AC-6.6.2012 Item No.4.62

UNIVERSITY OF MUMBAI

Revised Syllabus for the M. E. (Electronics and Telecommunication Engineering) Programme: M.E. Course: Electronics and Telecommunication Engineering

(As per Credit Based Semester and Grading System with effect from the academic year 2012–2013)

University of Mumbai Program Structure for ME Electronics and Telecommunication Engineering (w.e.f. A.Y. 2012-2013)

Semester I

Subject	Subject Name	Tea (Cont	ching Sch act Hours	eme (week)	k) Credits Assi		igned		
Code	Subject Name	Theory	Pract.	Tut.	Т	heorv	Pract.	Tut.	Total
ETC101	Statistical Signal Analysis	04				04			04
ETC102	Optical Fiber Communication#	04				04			04
ETC103	Digital Signal Processing and its Applications	04				04			04
ETE101X	Elective I	04				04			04
ETE102X	Elective II	04				04			04
ETL101	Laboratory I - Optical Fiber Communication		02				01		01
ETL102	Laboratory II - Modeling and Simulation of Communication System		02						01
	20	04			20	02		22	
				E	xamina	tion Schen	ne		
				Theory					
Subject	Subject Name	Internal Assessment			End	Exam.	Term	Pract.	Tetal
Code		Test1	Test 2	Avg.	Sem.E xam.	Duration (in Hrs)	Work	/oral	Totai
ETC101	Statistical Signal Analysis	20	20	20	80	03			100
ETC102	Optical Fiber Communication#	20	20	20	80	03			100
ETC103	Digital Signal Processing and its Applications	20	20	20	80	03			100
ETE101X	Elective I	20	20	20	80	03			100
ETE102X	Elective II	20	20	20	80	03			100
ETL101	Laboratory I - Optical Fiber Communication						25	25	50
ETL102	Laboratory II - Modeling and Simulation of Communication System Total						25	25 50	50 600

Subject Code	Elective I	Subject Code	Elective II
ETE1011	Image and Video Processing and Broadcasting	ETE1021	Speech Processing
ETE1012	Modeling and Simulation of Communication System	ETE1022	Micro Electro Mechanical Systems
ETE1013	VLSI and Mixed Signal Circuits and System	ETE1023	Embedded System\$
ETE1014	Advanced Satellite Communication	ETE1024	Next Generation Networks

#and\$- Common for Electronics and Telecommunication Engineering and Electronics Engineering

Semester II

Subject	Subject Name	Tea (Conts	ching Sch	ng Scheme		Cre	edits Assigned			
Code	Subject Maine	Theory	Pract.	Tut.	Th	eorv	Pract.	Tut.	Total	
ETC201	Advanced Digital Communications	04				04			04	
ETC202	Mobile and Wireless Communications	04				04			04	
ETC203	Microwave and Millimeter wave Communication Systems	04				04			04	
ETE201X	Elective III	04				04			04	
ETE202X	Elective IV	04				04			04	
ETL201	Laboratory III – Mobile and Wireless Communications		02				01		01	
ETL202	Laboratory IV - Advanced Antenna and Arrays		02						01	
	Total	20	04			20	02		22	
				ŀ	Examinat	tion Schen	ne			
Subject			Theory				_	_		
Code	Subject Name	Internal Assessment			End	Exam.	Term	Pract.	Total	
		Test1	Test 2	Avg.	Sem.Ex am.	Duration (in Hrs)	Work	/oral	10000	
ETC201	Advanced Digital Communications	20	20	20	80	03			100	
ETC202	Mobile and Wireless Communications	20	20	20	80	03			100	
ETC203	Microwave and									
E1C203	Millimeter wave Communication Systems	20	20	20	80	03			100	
ETE201X	Millimeter wave Communication Systems Elective III	20 20	20 20	20 20	80 80	03			100	
ETE201X ETE202X	Millimeter wave Communication Systems Elective III Elective IV	20 20 20	20 20 20	20 20 20	80 80 80	03 03 03			100 100 100	
ETE201X ETE202X ETL201	Millimeter wave Communication Systems Elective III Elective IV Laboratory III - Mobile and Wireless Communications	20 20 20 	20 20 20 	20 20 20 	80 80 80 	03 03 03 		 25	100 100 100 50	
ETE201X ETE202X ETL201 ETL202	Millimeter wave Communication Systems Elective III Elective IV Laboratory III - Mobile and Wireless Communications Laboratory IV - Advanced Antenna and Arrays	20 20 	20 20 20 	20 20 20 	80 80 80 	03 03 	 25 25	 25 25	100 100 50 50	

Subject	Elective III	Subject	Elective IV
Code		Code	
ETE2031	Adaptive Signal Processing	ETE2041	Wavelets
ETE2032	Nano-electronics	ETE2042	Cloud Computing
ETE2033	Advanced Antenna and Arrays	ETE2043	Sensor Array Networks
ETE2034	Optical Networks	ETE2044	Network Security

Semester III

Subject	Subject Name	Tea (Conta	ching Sch act Hours	neme s/week)	Credits Assigned				
Coue		Theory	Pract.	Tut.	Theory	Credits Assigned Pract. Tut. 03 12 15 heme Work / Oral 50 50 100	Total		
ETS301	Seminar		06			03		03	
ETD301	Dissertation I		24			12		12	
Total 30 15					15				
		Examination Scheme							
Subject			The	eory					
Subject	Subject Name	Internal Assessment			End Term		Pract.	Tatal	
Coue		Tost1	t1 Test 2 Avg Sem.Exa Wor		Work	/ Oral	Total		
		1 est1	Test 2	Avg.	m.				
ETS301	Seminar					50	50	100	
ETD301	Dissertation I					100		100	
	Total					150	50	200	

Semester IV

Subject	Subject Name	Teaching Scheme (Contact Hours/week)			Credits Assigned				
Code		Theory	Pract.	ng Scheme Hours/week)Credits Assigned'ract.Tut.TheoryPract.Tut.To3015130151ScalarSchemeToToToAssessmentEnd Sem.Exa m.Term 	Total				
ETD401	Dissertation II		30			15		15	
	Total 30 15					15			
		Examination Scheme							
Subject		Theory							
Codo	Subject Name	Intern	al Assess	sment	End Term Sem.Exa Work		Pract.	Tatal	
Coue		Tost1	Tost 2	Ava			/ Oral	10141	
		Test1 Test 2		Avg.	m.				
ETD401	Dissertation II					100	100	200	
	Total				100 100 200			200	

Note:

- In case of Seminar (ETD301), 01 Hour / week / student should be considered for the calculation of load of a teacher
- In case of Dissertation I (ETD301) and Dissertation II (ETD401), 02 Hour / week / student should be considered for the calculation of load of a teacher

Subject Code		Subject Name	Credits
ETC1	101	Statistical Signal Analysis	
Module		Detailed content	Hours
1	Review	v of following topics	14
	•	Basic concepts of probability theory (definitions, conditional	
		probability, independent of events, sequential experiments)	
	•	Random variables (cumulative distribution function, probability	
		density function, some important random variables, functions of	
		random variables, the expected value of random variable, transform	
	•	Multiple random variables (vector random variables, conditional	
	•	probability and conditional expectation joint distribution	
		independence, functions of several random variables, expected	
		value of functions of random variables)	
	•	Sums of random variables (mean, variance, &pdf of random	
		variables, the central limit theorem proof, confidence intervals)	
2	Rando	om processes	10
	•	Definition of random process	
	•	Specifying a random process	
	•	Examples of discrete- and continuous-time random processes	
	•	Stationary random processes	
	•	Time averages of random processes & ergodic theorems	1.0
3	Analys	sis and processing of random signals	10
	•	Power spectral density	
	•	Response of linear systems to random signals	
	•	Amplitude modulation by random signals	
	•	Optimum linear systems	
1	• Morka	I në Kalman Imer	06
4		Markov processes	00
	•	Discrete Markov chains	
	•	Continuous time Markov chains	
5	Introd	uction to queueing theory	08
	•	The elements of queueing system	00
	•	Little's formula	
	•	The M/M/1 queue	
	•	Multi-server systems	
	•	Finite-source queueing systems	
	•	M/G/1 queueing systems	

Text Books:

- 1. *Probability and Random Processes for Electrical Engineer* byAlberto Leon-Garcia, *Pearson Education*, 2007 (2nded).
- 2. *Probability and Random Processes with Applications to Signal Processing & Communications* by Scott L. Miller and Donald G. Childers, *Academic Press*, 2004.
- 3. *Probability, Random Variables and Stochastic Processes* by A. Papoulis and S.U. Pillai, 4th Edition, McGraw-Hill, 2002.
- 4. *Probability and Random Processes with Applications to Signal Processing* by H. Stark and J.W. Woods, 3e, Pearson Education.

