped damage. When		ated in one of the countries affected by is it located?			
	1) Bali in Indonesi	a	2) Galle in Sri Lanka			
	3) Phuket in Thaila	ind	4) Kalpakkam in India			
58.	A major cricket ground was severely damanged by the rescent TSUNAMI. Where is it locted?					
	1) Candy in Sri La	nka	2) Chittagong in Bangladesh			
	3) Galle in Sri Lan	ka	4) Nairobi in Kenya			
59.	The sound waves in the audible rang		e have frequencies in the range of-			
	1) 20 Hz to 20,000	Hz	2) 0.5 Hz to 5 Hz			
	3) 1 Hz to 10 Hz		4) 20,000 hz to 40,000 Hz			
60.		neasurement, dete	or applicationis such as assessing depth of rmination of the position of icebergs, flaw			
	1) Ultrasonic wave	s 2) X-rays	3) Light waves 4) γ-rays			
61.	The isotopes of an	The isotopes of an element are characterised by which of the following?				
	1) Presence of neu	trons of unusual si	ze			
	2) Different number	er of electrons in th	ne atom			
	3) Different number	er of protons in the	nucleus			
	4) Different number	er of neutrons in th	e nucleus			

- 62. How do you understand by the term 'Binding Energy'?
 - 1) Energy released when a nucleus is formed from protons and neutrons
 - 2) The force of attraction between an electron in the first orbit and the nucleus
 - 3) Electron belonging to the same major energy level
 - 4) Energy associated with a photon
- 63. Which of the following statements in wrong?
 - 1) Ionic bonds are non-rigid and non-directional
 - 2) Compounds formed by ionic bonds are non-conductors of electricity
 - Ionic bonds are formed by transfer of electrons from a metal to a non-metal atom
 - 4) Compounds fromed by ionic bonds are hard and brittle
- 64. Arrange the following materials in the order of decreasing conductivity:

Silicon, Glass, Aluminium, Silver

- 1) Glass, Silicon, Aluminium, Silver
- 2) Aluminium, Silver, Glass, Silicon
- 3) Silver, Silicon, Aluminium, Glass
- 4) Silver, Aluminium, Silicon, Glass
- **65.** If a barometer carries water instead of mercury, then the height of the column for a pressure equivalent to 75 cm of mercury would be-
 - 1) 1050 cm 2) 1020 cm 3) 1000 cm 4) 5.5 cm
- 66. The term EURO-II in the context of modern cars refers to-
 - 1) Emission from cars 2) Speed of cars
 - 3) Fuel efficiency 4) Torque available
- 67. What is the ultimate benefit of good communication in a vast organisation like the Indian Railways?
 - 1) Improved productivity and profits
 - 2) Reduced frustration among the employees
 - 3) Development of good human relations
 - 4) Improved image of the organisation

г

68.	What is the term	AGMARK used for	?				
	1) Grading various agricultural commodities						
	2) Grading battery toys						
	3) Grading polye	ster textiles					
	4) Grading engin	e lubricating oils					
69.	The standard use	d in India for certify	ing the quality of Ind	lustrial goods is-			
	1) ISI	2) ISO	3) ITI	4) CEERI			
70.	An electric heate days, it will cons		sed to heat water even	rday for 2 hours. In 10			
	1) 20 kWh	2) 2 kWh	3) 0.2 kWh	4) 200 kWh			
71.	Ozone is a gas h	aving atoms of	Oxgen in its molecule	25.			
	1) Four	2) One	3) Two	4) Three			
72.	Check of the second	nes 14.5 Kg Of LPC verage energy consu	3 in 2 <mark>9 d</mark> ays. The cale med per day is-	orific value of LPG i			
	1) 275 kj	2) 27.5 kj	3) 27,500 kj	4) 0.275 kj			
73.	The chemical for	mula of natural gas	is-				
	1) C ₃ H ₈	2) CH ₄	3) C ₄ H ₁₀	4) C ₂ H ₆			
74.	The percentage of	of carbon in one mol	ecule of carbon dioxi	de is approximately-			
	1) 2.73%	2) 72.7%	3) 80%	4) 27.3%			
75.	The term 'Cracki	ng' in the context of	organic molecules is	-			
	1) The process of fractional distillation in the refineries						
	2) Breaking of a large alkane molecule into smaller hydrocarbon molecules						
	3) A nuclear reaction where in the nucleus is broken						
	4) Use of fire cra	ckers to produce he	at to initiate certain c	hemical reactions			
76.	In a nuclear power station, which one of the following is commonly used as a fuel for producing heat?						
	1) Coal	2) Helium	3) Heavy Water	4) Uranium-235			
77.	Fission of one nucleus releases 3.2×10^{-11} Joules energy. The number of fissions required to produce energy at the rate of 10 MW for 10 hours is-						
	1) 6.5×10^{50}	2) 2.1×10^{12}	3) 1.125 × 10 ²²	4) 1800			
78.		-	ene in 48 seconds. if ver of consumption of				
	1) 0.1	2) 1.5	3) 1	4) 0.5			

