THIRD SEMESTER

				Те	achi	ing So	cheme		Examination Scl	heme		Min.	Paper
S.N.	Sub Code	Subject	Board		т	D	Total	Credits	College	Univ.	Total	Passing	Duration
				L		Г	TUtai		Assessment	Assessment	Marks	IVIALKS	
1	BEELE301T	APPLIED MATHEMATICS-III	ASH	4	1	0	5	5	20	80	100	40	3 Hours
2	BEELE302T	NON CONVENTIONAL ENERGY SOURCES	EE	4	0	0	4	4	20	80	100	40	3 Hours
		ELECTRICAL MEASUREMENT AND	CC	1	1	0	5	E	20	<u>ە</u> م	100	40	2 Hours
3	BEELE303T	INSTRUMENTATION	E E	4	T	0	J	J	20	80	100	40	
		ELECTRICAL MEASUREMENT AND	FF	0	0	2	2	1	25	25	50	25	
4	BEELE303P	INSTRUMENTATION	LL	0	0	2	2	Ŧ	23	23	50	25	
5	BEELE304T	NETWORK ANALYSIS	EE	4	1	0	5	5	20	80	100	40	3 Hours
6	BEELE304P	NETWORK ANALYSIS	EE	0	0	2	2	1	25	25	50	25	
7	BEELE305T	ELECTRONIC DEVICES & CIRCUITS	EN	4	1	0	5	5	20	80	100	40	3 Hours
8	BEELE305P	ELECTRONIC DEVICES & CIRCUITS	EN	0	0	2	2	1	25	25	50	25	
		Total		20	4	6	30	27			650		

FOURTH SEMESTER

S.N.	Sub Code	Subject	Board			Credits	Examination Scl	heme		Min. Passing	Paper		
				L	Т	Ρ	Total		College Assessment	Univ. Assessment	Total Marks	Marks	Duration
1	BEELE401T	APPLIED MATHEMATICS - IV	ASH	4	1	0	5	5	20	80	100	40	3 Hours
2	BEELE402T	ELEMENTS OF ELECTROMAGNETICS	EE	4	1	0	5	5	20	80	100	40	3 Hours
3	BEELE403T	DIGITAL AND LINEAR ELECTRONIC CIRCUITS	EN	3	1	0	4	4	20	80	100	40	3 Hours
4	BEELE403P	DIGITAL AND LINEAR ELECTRONIC CIRCUITS	EN	0	0	2	2	1	25	25	50	25	
5	BEELE404T	ELECTRICAL MACHINES-I	EE	4	1	0	5	5	20	80	100	40	3 Hours
6	BEELE404P	ELECTRICAL MACHINES-I	EE	0	0	2	2	1	25	25	50	25	
7	BEELE405T	COMPUTER PROGRAMMING	EE	4	1	0	5	5	20	80	100	40	3 Hours
8	BEELE405P	COMPUTER PROGRAMMING	EE	0	0	2	2	1	25	25	50	25	
9	BEELE406T	ENVIRONMENTAL STUDIES	ASH	3	0	0	3	0	75 + 25		Grades		
		Total		22	5	6	33	27			650		

FIFTH SEMESTER

S.N.	Sub Code	Subject	Board	Теа	Teaching Scheme		Credits Examination Scheme		on Scheme		Min. Passing	Paper	
				1	т	Р	Total		College	Univ.	Total	Marks	Duration
				-		•	10101		Assessment	Assessment	Marks		
1	BEELE501T	ELECTRICAL POWER SYST - I	EE	4	1	0	5	5	20	80	100	40	3 Hours
2	BEELE502T	UTILIZATION OF ELECTRIC ENERGY	EE	3	1	0	4	4	20	80	100	40	3 Hours
3	BEELE503T	ELECTRICAL MACHINE DESIGN	EE	4	1	0	5	5	20	80	100	40	3 Hours
4	BEELE504T	MICROPROCESSOR & INTERFACING	EN	3	1	0	4	4	20	80	100	40	3 Hours
5	BEELE504P	MICROPROCESSOR & INTERFACING	EN	0	0	2	2	1	25	25	50	25	
6	BEELE505T	ELECTRICAL MACHINES-II	EE	4	1	0	5	5	20	80	100	40	3 Hours
7	BEELE505P	ELECTRICAL MACHINES-II	EE	0	0	2	2	1	25	25	50	25	
8	BEELE506P	ELECTRICAL DRAWING & SIMULATION	EE	0	0	2	2	2	25	25	50	25	
9	BEELE507P	ELECTRICAL ENGINEERING WORKSHOP	EE	0	0	2	2	2	25	25	50	25	
		Total		18	5	8	31	29			700		

SIXTH SEMESTER

S.N.	Sub Code	Subject	Board	Те	achi	ng S	cheme	Credits	Examinati	on Scheme		Min.	Paper
				I	т	P	Total		College	Univ.	Total	Marks	Duration
				_	'		Total		Assessment	Assessment	Marks	IVIAINS	
1	BEELE601T	POWER STATION PRACTICE	EE	3	1	0	4	4	20	80	100	40	3 Hours
		ENGINEERING ECONOMICS & INDUSTRIAL		3	1	0	1	Л	20	80	100	40	3 Hours
2	BEELE602T	MANAGEMENT	ASH	5	T	0	4	+	20	80	100	40	5 110015
3	BEELE603T	ELECTRICAL DRIVES & THEIR CONTROL	EE	4	1	0	5	5	20	80	100	40	3 Hours
4	BEELE604T	POWER ELECTRONICS	EE	4	1	0	5	5	20	80	100	40	3 Hours
5	BEELE604P	POWER ELECTRONICS	EE	0	0	2	2	1	25	25	50	25	
6	BEELE605T	CONTROL SYSTEM-I	EE	4	1	0	5	5	20	80	100	40	3 Hours
7	BEELE605P	CONTROL SYSTEM-I	EE	0	0	2	2	1	25	25	50	25	
8	BEELE606P	INDUSTRIAL VISITS & REPORT WRITING	EE	0	0	2	2	2	50	0	50	25	
9	BEELE607T	FUNCTIONAL ENGLISH	ASH	2	0	0	2	2	10	40	50	20	2 Hours
		Total		20	5	6	31	29			700		