Reference Book:

1. *Random Processes: A Mathematical Approach for Engineers* by R. M. Gray and L. D. Davisson, Prentice-Hall, Englewood Cliffs, N.J., 1986.

Assessment:

Internal:Assessment consists of two tests out of which; one should be compulsory class test and the
other is either a class test or assignment on live problems or course project.End SemesterSome guidelines for setting the question papers are as, six questions to be set each of 20
marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETC102	Optical Fiber communication	04

Module	Detailed content	Hours
1	A Review of Optical Fibers	04
	• Introduction	
	• Ray theory	
	• Theory of optical wave propagation	
	Classification of optical fibers	
	Signal Degradation	
	 Non Zero Dispersion Shifted Fibers 	
	Plastic optical fibers	
	 Splicing efficiency and optical fiber alignment 	
	• Fiber optic cable	
2	Advanced Optical Sources and Detectors	08
	• Quantum well lasers	
	Charge capture in Quantum well lasers	
	Multi Quantum well Laser diodes	
	Surface Emitting Lasers: Vertical cavity Surface Emitting Lasers	
	 Resonant cavity enhancement (RCE) Photo Detector 	
	• Material requirement for RCEPD	
	Wavelength selectivity	
	 High speed comparison of conventional and RCEPD 	
	RCE Schottky Photodiode	
	RCE Avalanche Photodiode	
3	Optical Amplification	08
	Properties of Erbium Doped glass	
	Optical Pumping	
	• Erbium Doped Amplifier	
	• Semiconductor Laser Amplifier	
	Raman Amplifier	
	Raman Gain and Bandwidth	
	• Multiple pump Raman Amplifier	
	• Raman Induced signal gain	
	• Noise Figure of Raman Amplifier	
	• Optical Signal to noise ratio	
	• Electrical Signal to noise ratio	
4	Application	0.6
4	Integrated Optics	06
	Planar and channel waveguides	
	Coupled mode theory for waveguides Dearn Sulitana Directional couplers and Photonia Sulitah	
	 Beam Splitters, Directional couplers and Photonic Switch Optical Modulators 	
	• Optical Wodulators	
	 Anayeu waveguide Grating (AWG) Multimode interference coupler (MMI) 	
	Onto Electronic Integration	
	Controlle Integration Fabrication Techniques	
	Autorial Material	

5	Non linear Optics	10
	General Overview of nonlinearties	
	• Effective area and length	
	Stimulated Raman Scattering	
	Stimulated Brillouin Scattering	
	Self Phase modulation	
	Cross –Phase modulation	
	• Four wave mixing and its mitigation	
	• Solitons	
	Properties of Solitons	
	Loss managed Soliton	
	Dispersion managed Soliton	
	Dispersion Management:	
	• Dispersion problems and its solution,	
	• Dispersion compensating Fibers ,its design,	
	• Fiber Brag Grating,	
	Dispersion Equalizing Filters	
	Optical Phase conjugation	
	PMD Compensation	
6	Optical Networks	06
	Network concepts	
	Network Topologies	
	• FDDI	
	• SONET/SDH	
	DWDM Networks	
7	Advanced Topics in OFC:	06
	Biophotonics	
	Optical computing	
	Optical MEMS	
	 Photonics Crystals Fibers and Waveguides 	

#-Common for Electronics and Telecommunication Engineering and Electronics Engineering

- 1. "Optical Fiber Communications"-Gerd Keiser-Fourth Edition-TATA McGRAW HILL
- 2. "Fiber Optics Communication System"-G.P.Agarwal-Wiley Publications
- 3. "An Introduction to Fiber Optic Systems"-John Power-McGrawHill-
- 4. "Fiber Optics Communications"- Harold Kolimbris-Pearson Education
- 5. "Optical Fiber Communications Principles and Practice"-John.M.Senior-Pearson Education
- 6. "Fundamentals of Optoelectronics"-Pollock-Irwin Publications
- 7. "Opto-Electronics, an introduction"-Wilson and Hawkes, Prentice Hall
- 8. "Nonlinear Fiber Optics" G.P.Agarwal-Academic Press
- 9. "An Introduction to Nonlinear Optics"-Geoffrey New-Cambridge University Press
- 10. "Photonic Crystal Fibers"-Anders, Bjarkler and JesBrong-Kluwer Academic Publishers
- 11. "Optical Fiber Communication System: Theory and Practice with MATLAB and Simulink" by Le Nguyen Binh, CRC Press, 2010
- 12. "Introduction to Biophotonics", Paras N. Prasad, Wiley-Interscience, 2003

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

ETC103	Digital Signal Processing and its Applications	04
Subject Code	Subject Name	Credits

Module	Detailed content	Hours
1	Review of following topics with relevant numerical examples	14
	• A typical real-time DSP system	
	• DFT, its computation (DIT & DIF algorithms), & important	
	properties	
	• FIR filter design–Window & frequency sampling method	
	• IIR filter design – Impulse invariant & Bilinear z-transform method	
	• Realization structures for FIR & IIR filters	
2	Multirate DSP	08
	 Introduction & concept of multirate processing 	
	• Design of practical sampling rate converters	
	• Sample rate conversion using polyphase filter structure	
3	Spectrum estimation & analysis	08
	• Introduction	
	Principles of spectrum estimation	
	Traditional methods	
	Modern parametric estimation methods	
	Autoregressive spectrum estimation	
4	General- and special-purpose digital signal processors	06
	Introduction	
	 Computer architecture for signal processing 	
	 General purpose digital signal processors 	
	 Selecting digital signal processors 	
	Special purpose DSP hardware	
5	Analysis of finite wordlength effect in fixed-point DSP systems	08
	Introduction	
	• DSP arithmetic	
	 ADC quantization noise & signal quality 	
	Finite wordlength effects in IIR & FIR digital filters	
6	Overview of real-world applications of DSP	04
	Audio applications of DSP	
	 Telecommunication applications of DSP 	
	Biomedical applications of DSP	

Text Books:

- *1.* Digital Signal Processing, A Practical Approach by Emmanuel C. Ifeachor, Barrie W. Jervis, *Pearson Education*
- 2. Discrete Time signal Processing by Alan V. Oppenheim, Ronald Schafer, Pearson Education
- 3. Digital Signal Processing, Principles, algorithms and applications J. Proakis, D. G. Manolakis, D. Sharma, *Pearson Education*

Reference Books:

- 1 Fundamentals of Digital Signal Processing using MATLAB- Robert Schilling, Sandra Harris, *Cengage Learning*
- 2. Digital Signal Processing, S. K. Mitra, Tata McGraw Hill Publication 2001
- 3. Digital Signal Processing by Chen, OxfordUniversity Press
- 4. A Practical Approach to Digital Signal Processing, Padmanabhan K., New Age International

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETL101	Optical Fiber Communication	01

Module	Detailed content
	Simulation of the Following
1	Designing of Single mode fiber
2	Designing of Planar Channel waveguides
3	Designing of AWG
4	Designing of Fiber Brag Grating
5	Designing of MZI modulator
6	Performance analysis of Optical Link upto 40 Gbps
7	Performance Analysis of Optical Link with Different Sources
8	Performance Analysis of Optical Link with Different Detectors
9	Performance Analysis of Optical Amplifier
10	Performance Analysis of DWDM System
11	Performance Analysis of Soliton Communication System
12	Designing of Optical MEMS

• Out of 12 Modules any 8 Modules have to be performed.

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
ETL102	Modeling and Simulation of Communication System	01

Module	Detailed content
1	Study and Analysis of different types of Analog Communication Circuit using Simulation
	Software (any two circuits)
2	Study and Analysis of different of Digital Communication Systems using Simulation
	Software (any three)
3	Study and Analysis of Frequency hopped Spread Spectrum System
4	Study and Analysis of Direct Sequence Spread Spectrum System
5	Study and Designing of Equalizers for Digital Communication
6	Study of Eye Pattern using Simulation
7	Study and Implementation of Convolution Codes using Simulation
8	Study and Implementation of Cyclic Codes using Simulation Method
9	Study and Implementation of Linear Block Codes using Simulation
10	Study and Implementation of Optimum Receiver used for Digital Communication
11	Study and Implementation of Lempel Algorithm using Simulation
12	Study and Design of Band Limited Signals with controlled ISI

• Out of 12 Modules any 8 Modules have to be performed.