79.	If acceleration due to gravity is 10 m/ sec ² , then the potential energy of a body of mass 1 kg kept at a height of 5 metres is-					
	1) 50 Joules	2) 500 Joules	3) 100 Joules	4) 10 Joules		
80.	A boat weighing 2	200 kg floats on wate	er. The weight of wat	er displaced would be		
	1) 220 kg	2) 0 kg	3) 180 kg	4) 200 kg		
81.		water of specific g		cu cm is dipped in a The weight of the bal		
	1) Colleting more	data for making the	e calculation			
	2) 0.1 gm					
	3) 1 gm					
	4) 10 gm					
82.	Archimedes Princ	iple is related to-				
	1) laws of floatati	on	2) Right-angled	triangle		
	3) Laws of gravit	y	4) Relation betwe	een current and voltag		
83.	The commonly used washing soda is-					
	1) Sodium Bicarb	onate	2) Sodium Carbo	onate		
	3) Sodium Chlori	de	4) Magnesium C	hloride		
84.	The chemical formula of 'plaster of paris' is-					
	1) 2CaSO ₄ . $\frac{1}{2}$ H	2 ⁰	2) Ca(OH) ₂			
	3) (CaSO ₄) ₂ .H ₂ O	0	4) CaOCl ₂			
85.	A sanitary worker uses a white substanced to clean water tanks. The substance has a strong smell of chlorine. The substance is-					
	1) Bleaching pow	der	2) Slaked lime			
	3) Backing powde	er	4) Common salt			
86.	· · · · · · · · · · · · · · · · · · ·			small in size. Which ad the cake to rise and		
	1) Cooking oil		2) Baking powde	er		
	3) Bleaching pow	der	4) Sugar			

 A White chemical compound becomes hard on mixing proper quantity of water. It is also used in surgery to repair fractured bones. What is it? 1) Plaster of paris 2) Slaked lime 3) Bleaching power 4) lime 88. Brass has which of the following compositions? 1) 40% copper, 40% zinc and 20% tin 2) 50% zinc and 50% copper 3) 80% zinc, 10% copper and 10% lead 4) 80% copper and 20% zinc 89. Broneze has which of the following compositions? 1) 50% copper, 10% iron and 40% zinc 2) 90% copper and 10% tin 4) 40% copper, 40% tin and 20% zinc 10% copper and 90% tin 90. Solder has which of the following compositions? 1) 50% lead and 50% tin 2) 70% lead, 20% copper and 10% tin 3) 20% lead, 40% copper and 40% tin 4) 10% lead and 90% tin 91. Galvansation is the process of-1) Drawing metals into thin wires 2) Giving a coating of zinc metal on iron 3) Making aluminium metal into thin wire Making thin aluminium foils 92. German silver has which of the following compositions? 1) 20% copper, 20% chromium and 60% zinc 2) 40% copper, 20% zinc and 40% silver 3) 60% copper, 20% zinc and 20% nickel 4) 80% copper, 10% zinc and 10% silver 93. The symbol of Magnesium is Mg. What does Mg2+ mean? Magnesium atom has acquired two protons 2) two atoms of magnesium have combined 3) Magnesium atom has donated two outermost electrons to form a positive ion 4) The charged Mg. ion attracts oppositely charged negative ions with twice as much intensity

94.	When Sodiun	When Sodium (Na), Copper (Cu) and Zinc (Zn) are placed in the order of						
	decreasing rea	activity	y, then their order w	vould be-				
	1) Na > ZN >	Cu	2) Na > Cu > Zn	3) $Cu > Na > Zn$	4) Zn > Na > Cu			
95.	Which of the	follow	ing metals is more	reactive than Hydro	ogen?			
	I) Gold		2) Calcium	3) Aluminium	4) Iron			
96.	Which of the	follow	ving metals can disp	place Hydrogen froi	n its compounds like			
	water and acid	ds to f	orm hydrogen gas?					
	1) Tin		2) Copper	3) Mercury	4) Silver			
97.	The approxim	ate pe	rcentage of salt by	weight in sea water	is-			
	1) 41%		2) 3.6%	3) 0.1%	4) 10.2%			
98.	The common	salt i	s iodised to preven	nt occurence of wh	ich of the following			
	diseases in the	e hum	an body?					
	1) Diabetes			2) Goitre				
	3) Beri-beri			4) Night-blindnes	s			
99.	A wire of a cer	rtain le	ength has a resistance	the of 2.2Ω . If the wir	e is stretched to twice			
	its original ler	ngth, ti	hen find the new re	sistence.				
	 8.8Ω 		2) 1.1Ω	 3) 2.2Ω 	4) 4.4Ω			
100	. In the above c	ircuit,	the effective	2 Ω	3 Ω			
	resitance betw	veen th	ie	A	3Ω_B			
	points A and I	B is-		L				
	 1) 18 Ω 		2) $4 - \frac{4}{3}$	6Ω 3)6-4	4Ω 4) 3 - 🛓			
			ANSW	ERS				
1-4;	; 2-4; 3-1; 4-3;	5-1; 6	5-2; 7-2; 8-1; 9-1;	10-4; 11-1; 12-3; 13	-4; 14-4; 15-4; 16-3;			
17-:	3 18-2; 19-4; 2	20-3; 2	21-3; 22-3; 23-4; 2	4-2; 25-3; 26-3; 27	-1; 28-3; 29-2; 30-3;			
		1.5.1			-1; 42-3; 43-4; 44-3;			
					-1; 56-4; 57-4; 58-3;			
					-1; 70-1; 71-4; 72-3;			
13-2	2; 74-4; 75-2;	/0-4;	11-3; 78-3; 79-1; 8	0-4; 81-4; 82-1; 83	-2; 84-3; 85-4; 86-2;			

NOTE: The information provided here is for Reference. It may vary Original

87-1; 88-4; 89-2; 90-1; 91-2; 92-3; 93-3; 94-1; 95-2; 96-1; 97-2; 98-2; 99-1; 100-3.