SEVENTH SEMESTER

S.N.	Sub Code	Subject	Boar	ard Teaching Scheme		Credits	Examinat	ion Scheme		Min.	Paper		
				L	Т	Р	Total		College Assessment	Univ. Assessment	Total Marks	Marks	Duration
1	BEELE701T	CONTROL SYSTEM-II	EE	4	1	0	5	5	20	80	100	40	3 Hours
2	BEELE702T	ELECTRICAL POWER SYSTEM –II	EE	4	1	0	5	5	20	80	100	40	3 Hours
3	BEELE703T	ELECTIVE –I	EE	3	1	0	4	4	20	80	100	40	3 Hours
4	BEELE704T	HIGH VOLTAGE ENGINEERING	EE	4	1	0	5	5	20	80	100	40	3 Hours
5	BEELE704P	HIGH VOLTAGE ENGINEERING	EE	0	0	2	2	1	25	25	50	25	
6	BEELE705T	ELECTRICAL INSTALLATION DESIGN	EE	4	1	0	5	5	20	80	100	40	3 Hours
7	BEELE705P	ELECTRICAL INSTALLATION DESIGN	EE	0	0	2	2	2	25	25	50	25	
8	BEELE706P	PROJECT SEMINAR	EE	0	0	3	3	3	50	0	50	25	
		То	tal	19	5	7	31	30			650		

EIGHTH SEMESTER

S.N.	Sub Code	Subject	Board	Те	Teaching Scheme		Credits	Credits Examination Scheme			Min. Passing	Paper	
				L	Т	Р	Total		College	Univ.	Total	Marks	Duration
1	BEELE801T	ELECTIVE- II	EE	3	1	0	4	4	20	80	100	40	3 Hours
2	BEELE802T	ELECTIVE- III	EE	3	1	0	4	4	20	80	100	40	3 Hours
3	BEELE803T	SWITCHGEAR & PROTECTION	EE	4	1	0	5	5	20	80	100	40	3 Hours
	BEELE803P	SWITCHGEAR & PROTECTION	EE	0	0	2	2	1	25	25	50	25	
4	BEELE804T	COMPUTER APPLICATIONS IN POWER SYSTEM	EE	4	1	0	5	5	20	80	100	40	3 Hours
	BEELE804P	COMPUTER APPLICATIONS IN POWER SYSTEM	EE	0	0	2	2	1	25	25	50	25	
5	BEELE805P	PROJECT	EE	0	0	6	6	6	75	75	150	75	
		Total		14	4	10	28	26			650		

S. NO.	Elective-I	Elective-II	Elective - III
1	IT and Its Applications in Power System Control	Entrepreneurship Development	Bio-medical Engineering
2	Fuzzy Logic and Neural Networks	Digital Signal Processing	Advanced Microprocessor Peripherals
3	Flexible AC Transmission Systems	Power Quality	Power Semiconductor Based Electric
4	Energy Management and Audit	EHV AC and HVDC Transmission	Electrical Distribution System

Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur Absorption Scheme for the students of B. E. Electrical Engg. (Electronics & Power) from <u>OLD semester</u> pattern to <u>NEW semester</u> pattern

Subject	Name of subject in Old semester pattern	Subject	Name of subject in New semester pattern
Code		Code	
5S-EE-01	ELECTRICAL POWER SYSTEM-I (Th.)	BEELE501T	ELECTRICAL POWER SYSTEM - I
5S-EE-02	INSTRUMENTATION (Th.)		
5S-EE-03	ELECTRICAL MACHINES DESIGN (Th.)	BEELE503T	ELECTRICAL MACHINE DESIGN
5S-EE-04	MICROPROCESSOR & INTERFACING (Th.)	BEELE504T	MICROPROCESSOR & INTERFACING
	MICROPROCESSOR & INTERFACING (Pract.)	BEELE504P	MICROPROCESSOR & INTERFACING
5S-EE-05	ELECTRICAL MACHINES-II (Th.)	BEELE505T	ELECTRICAL MACHINES-II
5S-EE-05	ELECTRICAL MACHINES-II (Pract.)	BEELE505P	ELECTRICAL MACHINES-II
5S-EE-06	ELECTRICAL ENGG. WORKSHOP	BEELE507P	ELECTRICAL ENGINEERING WORKSHOP
		BEELE506P	ELECTRICAL DRAWING & SIMULATION*
		BEELE502T	UTILIZATION OF ELECTRIC ENERGY *

V Semester B. E. Electrical Engineering

* The students who fail to clear any subject(s) of the V semester (old pattern) by the last chance prescribed, shall be required to clear the respective equivalent subject of V semester (new pattern) along with an additional subject marked with (*).

Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

Absorption Scheme for the students of B. E. Electrical Engg. (Electronics & Power)

from <u>OLD semester</u> pattern to <u>NEW semester</u> pattern

VI Semester B	B. E. Electrical Engineering	

Subject Code	Name of subject in Old semester pattern	Subject Code	Name of subject in New semester pattern
6S-EE-01	POWER STATION PRACTICE (Th.)	BEELE601T	POWER STATION PRACTICE
6S-EE-02	ENGG.ECO. & IND. MGT. (Th.)	BEELE602T	ENGG.ECO. & IND. MGT
6S-EE-03	ELECT. DRIVES & THEIR CONTROL (Th.)	BEELE603T	ELECT. DRIVES & THEIR CONTROL
6S-EE-04	LINEAR ELECTRONIC CIRCUITS (Th.)		
	LINEAR ELECTRONIC CIRCUITS (Pract.)		
6S-EE-05	CONTROL SYSTEM-I (Th.)	BEELE605T	CONTROL SYSTEM-I
	CONTROL SYSTEM-I (Pract.)	BEELE605P	CONTROL SYSTEM-I
6S-EE-06	COMP. AIDED ELECT.ENGG. DRAWING (Pract.)		
		BEELE604T	POWER ELECTRONICS*
		BEELE604P	POWER ELECTRONICS*
		BEELE606P	INDUSTRIAL VISITS & REPORT WRITING*
		BEELE607T	FUNCTIONAL ENGLISH*

* The students who fail to clear any subject(s) of the VI semester (old pattern) by the last chance prescribed, shall be required to clear the respective equivalent subject of VI semester (new pattern) along with an additional subject marked with (*).