End Semester Examination:	Practical/Oral examination is to be conducted by pair of internal and
	external examiners

Sub	oject
Co	ode
ETE	1011

Image and Video Processing and Broadcasting

		**
Module	Detailed Content	Hours
1	Digital Signal	10
	Processing, Frequency Domain Image Filtering and Enhancement:	
	2-D signals and systems, 2D symmetry and periodicity,2D DFT,	
	symmetry and other properties, 2-D FIR filters, frequency response,	
	circular symmetry, Visual Perception and Color Spaces (1 week)	
	Physiological characteristics of the eye and image formation,	
	Human color vision	
2	Spatial Domain Image Enhancement and Filtering& Restoration:	10
	Image decimation and interpolation, multi-resolution pyramids	
	Image sampling, Spatio-temporal (M-D) sampling theory	
	Edge detection, Image enhancement, Noise filtering, Image	
	restoration:Image degradation model,	
	Inverse Filtering, Wiener filtering	
3	Fundamentals of image Compression Entropy coding:	8
	Lossless image compression, JPEG image compression, JPEG-2000	
	image compression, Multi-resolution and Wavelet Transform	
4	Video Processing:	8
	Video sampling, flicker, spatial frequency response, Motion modeling	
	and estimation, Optical flow modeling and estimation, Block matching,	
	feature matching, Parametric motion estimation, Video filtering,	
	Deinterlacing, Denoising)	
5	Video Compression & Broadcasting Standards:	8
	MC-DCT video compression: MPEG-1, MPEG-2 video compression,	
	H.263/MPEG-4 video compression: Compression efficiency, MPEG-4	
	AVC/H.264 video compression, Scalable video coding (SVC), Error-	
	resilient compression. Video over IP	
6	Color models:	4
	Color models: CIE, RGB, CMYK, HSI, HSV, L*a*b*	

Text & Reference Books:

Text Books:

- 1. Handbook of Image and Video Processing, Ed. Al Bovik, Academic Press, 2000. ISBN 0-12-119790-5
- 2. Digital Image Processing, Gonzalez and Woods, Addison-Wesley, 2001. ISBN 0201-18075-8

Reference Books:

- 1. Multidimensional Signal, Image and Video Processing and Coding, J. W. Woods, Academic Press, 2006. ISBN 0-12-088516-6
- 2. Video Processing and Communications, Y. Wang, J. Ostermann, and Y.-Q. Zhang, Prentice Hall, 2002. ISBN 0-13-017547-1
- 3. Digital Video Processing, A. M. Tekalp, Prentice Hall, 1995. ISBN 0-13-190075-7

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guid **Examination:** marks, out

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE 1012	Modeling and Simulation of Communication	04
	System	

Module	Detailed content	Hours
1	Introduction:	08
	Concept of simulation and modeling, Roles of Simulation, Types of	
	Simulation, Limits of Simulation, Simulation Languages (High Level	
	versus Low Level), Real-time Simulation	
2	Simulation Methodology	08
<i>–</i>	Problem solving in Simulation Environment Performance evaluation	00
	techniques. Parameters	
	Estimation, What-if Questions, Design, Validation	
	Error Sources in Simulation, Validation, Consistency	
	Replication, Elimination of Initial Bias, Variance Reduction Techniques	
	Design of Simulation Experiment: Data Stream Selection, Simulation	
	Length of Run,	
	Simulation	
	Sampling Frequency	
3	Digital Issues in Simulation	08
	Quantization, Number representation, Underflow, Overflow, Processing	
	Delay, Signal Scaling	00
4	Generation of Data Signals, Kandom Numbers and Processes	08
	Congration of	
	Random Numbers, Generation of Random Variables using Common	
	Distributions	
	Generation of	
	Random Processes, Generation of Correlated Noise.	
5	Representation of Signals and Systems in Simulation	08
	Analog / Discrete, Baseband / Passband, Deterministic / Stochastic, Time	
	Domain / Frequency	
	Domain	
	Elements of Communication Systems, Basic building blocks	
6	Monte Carlo Methods	08
	Fundamental Concepts, Monte Carlo Estimations, Monte Carlo Integration,	
	Convergence,	

- 1. "Principles of Communication systems Simulation with Wireless Applications", W.H. Tranter, K.S. Shanmugan, T.S. Rappaport, K.L. Kosbar, Prentice Hall, 2004, ISBN 0-13-494790-8.
- "Simulation of Communication Systems, Modeling, Methodology and Techniques", M.C. Jeruchim, P.Balaban, K.S. Shanmugan, Cluwer Academic Publishers, 2nd Edition 2002, ISBN 0-306-46267-2.

References:

- "Simulation Techniques, Models of Communications, Signals and Process", F.M. Gardner, J.D. Baker, John Wiley & Sons Inc. 1997, ISBN 0-471-51764-9
- "Contemporary Communication Systems Using Matlab and Simulink", J.G. Proakis, M.Salehi, G.Bauch, CL-Engineering 2003, ISBN 0-534-40617-3.

Assessment:

Internal:Assessment consists of two tests out of which; one should be compulsory class test and the
other is either a class test or assignment on live problems or course project.End SemesterSome guidelines for setting the question papers are as, six questions to be set each of 20
marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE1013	VLSI and Mixed Signal Circuits and System	04

Module	Detailed Content	Hours
1	Motivation forAMS Design: Review of Moore's law and CMOS scaling, benefits of system-on-chip integration in terms of cost, power, and performance. Comparison on System-on-Board, System-on-Chip, and System-in-Package. Typical goals in AMS design – cost reduction, power reduction, design effort reduction, performance maximization. Productivity gap issues and the ways to improve the gap – IP based design and design reuse.	6
2	Basics of Digital CMOS Design: Combinational MOS Logic circuits-Introduction, CMOS logic circuits with a MOS load, CMOS logic circuits, complex logic circuits, Transmission Gate. Sequential MOS logic Circuits - Introduction, Behaviour of hi stable elements, SR latch Circuit, clocked latch and Flip Flop Circuits, CMOS D latch and triggered Flip Flop. Dynamic Logic Circuits - Introduction, principles of pass transistor circuits, Dynamic CMOS circuit techniques	10
3	Basics of Analog CMOS Design: Basic integrated circuit building blocks, switches, active resistors, current source and sink, passive and active current mirror ,differential amplifier, output amplifier, two stage operational amplifier(OTA) analysis and design	10
4	Analog signal Processing circuits : Switched capacitive circuits –General considerations, sampling switches ,Switched capacitor amplifier and integrator . Oscillator - types of oscillator, Voltage controlled oscillator . Simple PLL -Phase detector, Basic PLL topology ,Dynamics of PLL, Charged pump PLL	12
5	Short channel effects and device models: Scaling theory, short channel effects, MOS device models: Level1, Level2 and Level3,BSIM . Analog design in the digital world	5
6	AMS Design Flow: Design rules, Analog layout techniques, verification and integration, hardware-software co-design, interconnects, power management problems, and packaging related problems.	5

Text Books:

- 1.P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & Sons, 2002.
- 2.Neil Weste and K. Eshragian, **Principles of CMOS VLSI Design: A System Perspective**, 2nd edition, Pearson Education (Asia) Pte. Ltd., 2000.
- 3. B. Razavi, Design of Analog CMOS Integrated Circuits, Tata McGraw Hill 2002
- 4.David A Johns, Ken MartinR. Jacob Baker, CMOS: Mixed-Signal Circuit Design, John Wiley & Sons,
- 5. Phillip E. Allen, Douglas R. Holberg, **CMOS analog circuit design**,"Oxford University Press, 2002.
- 6.Sung Mo Kang &YosufL, **CMOS Digital Integrated Circuits: Analysis and Design**, McGraw-Hill (Third Edition)
- 7. Wayne, Wolf, "Modern VLSI design: System on Silicon" Pearson Education", Second Edition

Reference Books:

- 1. Jan M Abaey, **Digital integrated Circuits :A design perspective**, Prentice Hall of India Pvt Ltd.
- 2. R. JacbobBaker ,CMOS circuit design, layout and simulation, Wiley Publication
- 3. Yuan Taur, Fundamentals of Modern VLSI Devices, Cambridge University Press
- Douglas A Pucknell& Kamran Eshragian, Basic VLSI Design, PHI 3rd Edition (original Edition – 1994)
- 5. R. Best, Phase Locked Loops, second edition, New york; McGraw hill, 1999

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject CodeSubject NameCreditsETE 1014Advanced Satellite Communication04

Module	Detailed content	Hours
1	Introduction:	08
	• Origin of satellite communication,	
	 Development, Space segment, Ground segment, 	
	• Types of orbit,	
	• Evolution of satellite communications, Development of service.	
2	Link Analysis:	10
	• Characteristic parameters of an antenna, Received signal power at	
	receiver input,	
	• Carrier to noise ratio fat the receiving input, Influence of the	
	propagation medium,	
	• Compensation for the effects of the propagation medium	
2	constraints, Signal to noise ratio for a station-to-station link	1.0
3	Regenerative Satellite Networks	10
	• Transparent and regenerative repeaters,	
	• Comparison of link budgets on board processing, Impact to the	
	earth segment.	
	• Kaplasian ashitallaaful ashita far aatallita aammuniaatian	
	 Repertations of the orbits 	
1	Feiturbations of the orbits. Forth Stations :	00
4	• Station organization Radio frequency characteristics Antenna	08
	subsystems	
	Radio frequency subsystem Communication subsystem	
5	Communication Payload	08
5	• Mission and characteristics of the payload	00
	 Transparent repeaters Multibeam satellite repeaters Regenerative 	
	– repeater .	
	Antenna coverage. Antenna Characteristics.	
	Platform	
	• Subsystems, Attitude control, Propulsion subsystem, Electric power	
	supply, Telemetry, tracking and command, Thermal control and structure.	
6	Satellite Installation And Space Environment	08
	• Installation in orbit, Vacuum, Mechanical environment, Radiation	
	flux of high energy particles, Environment during installation,	
	Satellite system availability, Component reliability.	

1. Satellite Communication Systems Techniques and Technology (3rd edition, Maral and M. Bousquet. John Wiley and sons

2. VASAT Networks G. Maral, John Wiley and sons

3. Satellite Communication. Firs quarter century of service David W.E. Rees John Wiley and Sons

4. Satellite Communications Systems Design principles – Richard M. McGraw Hill

5. CDMA, Principles of Spread Spectrum Communication – Andrew J Virebi, Addision – wiley 1995.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project. End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject	Subject Name	Credits
Code		
ETE1021	Speech Processing	04
Module	Contents	Hours
	SPEECH PRODUCTION AND ACOUSTIC PHONETICS	
1	The process of speech production, Acoustic theory of speech production, Digital models of speech signals of speech signal,Articulator phonetics, Acoustic Phonetics, Co- articulation, Prosody	10
	SPEECH ANALYSIS	
2	Time and frequency domain analysis of speech, Linear predictive coding (LPC) analysis, Cepstral analysis, Speech parameter (pitch) estimation,	08
	SPEECH SYNTHESIS	
3	Principles of speech synthesis, Articulatory synthesis, Formant synthesis and LPC synthesis	06
	CODING OF SPEECH SIGNALS	
4	Introduction, Quantization, Speech redundancies, Time domain waveform coding, Linear predictive coding, Linear delta modulation, Adaptive delta modulation, Adaptive differential pulse code modulation, Filter bank analysis, Phase vocoders and Channel vocoders	10
	SPEECH ENHANCEMENT	
5	Introduction, Nature of interfering sounds, speech enhancement techniques, spectral subtraction and filtering, harmonic filtering, Spectral subtraction, Adaptive noise cancellation	06
6	SPEECH RECOGNITION Introduction, Baye's rule, Segmental feature extraction, MFCC, DTW, HMM approaches for speech recognition	08

Recommended Books:

Text:

- 1. Speech Communications: Human & Machine, Douglas O'Shaughnessy, Universities Press.
- 2. Digital Processing of Speech Signals, Rabiner and Schafer, Prentice Hall, 1978.

References

- 1. Discrete-Time Speech Signal Processing: Principles and Practice , Thomas F. Quatieri , Publisher: Prentice Hall
- 2. Speech and Audio Signal Processing : Processing and Perception of Speech and Music , Nelson Morgan and Ben Gold, John Wiley & Sons
- 3. Speech Analysis Synthesis and Perception, J. L. Flanagan, Second edition, Springer-Verlag (1972).
- 4. Speech and Audio Signal Processing, Gold & Morgan, 1999, Wiley and Sons

- Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name			
ETE1022	Micro Electro Mechanical Systems			
Module	Detailed content			
1	SWITCHING:	9		
	RF MEMS relays and switches: Switch parameters,			
	Actuation mechanisms, Bistable relays and micro actuators Dynamics of switching operation			
2	COMPONENTS I			
	MEMS inductors and capacitors: Micromachined inductor, Effect of inductor layout, Modeling and design issues of planar inductor, Gap tuning and area tuning capacitors, Dielectric tunable capacitors.			
3	COMPONENTS - II MEMS phase shifters: Types. Limitations, Switched delay lines, Micromachined transmission lines, coplanar lines, Micromachined directional coupler and mixer.			
4	FILTERS Micromachined RF filters: Modeling of mechanical filters, Electrostatic comb drive, Micromechanical filters using comb drives, Electrostatic coupled beam structures.			
5	ANTENNAS Micromachined antennas: Microstrip antennas – design parameters, Micromachining to improve performance, Reconfigurable antennas.			

REFERENCES:

- **1.** V.K.Varadanetal, RFMEMS and their Applications, John Wiley & Sons, Ltd, 2003.
- **2.** H.J. De LOS SANTOS, RF MEMS circuit Design for Wireless Communications, Artech House, 2002.
- **3.** G.M.REBEIZ, RF MEMS Theory, Design and Technology, John Wiley& Sons, Ltd, 2003.

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject Code ETE1023

Subject Name Embedded Systems

Module	Detailed content	Hours
1	EMBEDDED ARCHITECTURE	04
	Each added Commentance Changestanistics of Each added Commenting	
	Amplications — Challenges in Embedded Computing system design	
	Applications – Challenges in Embedded Computing system design-	
	Embedded memories – Embedded System design process – Requirements –	
	Components System Integration Design Example	
2	EMPEDDED PROCESSOR AND COMPUTINC DI ATEODM	08
2	MSD 430 DISC Controllars, parallel I/O, external interrupts	08
	ARM processor fundamentals introduction to ARM and THUMR	
	instruction set_processor and memory organization – CPU Bus	
	configuration – ARM Bus – Memory devices – Input/output devices –	
	Component interfacing - designing with microprocessor development and	
	debugging _Design Example	
	debugging –Design Example.	
	Instruction set with enhanced DSP features with ARM core mix mode	
	programming as Thumb+ ARM core Assembly programming concept	
	compare with ARM7 ARM9 ARM11 with new features additions	
3	INTERFACING	08
C		00
	Sensors and interfacing techniques. Analog interfacing and data acquisition	
	. Timing generation and measurementsDistributed Embedded	
	Architecture – Networks for Embedded Systems- serial bus protocols like	
	I2C, RS485, CAN and USBwireless protocols and interfacing of IRDA	
	and SMART card – Design Example wireless protocols and interfacing of	
	IRDA and SMART card – Serial communications: I2C – CAN Bus –	
	Design Example	
4	REAL TIME CONCEPTS	
	Real-time concepts, hard and soft real time systems, real-time operating	
	systems, Required RTOS services/capabilities (in contrast with traditional	
	OS).	
	Resource Management/scheduling paradigms: static priorities, static	
	schedules, dynamic scheduling	
	Real-world issues: blocking, unpredictability, interrupts, caching, Examples	
	of OSs for embedded systems	
5	SYSTEM DESIGN	08
	Design Methodologies – Requirement Analysis – Specification – System	
	Analysis and Architecture Design – modeling techniques Testing and	
	debuggingQuality Assurance – Design Example: Data base applications	
	(smart cards), process-control (Fuzzy logic), robotics (wireless), CCD	
	camera (data compression), network appliances (e-server), MSP 430	
	applications e.g. electricity metering, wireless communication, capacitive	
	touch screen as examples of embedded systems.	