 $\label{eq:c:Users} $$ C:Users} onyDesktop|notificationsyllabus (1)|RTMNU ZIP archive|BTech|syllabus 5 & 6|Electrical 5th & 6 sem|Absorption_Scheme_electrical_MAY10.docx $$ One can be added as a set of the se$

V SEM. ELECTRICAL ENGG.

BEELE501T	ELECTRICAL POWER SYST - I	L = 4	T = 1	P = 0	Credits = 5
Examination	College Assessment	University Examinatio	on la	Total	Univ. Exam. Duration
Scheme	20	80		100	3 Hrs

Learning Objective	Learning Outcomes
Students will develop the ability	students should be able to
To model and represent the system components used in power system.	Modeling and representation of the system components used in power system.
To represent and understand the transmission line parameters.	Concept of designing transmission line parametersThe basic concept of load flow analysis.
• To understand the load flow analysis of power system.	

UNIT-1:

Structure of electrical power system, brief exposure to generation, transmission and distribution aspects, elementary consideration of economic bulk power supply system, use of high voltage general system consideration, idea about substation, concept of real, reactive and complex power. Load and their characteristics, voltage and frequency dependence of loads. (10hrs)

UNIT-2:

Representation of power system elements, models and parameters of generator, transformer and transmission lines, Transmission line parameters calculation (R,L,C), per unit system representation. 8hrs

UNIT-3:

Elementary distribution scheme: Feeders and distributors. LT and HT cables, Introduction to distribution automation. 10 hrs

Concept of insulator, types of insulator, string efficiency.

UNIT-4:

Voltage regulation and efficiency of power transmission lines using equivalent pi and T representation. Representation using circle diagram with generalized constants. 10 hrs

UNIT-5:

Interconnection of system elements to form two bus systems. Illustration of active and reactive power transmission, types of buses. Introduction to load flow studies in multibus system (Methods of solution not expected). Introduction of frequency and voltage as system state indicators. 10 hrs

UNIT-6:

Elementary concepts of real and reactive power control. Steady state performance of turbine governors, load sharing between generators, preliminary concepts of automatic voltage regulator, 8 hrs

		Text Books	
Title of Book		Name of Author/s	Edition & Publisher
Elements of power system analysis		W. D. Stevenson	PHI
Modern Power system analysis		Nagrath I.J. & Kothari D.P.	Mc-Graw Hill
Power system analysis		Wadhwa C.L.	New-Age international
Power System Analysis		Asfaque Hussain	CBS
	Re	ference Books	
A Text book of Electric Power	Distribution	Dr. M. K. Khedkar & Dr. G. M.	Laxmi Publications
Automation		Dhole	
Electric Energy System Theory		O. E. Elgerd	
Westinghouse transmission and	distribution		
handbooks			

BEELE502T	UTILIZATION OF ELECTRIC ENERGY	L = 4	T = 1	P = 0	Credits = 5
Examination Scheme	College Assessment	Universit Examinati	y on	Total	Univ. Exam. Duration
Scheme	20	80		100	3 Hrs

Learning Objective	Learning Outcomes
Students will	students should be able to
• understand application of electrical supply for different applications	• understand applications for heating, welding, illumination using electric power
• to calculate electrical equivalent rating for mechanical	• understand applications for fan, lowers, compressor,
application	pumps and refrigeration using electric power
Unit I: Electric Heating:	(8 Hrs)

Unit I: Electric Heating:

i) Electric Heating : Types and methods of electrical heating, advantages of electrically produced heat, types & application of electric heating equipments, transfer of heat.

ii) Resistance Ovens : General constructions, design of heating elements, efficiency & losses, radiant heating.

iii) Induction heating: Core type & core less induction furnace, indirect induction oven, medium and high frequency eddy - current heating.

iv) Dielectric heating: Principle and application.

v) Arc furnace : Direct & indirect arc furnace, power supply, characteristics & control.

Unit II: Electric Welding:

i) Importance, Advantages & Disadvantages of welding, classification of welding processes.

ii) Resistance welding, Butt welding, Spot welding, Projection welding, Seam welding.

iii) Electric arc welding: Carbon arc welding, metal arc welding, submerged arc welding, Stainless Steel welding iv) Ultrasonic welding, electron beam welding, laser beam welding.

Unit III: Illumination :

Nature of light, terms used in illumination, solid angle, laws of illumination, polar curves, Colour Rendering Index (CRI), Design of illumination systems, indoor lighting systems, factory lighting, outdoor lighting design, flood

lighting, street lighting, energy saving in lighting systems.

Unit IV: Refrigeration & Air conditioning:

Terminology, refrigeration cycle, refrigeration systems (Vapor compression, vapor absorption), domestic refrigerator, drinking water cooler, desert air cooler.

Air conditioning: Factors involved in air conditioning, comfort air conditioning, industrial air conditioning, effective temperature, summer / winter air conditioning systems, types of air conditioning systems, room air conditioning, and central air conditioning.

Unit V: Fans & Pumps:

Fans and Blowers: Fan types, fan performance evaluation & efficient system operation, fan design & selection criteria, flow control strategies, fan performance assessment, energy saving opportunities.