\$- Common for Electronics and Telecommunication Engineering and Electronics Engineering

References:

- 1. Introduction to Embedded Systems, Jonathan W. Valvano, Cengage 2009,
- 2. ARM System Developer's Guide, 1st Edition, Sloss&Symes& Wright, 2004, Morgan Kaufmann
- 3. Embedded Real Time Systems: Concepts, Design & Programming, Dr.K.V.K.K. Prasad, Dreamtech Publication.
- 4. Introduction to embedded systems, shibu k v, 2009, McGraw-Hill
- 5. An Embedded Software Primer, David E. Simon, Pearson Education Publication.
- 6. Embedded Systems-James K Peckol(Wiley)
- 7. Embedded Systems Design, 2nd Edition, S Heath, 2002, Newnes Publication
- 8. Building Parallel, Embedded, and Real-Time Applications with Ada, John W. McCormick Frank Singhoff, JérômeHugues, Cambridge University Press
- 9. TEXAS MSP430, ARM Technical Publications
- 10. Embedded system design by Frank Vahid& Tony Givargis, Pearson Education
- 11. KriteeRamamritham Real Time Operating Systems, IEEE Press

Assessment:

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20

Examination: Examination: Bone guidelines for setting the question papers are us, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject	Code	Subject Name	Credits
ETE1024	ETE1024 Next Generation Networks		04
Module		Detailed Content	Hours
1	ITU NO	GN standards and architectures	04
	Main dr	ivers to Next Generation Networks – NGN, ITU NGN standards	
2	All-IP n	etwork concept for NGN, NGN control architectures and protocols	06
	(TISPA	N)	
3	Numbe	ring, naming and addressing for all NGN	04
4	NGN S	ervices:Technology,Business and Regulatory Aspects	06
	Services	s and service capabilities in NGN (VoIP,IPTV, rich multimedia, future	
	web), (Quality of Service (QoS), Quality of Experience (QoE) in NGN	
5	Control	and Signaling protocols for NGN (SIP, Diameter), NGN security	04
	(AAA, i	A, identity management), Service convergence, Business and regulatory	
	aspects of NGN		
6	Mobile	Next Generation Networks Next Generation Mobile Networks (LTE,	06
	WiMaXAdvanced), Fixed-Mobile Convergence (FMC) in NGN, IP		
	Multimedia Subsystem (IMS) for NGN		
7	Mobility	y Management in NGN (terminal, personal, session, and service	06
	mobility), Next Generation mobile services (mobile TV, Mobile rich		
	multimedia, presence, location-based and content-based services		
8	Transit	ion to NGN and future evolution: Migration of PSTN networks to	06
	NGN, Transition of IP networks to NGN, Carrier grade open environment		
9	NGN bi	usiness challenges, Future packet based network (IPv6 NGN), NGN	06
	evolutio	on	

Text Books :

- 1. Wireless Communications Theodore S. Rappaport, Prentice Hall of India, PTR publication
- 2. Principles of Wireless Networks-KavehPahlavan, Prashant Krishnamurthy, PHI
- 3. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc.
- 2 TCP/IP Protocol Suite -Forouzan-Fourth Edition-Tata Mc

Reference Books:

- 1. Wireless Communication Singal_- TMH
- 2. Next Generation Wireless Systems and Networks: Hsiao Hwa Chen, Mohsen Guizani Wiley
- **3.** Wireless and Mobile Networks-Concepts and protocols: DrSunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri-- Wiley
- **4.** IP-Based Next-Generation Wireless Networks: Systems, Architectures, and Protocols- **Jyh- Cheng Chen** and Tao Zhang- Wiley
- 5. Fundamentals of Wireless Communication- David Tse&PramodViswanath- Cambridge University press

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

ETC 201	Advanced Digital Communications	04
Subject Code	Subject Name	Credits

Module	Detailed content	Hours
1	Source coding	08
	• Average ,mutual information & entropy	
	Coding for discrete sources	
	• The Lempel algorithm	
	 Coding for analog sources temporal waveform coding 	
	Spatial waveform coding	
2	Coherent Communication with waveforms	08
	 Optimum waveform receivers in white Gaussain Noise 	
	 Optimum waveform receivers in coloured Gaussain Noise 	
	• In Phase an quadarate modulation & demodulation	
	• Derivation of the symbol error probability for polyphase signals	
3	Non -Coherent Communication with waveforms	08
	 Non –coherent receivers in random phase channels 	
	• Performance of non coherent receivers in random phase channels	
	• Non coherent receivers in random amplitude & phase channels.	
	• Perfornace of non-coherent receivers on random amplitude & phase	
	channels	
	Useful probability density functions	
4	Signal Design for Band limited Channel	08
	• Nyquist criteria for zero ISI	
	 Design of band limited signals with controlled ISI 	
	Data detection for controlled ISI	
5	Optimum Detection & Estimation	08
	Noise vector in signal space	
	 Bayes detection of received signal 	
	Optimum MRA receiver signal	
	 Decision region & minimum error probability 	
	Optimum detection of severalspecial comm. signals	
6	Estimation- Non linear & linear estimation	08
	Fading Channels	
	Signal time spreading	
	• Time variance of channel caused by motion	
	• Mitigating the degradation effects of fading	
	• Application of mitigating the effects of frequency selective trading	

- 1. Digital Communication by John G.Proakis,3rd Edition McGraw –Hill International Editions.
- 2. Digital Communication Techniques Signal Design & Detection by Marvin K. Simon, Sami M Hindei, William C Lindesy, PHI Learning Private Limited.
- 3. Digital Communications, 2nd Edition Fundamental & Application by Bernard Sklar, Pabitra Kumar Ray, Pearson Publication.

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETC 202	Mobile and Wireless Communications	04
Module	Detailed content	Hours
1	 Digital Cellular Mobile System Introduction to Mobile communication system. GSM, The EuropeanTDMA Digital cellular standard. 	06
	 IS-136 the North AmericanTDMA PDC the Japanese TDMA IS-95 The North American COMA 	
2	 IMT -2000 Third Generation Mobile Communication System Introduction 2.5 G TDMA Evolution Path GPRS Technology EDGE Technology 2.5G CDMA one cellular N/W Need of 3G Cellular N/W IMT 2000 Global Standard UNITS Technology W-CDMA Aire interface TD-SCDMA Technology CDMA 2000 Cellular Technology 	08
3	CellularAntennaSystemDesignConsiderationAntenna CharacteristicsAntennas at cell citeMobile AntennasDesign of Omni –directional Antenna cellular systemDesign of Directional Antenna cellular system	08
4	 Equalisation, Diversity and channel coding Fundamentals of Equalisation Algorithms for adaptive equalization Diversity Techniques RAKE Recivers Fundamental of channel coding 	10
5	 Intelligent Cell concept and application Intelligent cell concept Application of intelligent Microcell systems In building communication CDMA Cellular Radio Network 	08

6	Emerging Wireless Network Technology	08
	• IEEE 802.11 WLAN	
	ETSI HIPER LAN Technology	
	• IEEE 802.15 WPAN Technology	
	• IEEE 802.16 WMANTechnology	
	Mobile Adhoc Network	
	Mobile IP and Mobility Management	
	Mobile TCP	
	Wireless Sensor Networks	
	RFID Technology	

- 1) Mobile & Personal Communication system & Services by Raj Pandya , Prentice –Hall of India (PHI) Private Limited
- 2) Wireless Communication by T.L..Signal ,Tata McGraw Hill Publication.
- Wireless Communication Principles & Practice by Rappaport Theodore S., Pearson education 2nd edition.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

CodeMicrowave and Millimeter Wave04ETC203Microwave and Millimeter Wave04Communication SystemsMicrowave
ETC203Microwave and Millimeter Wave Communication Systems04
Communication Systems
Nodule Detailed content Hours
1 MICROWAVE RADIO SYSTEM: Transmitter & 8
receivers block diagram, FM microwave repeater, diversity
protection switching microwave terminal station, repeater
station Microwave links: Block diagram, path
characteristics, system gain, free space path loss, S/N ratio.
2 MILLIMETER WAVE CHARACTERISTICS: 6
Millimeter Wave Characteristics, Channel Performance at
60 GHz, Gigabit Wireless Communications, Development
of Millimeter Wave Standards, Coexistence with Wireless
Backhaul.
REVIEW OF MODULATIONS FOR MILLIMETER
WAVE COMMUNICATIONS:
On/Off Keying (OOK), Phase Shift Keying (PSK),
Frequency Shift Keying (FSK), Quadrature Amplitude
Modulation (QAM), Orthogonal Frequency Division
Multiplexing (OFDM).
3 MILLIMETER WAVE TRANSCEIVERS: 4
Millimeter Wave Link Budget, Transceiver Architecture,
Transceiver Without Mixer, Receiver Without Local
Oscillator, Millimeter Wave Calibration, Research Trend:
Transceiver Siliconization.
4 MILLIMETER WAVE ANTENNAS: 10
Path Loss and Antenna Directivity, Antenna Beamwidth,
Maximum Possible Gain-to-Q, Polarization, Beam Steering
Antenna, Millimeter wave Design Consideration,
Production and Manufacture.
NILLINETEK WAVE MIMU: Spotial Diversity of Antonna Arraya Multiple Antonnas
Multiple Transceivers Noise Coupling in a MIMO System
Multiple Transcervers, Noise Coupling in a Milwio System. 5 ADVANCED DIVEDSITY OVED MIMO CHANNELS.
Detential Banafits for Millimeter Ways Systems, Spatial and
Temporal Diversity Spatial and Frequency Diversity
Dynamic Spatial Frequency and Modulation Allocation

6	ADVANCED BEAM STEERING AND BEAM	4
	FORMING:	
	The Need for Beam-Steering/Beam-Forming, Adaptive	
	Frame Structure, Advanced Beam Steering Technology,	
	Advanced Antenna ID Technology, Advanced Beam	
	Forming Technology.	
7	SINGLE-CARRIER FREQUENCY DOMAIN	6
	EQUALIZATION:	
	Advantages of SC-FDE over OFDM for Millimeter Wave	
	Systems, Preamble Design, Adaptive Channel Estimation,	
	Frequency Domain Equalization, Decision Feedback	
	Equalization.	

References

- 1. Millimeterwave communication systems. Huang K., Wang Z., Wiley-IEEE Press, 2011
- 2. Advanced Electronic Communication Systems. W Tomasi , PHI, 1988
- 3. Electronic Communication Systems, II Edition, Roy Blake Thomsar
- 4. Electronic Communication, Kemealy & Dakis, TMH

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETL201	Mobile and Wireless Communications	01

Module	Detailed content
1	Study of GSM Technology using Simulation Software
2	Study of CDMA Technology using Simulation Software
3	Study of 3G Technology like WCDMA using Simulation Software
4	Case study of Sim Card
5	Case study of Mobile Handset used for 2G and 3G Technology
6	Case study of Frequency Planning in 2G Technology
7	Case study of Close Loop and Open Loop Power Control of Mobile
	Phone in 2G Technology
8	Case study on In-building Solutions
9	Study and Implementation of WLAN using Simulation Method
10	Study and Implementation of WPAN using Simulation Method
11	Case Study for RFID Technology
12	Study and Implementation of RAKE Receiver using Simulation Method

• Out of 12 Modules any 8 Modules have to be performed.

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
ETL202	Advanced Antenna and Arrays	01

Module	Detailed content
1	Design and Analysis of Half and Full Dipole Antenna
2	Radiation Pattern for the Broadside and End Fire Array
3	Simulation and Understanding the Pattern Multiplication Technique in
	End Arrays
4	Synthesis of Antenna for Low Side Lobes and Narrow Beam.
5	Design and Simulation of Rectangular and Circular Microstrip Antenna
6	Simulation of Broadband Antennas
7	Design and Simulation of Shorted Microstrip Antenna
8	Simulation of Radiation Pattern for Monopole Antennas
9	Smart Antennas for Cell Phone / Mobile Phones
10	Case Study for the Antennas using Satellite Communication
11	Case Study for the Antennas using Radar Communication
12	Case Study for the Antennas using Navigation and Instrument Landing
	System

• Out of 12 Modules any 8 Modules have to be performed.

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code
ETE2031

Subject Name Adaptive Signal Processing

Credits 04

Module	Contents					
1	INTRODUCTION TO ADAPTIVE SYSTEMS AND BASICS OF ESTIMATIONTHEORY Definitions, Characteristics, Applications, Examples of adaptive systems, Gradient error, least absolute deviation, least mean square minimization, Mean square error, Cramer Rao bound, Maximum likelihood estimate(MLE)	08				
2	NON ADAPTIVE FILTERS Wiener filtering, LLSE, Principle of orthogonality, Wiener-Hopf equation, Solution of Wiener Hopf equation, Error performance surface and MMSE. Levinson filtering, Levinson-Predictor, Levinson-Durbin Recursion, Gram-Schmidt orthogonalisation, Kalman filtering and its derivation	10				
3	ADAPTIVE FILTERS Principle of adaptive filters, Method of steepest decent, Newton's type of algorithm, LMS algorithm and its applications, Convergence of LMS algorithm, Normalized LMS(NLMS),RLS algorithm, convergence analysis of RLS algorithm, Application of RLS algorithm	15				
4	ADAPTIVE EQUALISATION Decision feedback equalizer, Adaptive blind equalizer, Sato algorithm, Constant modulus algorithm, CM equalizer and carrier tracking	10				
5	APPLICATION OF ADAPTIVE FILTERS Echo cancellation, Equalisation of data communication channels, Linear predictive coding and Noise cancellation	05				

Recommended Books:

Text:

- 1. Adaptive Filter Theory, S. Haykin, Prentice-Hall, 4-th edition
- 2. Statistical and Adaptive Signal Processing, Manolakis, D. G., Ingle, V. K., and Kogon, S. M. (2005), Artech House INC., 2005.

References

- 3. Adaptive Signal Processing, B. Widrow, S. Stearns, Prentice-Hall, 1985
- 4. Adaptive signal processing Theory and Applications, S Thomas Alexander, Springer-Verlag
- 5. Adaptive filters- A H Sayed, John Wiley

Assessment:

Internal:	Asses	sment con	sists of	two te	ests out of	which; one sho	ould be	compu	lsory cl	lass t	est a	and the	•
	other	is either a	class te	est or a	ssignmen	t on live proble	ms or co	ourse p	roject.				
	n	• 1 1•	C	1			•	· •	. 1		1	6.00	

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE2032	Nano-electronics	04

Module	Detailed content	Hours
1	Review of VLSI: basic CMOS Process flow, MOS Scaling theory, Issues in	06
	scaling MOS transistors, Short channel effects, Introduction to Nano	
	electronics, requirements for Non classical MOS transistor, Nano devices,	
	Nano materials, Nano characterization.	
2	MOS capacitor, Role of interface quality and related process techniques,	10
	Gate oxide thickness scaling trend, SiO2 vs High-k gate dielectrics.	
	Integration issues of high-k.Interface states, bulk charge, band offset,	
	stability, reliability, CV and IV techniques.	
3	Metal gate transistor: Motivation, requirements, Integration	06
	Issues. Transport in Nano MOSFET, velocity saturation, ballistic transport,	
	injection velocity, velocity overshoot.	
4	SOI - PDSOI and FDSOI.Ultrathin body SOI - double gate transistors,	08
	integration issues. Circuit Design with SOI. SOI based SRAM design.	
5	Vertical transistors - FinFET and Surround gate FET. Carbon	12
	nanotube electronics, bandstructure & transport, devices, applications.	
	Circuit design with FinFET and CNTFET. SRAM design.	
6	Germanium Nano MOSFETs: strain, quantization, Advantages of	06
	Germanium over Silicon, PMOS versus NMOS.	
	Compound semiconductors - material properties, MESFETs Compound	
	semicocnductors MOSFETs in the context of channel quantization and	
	strain, Hetero structure MOSFETs exploiting novel materials, strain,	
	quantization.	

Text Books:

- 1. FinFETs and Other Multigate Transistors, Jean-Pierre Colinge, Springer.
- 2. Nanoelectronic Circuit Design, Niraj K. Jha, Deming Chen, Springer.
- 3. SOI Circuit Design Concepts, Kerry Bernstein and N. J. Rohrer, Kluwer Academic Publishers.
- 4. Silicon VLSI Technology, Plummer, Deal, Griffin, Pearson Education India.