Pumps: Pump types, system characteristics. Pump curves, factors affecting pump performance, efficient pumping system operation, flow control strategies, energy conservation opportunities in pumping system.

Unit VI: Compressors and DG Sets:

Compressors: Compressor types, Compressor efficiency, Compressed air system components.

Diesel Generating Systems: Introduction, selection and installation factors, operational factors, energy performance assessment in DG sets, energy saving measures for DG sets.

Books	:	

Text Books					
Title of Book	Name of Author/s	Edition & Publisher			
Utilization of Electric Power & Electric Traction	J.B. Gupta	Kataria & Sons			
Art and Science of Utilization of Electrical Energy	H Partap	Dhanpat Rai & Sons, Delhi			
Utilization of Electrical Power	Dr N. V.	Wiley Eastern Ltd, New			
	Suryanarayana	Age International			
Electronics in Industry	Chute & Chute	McGraw Hill			
Utilization of Electric Energy	E. Openshaw Taylor	Orient Longman			
Guide book for National Certification Examination for					
Energy Managers and Energy Auditors, Bureau of Energy					
Efficiency					

(8 Hrs)

(8 Hrs)

(8 Hrs)

(10 Hrs)

(8 Hrs)

BEELE503T	ELECTRICAL MACHINE DESIGN	L = 4	T = 1	P = 0	Credits = 5
Examination Scheme	College Assessment	University Examinatio	on	Total	Univ. Exam. Duration
Selicitie	20	80		100	3 Hrs

Learning Objective	Learning Outcomes	
Students will develop the ability	students should be able to	
• To analyze different materials and their properties used	• Select proper material for design of a machine.	
in design of machine.	• Design a overall transformer and estimates its	
• To calculate and understand the core design and main	performance characteristics as per requirement and	
dimension of transformer.	constraints specified.	
• To understand the performance characteristics and	• Design rotor core of Induction motor	
cooling of transformers.	• Design overall dimensions of synchronous machines	

Unit. 1:

<u>REVIEW OF MATERIAL USED IN CONSTRUCTION OF ELECTRICAL MACHINES</u>: - Classification of insulating materials depending upon permissible temperature rise, properties of transformer oil. Standard specification, C.M.R. and short time rating of machines. Heating and cooling characteristics. (10 Hrs)</u>

Unit. 2:

<u>TRANSFORMER DESIGN</u>: - Specific loading, equation for voltage per turn for power and distribution transformer output equation. (10Hrs)

Unit. 3:

Principal of electric and magnetic circuit design, method of cooling and cooling circuit design. Estimation of performance characteristics from the design data. (10 hrs)

Unit. 4:

<u>INDUCTION MOTOR</u>: - Main dimensions, output equation, loading constant estimation of axial lengths, air gap diameter, winding design. (9 hrs)

Unit. 5:

Air gap length, slot combination for stator and rotor of I.M., cage rotor and wound rotor design. Calculation of on load current and other performance on characteristics for design data. (8hrs)

Unit. 6:

<u>SYNCHRONOUS MACHINE</u>: Air gap length, methods of obtaining sinusoidal O/P voltage, field coil design for salient pole machine and for turbo generator rotor, ventilation of synchronous generator, cooling air circuits, closed ventilation / quantity of cooling medium hydrogen and water as cooling media. (8hrs)

Text Books					
Title of Book Name of Author/s		Edition & Publisher			
Electrical machine Design	A.K. Sawhney	Dhanpatrai and Sons, Delhi			
Electrical Machine Design	Balbir Singh	Brite students Publication, Pune			
Electrical Machine Design	Machine Design M.V. Deshpande				
Reference Books					
Performance and Design of A.C.	M.G. Say				
Machines					
Power Transformer	S.B. Vasntinsky	P.S.G. College of Technology			
		Coimbtore-4			
Principle of Electrical Machine	R. K. Agrawal	S. Chand Publication			
Design					

BEELE504T	MICROPROCESSOR & INTERFACING	L = 3	T = 1	P = 0	Credits = 4
Examination	College Assessment	University Examinatio	n n	Total	Univ. Exam. Duration
Selicitie	20	80		100	3 Hrs

Learning Objective	Learning Outcomes
 This subject helps student to learn the Microprocessor applications in electrical engineering. The principle of microprocessor chip working, programming with microprocessor is also explained in this subject. 	 students should be able touse and apply VLSI circuit concept Introduction to Intel 8085A architecture Programming instructions Interrupts
	Methods of data transferHardware and Interface

UNIT-1:

VLSI circuit concept. Approach to integrated system design using Microprocessors. Bus concepts. Address, Data and control. Organization of computer with MPU, Bits/ Byts / Words/ Long wards - their ranges accuracy and precision. Memory organization. Linear / Absolute decoding. UNIT-2:

Introduction to Intel's 8085A Architecture description software instructions. Address mode- advantages, Timing diagrams assess, Assemblers and Dissemblers (By Hand Coding). UNIT-3:

Flag structure, concept of PSW stacks and subroutines simple and Nested. PUSH, POP instructions and CALL/RETURN instruction. Stack manipulations, simple programs. UNIT-4:

Interrupts - Concept and structure in 8085. Interrupt services routines. Advanced instructions and programming of 8085A.

UNIT-5:

Method of data transfer - serial, parallel, synchronous asynchronous, IN/OUT instructions. Timing diagrams, simple hardware interface to 8085 of standard Latches/Buffers/Keys/display devices as I/O ports. Handshaking concept. Architecture and interface of 8255 and 8253 to 8085. UNIT-6:

Hardware considerations - bus contention. Slow memory interfacing complete signal description of 8085. Multiplexed Key board/Display interface and assembler directives. General awareness about micro computer system related products.

Text Books				
Title of Book	Name of Author/s	Edition & Publisher		
Programming and interfacing 8085A	Gaonkar	Wiley Eastern		
Programming of 8085	D.V. Hall	McGraw Hill		
Microprocessor principals and Applications	Pal	Tata Mc Graw Hill		
Reference Books				
Intel Microprocessors	Goody	Tata McGraw Hill		
Microprocessors principals and Applications	Gomorra	Tata Mc Graw Hill		

BEELE504P	MICROPROCESSOR & INTERFACING	$\mathbf{L} = 0$	T = 0)	P = 2	Credits = 1
Examination Scheme	College Assessment	University Examination			Total	Univ. Exam. Duration

	25	25			50	Practical
BEELE505T	ELECTRICAL MACHINES-II	L = 4	T = 2	1	P = 0	Credits = 5
Examination Scheme	College Assessment	University Examination			Total	Univ. Exam. Duration
benefite	20	80			100	3 Hrs

Learning ObjectiveLearning OutcomesThis subject helps student to learn the • Understand the basic principle,• The student has understood principle armature and field windings, types, gene	
 This subject helps student to learn the Understand the basic principle, The student has understood principle armature and field windings, types, gene 	
 construction, operation, performance characteristics and steady state and transient analysis of synchronous machines. Understand the principle, operation with variable excitation, performance 	, construction, laying of ration of emf, steady state and parallel operation of construction, methods of ration with variable load, ce evaluation.
construction, operation, control and applications of special electric Hysteresis, Reluctance, Universal and Sci	I motors ,like Repulsion, nrage motors.

UNIT-1: THREE PHASE SYNCHRONOUS MACHINES

Introduction, constructional features of cylindrical and salient pole rotor machines, introduction to armature winding and field windings MMF of armature and field windings induced EMF. (9 Hrs) UNIT-2: <u>STEADY STATE OPERATION OF THREE PHASE SYNCHRONOUS MACHINES</u>:

Phasor diagram, voltage regulation using synchronous impedance and Potier triangle method, steady state performance of three phase synchronous machines, circle diagrams. (9 Hrs) UNIT-3: SYNCHRONIZATION:

Parallel operation, experimental determination of parameters (positive sequence reactance, negative sequence reactance, Zero sequence reactance, short circuit ratio, losses and efficiency. (9 Hrs) UNIT-4: <u>SYNCHRONOUS MACHINES ON INFINITE BUS</u>

Phasor diagram, expression for torque, load / torque angle, synchronous machine operation, effects of variable excitation and power input on generator operation and effect of variable excitation and load on motor operation. (10 Hrs)

UNIT-5: TRANSIENT BEHAVIOR

Sudden 3– phase short circuit. Transient and sub- transient reactance's and their measurement. Time constant and equivalent circuit diagram, hunting & damper windings. (10Hrs) UNIT-6: INTRODUCTION TO SPECIAL MACHINES:

Repulsion motors, AC series motors, universal motors, reluctance motor, hysteresis motor, brushless dc motor, power selsyns, position selsyns (only elementary aspects are expected). (8Hrs)

		Text Books							
		Title of Book		Name of A	uthor/s		E	Edition & Publisher	
	Electric	Electrical Machine		Dr.P.K.Mukherjeeand			S. Dhai	npat Rai	
			(Chakravarti					
	Electric	cal Machinery	Nagrath and Kothari			3^{rd} ,	Tata Mcgraw Hill		
	Genera	lised Theory of Electrical Machin	nery l	P.S. Bhimbra			Tata	Mcgraw Hill	
		Reference Books							
	Electric	cal Machinery	Fitzge	zgerald and Kingsley and Kusco Mo			McGraw	cGraw Hill	
	Electric	cal Machinary	P. S. I	S. Bhimra					
BEELE:	505P	ELECTRICAL MACHINES	-II	L = 0	T = ()	P = 2	Credits = 1	
Examina	ation	College Assessment		University Examination		T	otal	Univ. Exam. Duration	
Scheme		25		25		4	50	Practical	

BEELE506P	ELECTRICAL DRAWING & SIMULATION	$\mathbf{L} = 0$	T = 0)	P = 2	Credits = 2
Examination Scheme	College Assessment	University Examination			Total	Univ. Exam. Duration
Scheme	25	25			50	Practical

Objective: -

Drawings are the powerful tools used by Engineers to represent the concepts on paper Conventional drawing methods are time consuming & difficult to edit. With the availability of powerful package for drawing and analysis of Electrical Systems, need is being felt to introduce this practical to converse the Electrical Engineering students with the latest trends in drawing, designing & analysis*.

Efforts should made to make this as practically oriented as possible so that the students are not only able prepare the drawing, but also have fair insight into the different aspects of the components of the electrical systems.

The packages suggested are only as guidelines. Similar other packages may also be used to achieve

objectives & scope.

* Detailed analysis is not expected.

SCOPE:

Line diagram single phase, three phases of a factory layout and a substation.

- 1. Drawing & layouts of DP structures and its components, insulators & bushings, substation assemblies, indoor/outdoor, plinth/pole mounted transformers/switchgears, cable layouts, transmission towers & transmission systems, winding diagrams for motors.
- **2.** General arrangement diagram of power & motor control centers, schematic/single line diagrams of electrical/electronic/illumination layout in industry/office/house, flow charts.
- 3. Circuit's simulation(Voltage, Current, Power etc.).

Softwares Proposed: - MATLAB, PSCAD, ETAP, PSIM, Power World Simulator, VISIO, AUTOCAD

BEELE507P	ELECTRICAL ENGINEERING WORKSHOP	L = 0	T = ()	P = 2	Credits = 2
Examination	amination College Assessment University Examination		y on		Total	Univ. Exam. Duration
Scheme	25	25			50	Practical

VI – SEM. ELECTRICAL ENGG.