Reference Books:

- 1. *The Physics of Low-Dimensional Semiconductors*, John H. Davies, Cambridge University Press.
- 2. Fundamentals of Modern VLSI Devices, Y. Taur and T. Ning, Cambridge University Press

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject	Subject Name	Credits
Code		
ETE2033	Advanced Antennas and Arrays	04
Module	Detailed content	Hours
1	Review of wired antennas:	3
	Antenna Parameters, Infinitesimal dipole	
	antenna, half wave half wave dipole antenna,	
	small loop antenna, helical antenna.	
2	ANTENNA ARRAYS	8
	N element linear arrays – uniform amplitude	
	and spacing Directivity of Broadside and End	
	fire arrays. Three dimensional characteristics -	
	Pattern multiplication- Binomial arrays and	
	Dolph- Tchebycheff arrays. Circular array.	
	Mutual coupling in arrays, multidimensional	
	arrays- phased arrays and array feeding	
	techniques.	
3	ANTENNA SYNTHESIS	7
	Synthesis problem-Line source based beam	
	synthesis methods - Fourier transform and	
	Woodward-Lawson sampling method – Linear	
	array shaped beam synthesis method – Low side	
	lobe, narrow main beam synthesis methods-	
	discretization of continuous sources.	
	Schelkunoff polynomial method.	
4	Microstrip antennas:	6
	Introduction, Rectangular Patch, Circular Patch,	
	Quality Factor, Bandwidth, and	
	Efficiency, Input Impedance, Coupling, Circular	
	Polarization, Arrays and Feed Networks,	
	Corporate and Series Feeds, Reflectarray.	

5	Broadband microstrip antennas	6
	Introduction, Mechanism of Parasitic Coupling	
	for Broad BW, Gap-Coupled RMSAs,	
	Radiating-Edge Gap-Coupled RMSAs,	
	Nonradiating-Edge Gap-Coupled RMSAs, Gap-	
	and Hybrid-Coupled MSA,Multilayer	
	Broadband MSA, Electromagnetically Coupled	
	MSAs, stack multi resonator MSA, Design	
	Examples.	
6	Compact microstrip antennas	6
	Introduction, Compact Shorted RMSAs,	
	Partially Shorted RMSAs, Effect of Dimensions	
	of RMSAs with a Single Shorting Post, Effect	
	of the Position of the Single Shorting Post,	
	Compact Shorted CMSA and Its Variations.	
7	Planar monopole antennas	6
	Introduction, Planar Rectangular and Square	
	Monopole Antennas, RMSA Suspended in Air	
	with Orthogonal Ground Plane, Calculation of	
	the Lower Frequency of the Planar Monopole	
	Antennas, Effect of Various Parameters of	
	Planar Rectangular Monopole Antennas,	
	Radiation Pattern of RM Antennas, Various	
	Planar RMs with Equal Areas, Planar Circular	
	Monopole Antennas.	
8	Smart antennas	6
	Introduction, Smart-Antenna Analogy, Cellular	
	Radio Systems Evolution, Signal	
	Propagation,Smart Antennas' Benefits and draw	
	backs,Antenna Beam forming, Multiple-Input	
	Multiple-Output (MIMO) System,	
	Reconfigurable Arrays	

References

- 1. 1.Broadband Microstrip antennas Girish Kumar and K.P. Ray, Artech House
- 2. Antenna Theory- C. A. Balanis- Wiley and sons
- 3. Antennas John. D. Krauss- TMH ed.
- 4. Antenna Arrays: A Computational Approach' By Randy L.
- 5. Haupt, John Wiley and Sons

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE2034	Optical Networks	04

Module	Detailed Content	Hours
1	SONET & SDH: Brief history of SONET& SDH, Multiplexing hierarchy, Multiplexing structure – Functional components, Problem detection, Virtual tributaries & containers, Concatenation.	04
2	Architecture of OTN: Digital wrapper, control planes, Control signaling, Multiplexing, hierarchies, Current digital hierarchy, revised hierarchies, Optical & Digital Transporthierarchies, Functionality stacks, Encapsulation & Decapsulation, GFP.	06
3	WDM, DWDM Topologies : Relationship with SONET / SDH, EDF, WDM Amplifiers, Multiplexers, WADM I/P & O/P ports, spanloss & chromatic, dispersion, TunableDWDM lasers	08
4	Network Topologies & Protection schemes : Non-negotiable requirements of robust networks, Line & Path protection switching, Type of Topologies, Optical Channel Concatenation, Meshed topologies, PON's, Optical Ethernets, Wide area Backbones,Metro optical networking	06
5	MPLS & Optical networks: Label switching, FEC, Scalability & granuility: labels & wavelength, MPLS nodes, Distribution & Binding methods, MPLS support of virtual private networks, Traffic Engineering, MPLS, Relationships of OXC, MPLS operation, MPLS & optical Traffic Engineering, Similarities. Control & Dataplanes interworking	08
6	Architecture of IP & MPLS based optical transport Networks : IP, MPLS & Optical control planes Interworking, The three control planes, Framework for IP Vs. Optical networks, Generalized MPLS use in optical networks, Bidirectional LSP's in optical network, Next horizon of GMPLS, ODVK General communication channels, Traffic parameters	05
7	Link Management protocol (LMP) : What is managed, Data Bearing links, Basic function of LMP, LMP messages, LMP message header, TLW's control channelManagement, LPC, LCV, Fault management, Extending LMP operations to optical links.	06
8	Optical compilers : Building blocks, Serial Binary adder with carry delay, Fiber delay line memory loop, Bit serial, optical counter design, Lumped delay design, Distributed delay design, Time multiplex multiprocessor, Time slot interchange with 2 log 2 (N-1) switch, Hatch design support system	05

Text Books:

- 1. R.Ramaswami, K.N.Sivarajan, "Optical Networks", Elsevier, 2002.
- 2. P.E Green, "Optical Networks" Prentice Hall, 1994.
- 3. "Opto Electronic-Computing System" by Jordan
- 4. Uyless Black "Optical Networks Third Generation Transport Systems" Prentice Hall

Reference Books

- 1. C.S.Murthy & M.Gurusamy, "WDM Optical Networks", PHI, 2002.
- 2. TanenbaumAndrew S "Computer Networks" Prentice Hall(India).

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject	Subject Name	Credits
Code		
ETE2041	Wavelets	04
Module	Contents	Hours
1	Introduction to time frequency analysis; conventional methods like Fourier transform their limitations and the how, what and why about wavelets.	7
2	Short-time Fourier transform, Wigner-Ville transform. Properties and mathematical conditions of wavelet functions. Some popular wavelet functions.	7
3	Continuous time wavelet transform, Discrete wavelet transform, tiling of the time-frequency plane and wavepacket analysis.	10
4	Construction of wavelets. Multiresolution analysis. Introduction to frames and biorthogonal wavelets.	10
5	Multirate signal processing and filter bank theory.	8
6	Application of wavelet theory in to signal denoising, image and video compression, multi-tone digital communication, transient detection. Commercial applications in which wavelet approach is established.	6

Text Books:

- 1. Y.T. Chan, Wavelet Basics, Kluwer Publishers, Boston, 1993.
- 2. M. Vetterli and J. Kovacevic, "Wavelets and Sub-band Coding," Prentice Hall, 1995.

References:

- 1. I.Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
- 2. Gerald Kaiser, A Friendly Guide to Wavelets, Birkhauser, New York, 1995.
- 3. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, New Jersey, 1993.
- 4. S. Mallat, "A Wavelet Tour of Signal Processing," Academic Press, Second Edition, 1999.
- 5. G. Strang and T. Q. Nguyen, "Wavelets and Filter Banks," Wellesley-Cambridge Press, Revised Edition, 1998.
- 6. B.Boashash, Time-Frequency signal analysis, In S.Haykin, (editor), Advanced Spectral Analysis, Prentice Hall, New Jersey, 1991.