BEELE601T	POWER STATION PRACTICE	L = 3	T = 1	P = 0	Credits = 4
Examination Scheme	College Assessment	University Examination		Total	Univ. Exam. Duration
	20	80		100	3 Hrs

Learning Objective	Learning Outcomes
• To understand different sources of energy, methods of energy conversion, economics of generation, load survey,	On completion of this course student will be able to • Work in Power Generation plant.
fixation of tariffs for all types of power generating stations and to study voltage control for AC generator.	• To calculate the tariff for different customers.

UNIT-1:

<u>SOURCES OF ELECTRICAL ENERGY</u>: - Coal, oil and natural gas water power, nuclear fission and fusion, their scope and potentialities for energy conversion.

<u>Generation</u>: - different factors connected with a generating station, connected load, maximum demand, demand factor, load factor, diversity factor, plant capacity and utilization factor, load curve, load duration curve, load survey, base load and peak load station, advantages of interconnection. 10 Hrs UNIT-2:

<u>THERMAL STATIONS</u>: - Choice of site, location, size and number of units, general layout, major equipment, essential and non-essential auxiliaries, electric supply to auxiliaries, cost of generation, factors affecting costs of generation. 10 Hrs

UNIT- 3:

<u>HYDRO STATION</u>: - Hydrology, stream flow, flow duration curve, power duration curve, mass curve, reservoir capacity, type of hydro plants and their field of use, pumped storages plants and their utility, surge tanks, governing characteristics of turbine and hydro generators. 10 Hrs

UNIT-4:

<u>NUCLEAR STATION</u>: - Principle of Nuclear energy, materials, types of nuclear reactors, breeder reactors, location, material for moderator and control rods, cost economics. 8 Hrs UNIT-5:

<u>VOLTAGE CONTROL OF A.C. GENERATOR</u> : - Exciter instability, methods of stabilizing exciter voltage, Automatic voltage regulator action.

Tariff – different consideration of flat rate and two part economical choice.8 hrsUNIT-6: COGENERATION, CAPTIVE POWER GENERATION & SUSTAINABLE DEVELOPMENT

Definition and scope, cogeneration technologies, industries suitable for cogeneration, captive generation advantages and constraints, captive generation options, type of captive power plants, financing of captive power plants, Energy problems, prospects of changes in energy supply, agenda for sustainable development. 8Hrs

Text Books					
Title of Book	Name of Author/s	Edition & Publisher			
Elements of Power Station design	M.V. Deshpande	PHI			
Energy Conversion and power	L.D. Agrawal and G.K.	Khanna			
generation	Mittal				
Generation of Electrical Energy	B. R. Gupta	S. Chand			
Reference Books					
Electric power stations	Car				
Electric power system control	H.P. Young	Chapman and Hall			
Generating Stations	Lowels				

BEELE602T	ENGINEERING ECONOMICS & INDUSTRIAL MANAGEMENT	L = 3	T = 1	P = 0	Credits = 4
Examination	College Assessment	University Examination		Total	Univ. Exam. Duration
Seneme	20	80		100	3 Hrs

Learning Objective	Learning Outcomes
• Every engineer has to manage the things during his working. This subject helps student to understand material, production, personnel, finance and marketing management.	 After the completion of course the students will be able to manage the thing economically.

UNIT-1:

Demand utility and indifference curves, Approaches to analysis of demand, Elasticity of demand, Measures of demand elasticity, factors of production. Advertising elasticity, Marginalism.

UNIT-2:

Laws of returns and costs, Price and output determination under perfect competition, monopoly, Monopolistic competition, oligopoly, Depreciation and methods for its determination.

UNIT-3:

Function of central and commercial banks inflation, deflation, stagflation, Direct and Indirect taxes monetary and cycles, New Economic Policy, Liberalization, Globalization, Privatization, Market friendly state.

Fiscal policy of the government, Meaning and phases of business.

UNIT-4:

Definition, nature and scope of management function of management – planning, organizing, Directing, Controlling, Communicating.

UNIT-5:

Meaning of Marketing managements, concepts of Marketing. Marketing Mix, Administrative and cost plus pricing, Channels of distribution, Advertising and sales promotion.

UNIT-6:

Meaning, nature and scope of financial management, Brief outline of profit and loss account, balance sheet, Budgets and their importance, Ratio analysis, Principles of costing.

Text Books				
Title of Book	Name of Author/s	Edition & Publisher		
Modern Economics	H.L. Ahuja			
Monetary Economics	M.L. Seth			
Industrial Management	I.K. Chopde, A.M. Sheikh			
Business Organization and	S.A. Sherlekar			
Management				
Reference Books				
Modern Economic Theory	K.K. Dewett			
Managerial Economics	Joel Dean			
Economics	Samuelson			

BEELE603T	ELECTRICAL DRIVES & THEIR CONTROL	L = 4	T = 1	P = 0	Credits = 5
Examination Scheme	College Assessment	University Examination		Total	Univ. Exam. Duration
	20	80		100	3 Hrs

Learning Objective	Learning Outcomes
 To understand the starting, speed control/braking, heating and cooling characteristics of electric motors and to learn the necessity of flywheel. To learn the basics of Programmable Logic Controllers and become familiar with Ladder 	 The student will develop an ability To solve numericals on starting, speed control and braking. To solve numericals on heating and cooling of motors. It will lay the foundation for studying the advanced subject Power Semiconductor based drives to be studied in 8th semester.
Programming.To Study the motors used in Electric Traction.	 to work on the drives used in the Industry. to work with PLC's in the Industry will goin an insight in the working of drives used in traction

UNIT-1;

Definition classification and speed torque characteristics of common drive motors and their characteristics under starting, running, braking and speed control. 8 Hrs.

UNIT-2:

SELECTION OF MOTOR: Power capacity for continuous and intermittent periodic duties	
flywheel effect.	10 Hrs

8 Hrs.

UNIT-3:

PLC, its Programming and its application in electrical drives.

UNIT-4:

<u>AC AND DC CONTACTORS AND RELAYS</u>: Lock out contactors, magnetic structure, operation arc interruption contactor rating, H.V. contactors, control circuits for automatic starting and braking of DC motor and three phase induction motor. Control panel design for MCC. 10 Hrs

UNIT-5:

TRACTION MOTORS: Motors used in AC/DC traction, their performance and desirable characteristics, requirements and suitability of motor for traction duty. Traction motor control – control of DC traction motor. Series parallel control with numerical starting and braking of traction motor. 10Hrs

UNIT-6:

Brief idea about drives commonly used in industries. Digital control of electric motor. Block diagram arrangement, comparison with other methods of control. 8 Hrs

Text Books					
Title of Book	Name of Author/s	Edition & Publisher			
A course in Electrical Power	Soni, Gupta and Bhatnagar				
Modern Electrical Traction	H. Pratap				
Art and Science of Utilization of	H. Pratap				
Electrical Energy					
Magnetic Control of Industrial motors	Heumann				
Industrial Electronics	Petru Zula	McGraw Hill			
Industrial Electronics	Bhattacharya				
Basic course in Electrical Drives	S. K. Pillai				

BEELE604T	POWER ELECTRONICS	L = 4	T = 1	P = 0	Credits = 5
Examination	College Assessment	University Examination		Total	Univ. Exam. Duration
Scheme	20	80		100	3 Hrs

Learning Objectives	Learning Outcomes
To introduce students the basic theory of power semiconductor devices and	A student who successfully fulfills the course requirements will be able to
their practical application in power electronics. To familiarize the operation principle of AC-DC, DC-DC, DC-AC conversion circuits andtheir applications. To provide the basis for further study of power electronics circuits and systems.	 understand basic operation of various power semiconductor devices. understand the basic principle of switching circuits. analyze and design an AC/DC rectifier circuit. analyze and design DC/DC converter circuits. analyze DC/AC inverter circuit. understand the role power electronics play in the improvement of energy usage efficiency and the development of renewable energy technologies.

Unit 1: SCR and Its characteristics: Gate characteristics, SCR turn off, ratings, series and parallel connections of SCRs, Protection of SCR gate circuit protection, over voltage and over current protection, snubber circuit design, commutation methods. 10 Hrs

Unit 2: Static controllable switches: Characteristic and working of MOSFET Gate turn off thyristor and insulated gate bipolar transistor, Triac, AC regulator, Uni-junction transistors, Triggering circuits and optocouplers. 8 Hrs

Unit 3: Line commutated converters: Working of single pulse converter, two pulse midpoint converter, three pulse midpoint converter and '3 phase six pulse bridge converter, effect of source inductance in converters, effect of freewheeling diode. 8 Hrs

Unit 4: Single phase and three phase half controlled converters: Speed control of d.c. motors using line commutated converters. Power factor improvement methods, Cyclo-converters (single phase), dual converter. 8 Hrs

Unit 5: D.C. Choppers: Principles of step down chopper, step up chopper classification, impulse commutated and resonant pulse choppers. Multi phase choppers. Application of choppers, Inverters: Basic series resonant inverter, half bridge and full bridge series resonant inverters. 10 Hrs Unit 6: Single phase and three phase bridge inverters, commutation and trigger-circuits for forced commutated thyristor inverters. Output voltage control, Harmonics in output voltage waveform, Harmonic attenuation by filters. Harmonic reduction by pulse width modulation techniques. Analysis for pulse width, modulation. Working of current source inverters few applications of inverters. 10 Hrs

Text Books					
Title of Book	Name of Author/s	Edition & Publisher			
Power Electronics circuits Devices	M. H. Rashid	Prentice Hall India			
and Applications					
Power Electronics	Ned Mohan, T.M. Undeland and W.P.	John Wiley and Sons,Inc			
	Robbins				
Thyristors and their Applications	G.K.Dubey and Doralda, Joshi and Sinha	New Age			
Power Electronics	Khanchandani	Tata McGraw Hill			
Power Electronics P. C. Sen					
Reference Books					
Power Electronics	C.W. Lander				

BEELE604P	POWER ELECTRONICS	L = 0	T = 0	P = 2	Credits = 1
Examination	College Assessment	University Examination Total		Univ. Exam. Duration	
Scheme	25	25		50	Practical

EELE605T	CONTROL SYSTEM - I	L = 4	T = 1	P = 0	Credits = 5
Examination	College Assessment	University Total Examination		Univ. Exam. Duration	
Scheme	20	80		100	3 Hrs

Learning Objectives	Learning Outcome
• To impart knowledge of modeling and	• Model the linear systems and study the control system
stability analysis of linear time-invariant	components specifications through classical and state variable
system.	approach.
• To understand the stability, time domain	• Understand the time response and time response specifications.
specifications and tools	• Analyze the absolute stability
• To study frequency domain analysis of	• Analyse the relative stability through root locus method
linear system	• Frequency response tools like bode plot and nyquist plot
An introduction to state space approach.	• Understand the introductory concepts of state variable approach

UNIT-1

Introduction to need for automation and automatic control. Use of feedback, broad spectrum of system application. Mathematical modeling (Electrical & Electromechanical) differential Equation, Transfer functions, block diagram, signal flow graph. 10Hrs

UNIT-2

Effect of feedback on parameter variations, disturbance signal, Control system components electrical, electromechanical, their functional analysis and input output representation. Servomechanism. 8Hrs UNIT-3:

Time response of system, standard inputs, first order and second order system, concept of gain and time constant. Steady state error, type of control system, approximate methods for higher order system, PD, PI, PID controllers.

8Hrs

UNIT-4:

Stability of control systems, condition of stability, characteristics equation, Routh Hurwitz criterion, special cases for determining relative stability.