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students.Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE2042	Cloud Computing	04

Module	Detailed content	Hours
1	Overview of Distributed Computing Definition, Goals, H/W Concepts, S/W Concepts, Client-Server Model. Synchronization: Clock Synchronization, Logical Clocks, Global State. Distributed File System: NFS, CODA, XFS. Distributed Parallel computing System, Scalable Computing towards Massive Parallelism.	06
2	Introduction to Cloud Computing What's Cloud Computing, NIST Definition, properties and Service Model, Characteristics, Components, Cloud provider, SAAS, PAAS, IAAS and Others, Organizational scenarios of clouds, Administering & Monitoring cloud services, benefits and limitations, Deploy application over cloud, Comparison among SAAS, PAAS, IAAS. Cloud computing platforms: Infrastructure as service: Amazon EC2,Platform as Service: Google App Engine, Microsoft Azure, Utility Computing, Elastic Computing.	08
3	Cloud Technologies Web services, AJAX and mashups: Web services: SOAP and REST, SOAP versus REST, AJAX: asynchronous 'rich' interfaces, Mashups: user interface services Virtualization Technology: Virtual machine technology, virtualization applications in enterprises, Pitfalls of virtualization. Multitenant software: Multi-entity support, Multi-schema approach, Multitenance using cloud data stores, Data access control for enterprise application.	08
4	Issues in cloud Computing Implementing real time application over cloud platform, Issues in intercloud environments, QoS Issues in cloud, Dependability, data Migration, streaming in cloud, QoS monitoring in cloud computing environment. Cloud Middleware, A grid of clouds, Load Balancing in cloud, Sky Computing, resource optimization, resource dynamic reconfiguration.	08
5	Security architecture and Challenges Architectural Considerations- General Issues, Trusted Cloud computing, Secure Execution Environments and Communications, Micro-architectures; Identity Management and Access control-Identity management, Access control, Autonomic Security. Virtualization security management- virtual threats, VM Security Recommendations, VM-Specific Security techniques, Secure Execution Environments and Communications in cloud.	06
6	Programming support of Google App Engine Programming the Google App Engine, Google file system(GFS), Bigtable, Googles NOSQL system. Chuby, Google's Distributed lock service.	06
7	Programming on Amazons AWS and Microsoft Azure Programming on Amazon EC2, Amazon simple storage service(S3), Amazon Elastic block store(EBS), and SimpleDB. Microsoft AzureProgramming support.	06

Text Books:

- 1."Distributed Systems: Principles and Paradigms, 2nd Edition", by Andrew S. Tanenbaum, Maarten van Steen, ISBN: 01323-92275, Prentice Hall, 2006.
- 2."Distributed And Cloud Computing From parallel processing to the internet of things", Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, ISBN : 9780123858801, ELSEVIE MK publishers, 2011.

Reference Books

- 1. "Cloud Computing for Dummies", by Judith Hurwitz, R.Bloor, M.Kanfman, F.Halper (Wiley India Edition)
- 2. "Enterprise Cloud Computing", by Gautam Shroff, Cambridge
- 3. "Cloud Computing : A Practical Approach", by Antohy T Velte, et.al McGraw Hill.
- 4. "Google Apps", by Scott Granneman, Pearson.

Assessment:

Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE2043	Sensor Array Networks	04
Module	Detailed content	Hours
1	Spatial Signals Signals in space and time. Spatial frequency, Direction vs. frequency. Wave fields. Far field and near field signals.	12
2	Sensor Arrays Spatial sampling, Nyquist criterion. Sensor arrays. Uniform linear arrays, planar and random arrays. Array transfer (steering) vector. Array steering vector for ULA. Broadband arrays.	12
3	Spatial Frequency Aliasing in spatial frequency domain. Spatial Frequency Transform, Spatial spectrum. Spatial Domain Filtering. Beam Forming. Spatially white signal.	12
4	Direction of Arrival Estimation Non parametric methods - Beam forming and Capon methods. Resolution of Beam forming method. Subspace methods - MUSIC, Minimum Norm and ESPRIT techniques. Spatial Smoothing.	12

References

- 1. Dan E. Dugeon and Don H. Johnson. (1993). Array SignalProcessing: Concepts and Techniques. Prentice Hall.
- 2. PetreStoica and Randolph L. Moses. (2005, 1997) Spectral Analysis of Signals. Prentice Hall.
- 3. Prabhakar S. Naidu. (2000). Sensor Array SignalProcessing: CRC Press.

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
End Semester Examination:	Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETE2044	Network Security	04

Module	Detailed content	Hours
1	Introduction	8
	Introduction to Information Security, Network Security Domains	_
2	Security Architecture	12
	Enterprise Security Architecture, Network LAN/WAN & User Access	
	Security, Cryptography and Cryptanalysis, Various Security Protocols,	
	Network Security Audit / Security RISK Management, Security Operations.	
3	Security Mechanisms for Network Defense and Countermeasures	10
	Telecommunications Overview, Equipment Security Testing, Core Network	
	Security Testing, Regulation, TRAI, Telecom License	
4	Security in Networks	6
	Network security basics, TCP/IP Model and Port no., Protocol flaws,	
	Enterprise wide network Design and Vulnerabilities. Reconnaissance of	
	network, Packet sniffing, Session Hijacking, ARP Spoofing Web site and	
	web server vulnerabilities, Denial of Service, SSL and IPSec protocol	
	Firewall, intrusion detection system and Honey pots.	
5	Introduction to Biometrics for Security	6
	Signature verification, Finger print recognition, Voice recognition, Iris	
	recognition system.	
6	Legal, Privacy, and Ethical Issues in Network Security	6
	Protecting programs and data, Information and law, Rights of employees	_
	and employers, Software failures, Computer crime, Privacy, Ethical issues	
	in computer society, Case studies of ethics.	

References:

- 1. Stallings, "Cryptography and Network Security: Principles and Practice"
- 2. C.P. Pfleeger and S.L.Pfleeger, "Security in Computing", Pearson Education
- 3. Matt Bishop, "Computer Security: Art and Science", Pearson Education
- 4. Kaufman, Perlman, Speciner, "Network Security"
- 5. Eric Malwald, "Network Security: A Beginner's Guide", TMH
- 6. Bruce Schneier, "Applied Cryptography", John Wiley
- 7. Macro Pistoia, "Java network security", Pearson Education
- 8. Whitman, Mattord, "Principles of Information security", Thomson
- 9. Cryptography and Data Security, D Denning, Addison Wesley

Internal:	Assessment consists of two tests out of which; one should be compulsory class test and the
	other is either a class test or assignment on live problems or course project.
End Semester	Some guidelines for setting the question papers are as, six questions to be set each of 20
Examination:	marks, out of these any four questions to be attempted by students. Minimum 80% syllabus
	should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
ETS301	Seminar	03

Guidelines for Seminar

- o Seminar should be based on thrust areas in Electronics and Telecommunication Engineering
- Students should do literature survey and identify the topic of seminar and finalize in consultation with Guide/Supervisor. Students should use multiple literature and understand the topic and compile the report in standard format and present infront of Panel of Examiners appointed by the Head of the Department/Institute of respective Programme.
- Seminar should be assessed based on following points
 - Quality of Literature survey and Novelty in the topic
 - Relevance to the specialization
 - Understanding of the topic
 - Quality of Written and Oral Presentation

IMPORTANT NOTE:

- 1. Assessment of Seminar will be carried out by a pair of Internal and External examiner. The external examiner should be selected from approved panel of examiners for Seminar by University of Mumbai, OR faculty from Premier Educational Institutions /Research Organizations such as IIT, NIT, BARC, TIFR, DRDO, etc. OR a person having minimum Post-Graduate qualification with at least five years' experience in Industries.
- 2. Literature survey in case of seminar is based on the broader area of interest in recent developments and for dissertation it should be focused mainly on identified problem.
- 3. At least 4-5 hours of course on Research Methodology should be conducted which includes Literature Survey, Problems Identification, Analysis and Interpretation of Results and Technical Paper Writing in the beginning of 3rd Semester.

Subject Code	Subject Name	Credits
ETD301 /	Dissertation (I and II)	12 +
ETD401		15

Guidelines for Dissertation

0

• Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literature and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Dissertation I

- Dissertation I should be assessed based on following points
 - Quality of Literature survey and Novelty in the problem
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization
 - Clarity of objective and scope
- Dissertation I should be assessed through a presentation by a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Dissertation II

- o Dissertation II should be assessed based on following points
 - Quality of Literature survey and Novelty in the problem
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization or current Research / Industrial trends
 - Clarity of objective and scope
 - Quality of work attempted
 - Validation of results
 - Quality of Written and Oral Presentation
- Dissertation II should be assessed through a presentation jointly by Internal and External Examiners appointed by the University of Mumbai

Students should publish at least one paper based on the work in reputed International / National Conference (desirably in Refereed Journal)