Root location and its effect on time response, elementary idea of root locus, effect of addition of pole and zero on proximity of imaginary axis. 10 Hrs

UNIT-5:

Frequency response method of analyzing linear system, Polar, Nyquist and Bode plot, stability and accuracy analysis from frequency response, open loop and close loop frequency response, effect of variation of gain and addition of pole and zero on response plot, stability margin in frequency response. 10 Hrs UNIT-6:

State variable methods of analysis, characteristics of system state. Choice of state variables, representation of vector matrix differential equation, standard form, relation between transfer function and state variables. 8 Hrs

Text Books					
Title of Book	Name of Author/s	Edition & Publisher			
Modern control system Engineerring	K.Ogatta	Prentice Hall,India			
Control System Analysis	Nagrath/Gopal	New age International			
Automatic Control Systems	B.C. Kuo	Prentice Hall,India			
Control System Engineering	S. K. Bhattacharya	Pearson			
	Reference Books				
Linear System Design	D' azzo and Houpis	McGraw Hill			
Control Systems, Principles & Design	M. Gopal	TMH (Tata McGraw Hill)			
Control Systems Engineering	Samarajit Ghosh	Pearson			

BOOKS:-

Practical:

Based on above syllabus. At least two practical should be set using related software.

BEELE606P	INDUSTRIAL VISITS & REPORT WRITING	$\mathbf{L} = 0$	$\mathbf{T} = 0$	P = 2	Credits = 2
Examination Scheme	College Assessment	University Examination		Total	Univ. Exam. Duration
	50	0		50	

Expected work from each student in this practical :-

1) Power point presentation on visited industry

2) Report must contain:-

Single line diagram of the establishment

Electrical Installations available in the establishment

List of Loads available with ratings of equipments

Types of load (continuous, intermittent etc.)

Analysis of Energy Bill

Any problems identified / discussed

BEELE607T

FUNCTIONAL ENGLISH

BEELE607T	FUNCTIONAL ENGLISH	L = 2	T = 0	P = 0	Credits = 2
Examination Scheme	College Assessment	University Examination		Total	Univ. Exam. Duration
	10	40		50	2 Hrs

Syllabus

Total Credits: 02

Teaching Scheme Theory: 2 hrs per week **Duration of University Examination** :2 hrs

Objective: At the end of the semester, students will have enough confidence to face competitive examinations (IELTES/ TOEFL/CAT/ MAT/ XAT/SNAP/GMAT/GATE etc.)to pursue masters degree. They will also acquire language skills required to write their Reviews/Projects/Reports. They will be able to organize their thoughts in English and hence face job interviews more confidently.

Scope: The Curriculum designed is student -centered and it is guidance for their career

Course Structure

Unit 1. Functional Grammar:

Common errors, Transformation of Sentences, Phrases, Idioms & Proverbs. [50 sentences of common errors, 50 examples of Transformation of Sentences, (5 each type), 50 noun/prepositional phrases, 50 idioms/proverbs]

Unit II. English for Competitive Exams & Interview Techniques:

IPA (vowel & consonant phonemes), Word building (English words /phrases derived from other languages), Technical Jargons, Synonyms/Antonyms, Analogies, Give one word for, Types & Techniques of Interview

Assignment : [25 Words for teaching IPA, 25 words/phrases of foreign origin, 25 technical jargons, 25 words for Synonyms/ Antonyms, 25 words for Analogies, 50 examples of give one word for]

Examination Scheme T (University): 40 marks T (Internal): 10 marks

(4 hours)

(6 hours)

Unit III. Formal Correspondence

Business Letters, e-mail etiquettes [Orders, Complaints, Enquiries, Job applications and Resume Writing, Writing Memorandum, Circulars, notices]

Unit IV. Analytical comprehension:

[Four fictional & four non-fictional unseen texts]

Unit V. Technical & Scientific Writing:

Features of Technical Writing, Writing Scientific Projects, Technical Report writing, Writing Manuals, Writing Project Proposals, Writing Research papers. Assignment: (Any one project/review as assignment)

RECOMMENDED BOOKS

- Reference Books:
- 1. Effective technical Communication by Barun K. Mitra, Oxford University Press,
- 2. *Technical Communication-Principles and Practice* by Meenakshi Raman & Sharma, Oxford University Press, 2011, ISBN-13-978-0-19-806529-
- 3. The Cambridge Encyclopedia of the English Language by David Crystal, Cambridge University Press
- 4. Contemporary Business Communication by Scot Ober, Published by Biztantra,
- 5. BCOM- A South-Asian Perspective by C.Lehman, D. DuFrene & M. Sinha, Cenage Learning Pvt. Ltd.2012
- 6. *Business English*, by Dept of English, University of Delhi, Published by Dorling Kindersley (India), Pvt .Ltd.,2009, ISBN 978 81 317 2077 6
- 7. *How to Prepare a Research Proposal*: Guidelines for Funding and Dissertations in the Social and Behavioral Sciences by Krathwohl & R David
- **8.** *Technical Writing- Process and Product* by Sharon J. Gerson & Steven M. Gerson, 3rd edition, Pearson Education Asia, 2000
- 9. Developing Communication skills by Krishna Mohan & Meera Banerjee

EVALUATION PATTERN:

Internal Examination: Weightage = 10 marks Written Examination: 05 marks Project Seminar : 05 marks

External Examination: Weightage = 40 marks

Question pattern for end semester examination

Unit No	Q. No	Question type	No. of Questions	Weightage
Unit 1	1(A)	objective	3 out of 5	3+3+4=10
	1(B)	objective	3 out of 5	
	1(C)	objective	4 out of 6	
Unit 2	2 (A)	objective	3 out of 5	3+3+4=10
	2(B)	objective	3 out of 5	
	2(C)	subjective	1 (no choice)	
Unit 3 &	3 (A)	Subjective	1 set (out of 2 sets)	5
Unit4	3(B)	subjective	1(no choice)	5
Unit 5	4(A)	subjective	1 out of 2	5
	4(B)	subjective	1 out of 2	5

(4 hours)

(6 hours)

(4 hours)