<u>WB-JEE - 2009</u>

PHYSICS & CHEMISTRY QUESTIONS & ANSWERS

1. One Kg of copper is drawn into a wire of 1mm diameter and a wire of 2 mm diameter. The resistance of the two wires will be in the ratio

(A) 2:1 (B) 1:2 (C) 16:1 (D) 4:1

Hints: Mass = $(\pi r_1^2 \ell_1) \sigma$ (Ist wire)

Mass =
$$(\pi r_1^2 \ell_2)\sigma$$
 (2nd wire)
 $(\pi r_1^2 \ell_1)\sigma = (\pi r_2^2 \ell_2)\sigma$
 $\frac{\ell_1}{\ell_2} = \left(\frac{r_2}{r_1}\right)^2$
 $\frac{R_1}{R_2} = \frac{\rho \frac{\ell_1}{A_1}}{\rho \frac{\ell_2}{A_2}} = \frac{\ell_1}{\ell_2} \times \frac{A_2}{A_1} = \frac{\ell_1}{\ell_2} \times \left(\frac{r_2}{r_1}\right)^2$
 $= \left(\frac{r_2}{r_1}\right)^4$

 $\Rightarrow 16:1$

Ans: (C)

2. An electrical cable having a resistance of 0.2 Ω delivers 10kw at 200V D.C. to a factory. What is the efficiency of transmission?
(A) 65%
(B) 75%
(C) 85%
(D) 95%
Ans: (D)

Hints:
$$P = VI \implies I = \frac{10 \times 10^3}{200} = 50A$$
, Power loss = $(50)^2 (0.2) = 500W$
Efficiency = $\frac{10000 \times 100}{10000 + 500} = 95.23\%$

3. A wire of resistance 5 Ω is drawn out so that its new length is 3 times its original length. What is the reistance of the new wire? (A) 45 Ω (B) 15 Ω (C) 5/3 Ω (D) 5 Ω Ans: (A)

Hints:
$$\left(\frac{r_1}{r_2}\right)^2 = \left(\frac{\ell_2}{\ell_1}\right) = \frac{3\ell}{\ell} = 3$$

 $\left(\frac{R_2}{R_1}\right) = \frac{\ell_2}{\ell_1} \times \frac{A_1}{A_2} = 3 \times \left(\frac{r_1}{r_2}\right)^2 = 3 \times 3 \Longrightarrow R_2 = 45$

4. Two identical cells each of emf E and internal resistance r are connected in parallel with an external resistance R. To get maximum power developed across R, the value of R is

$$I = \frac{2L}{r+2R}$$

For max. power consumption. I should be max. So denominator should be min. for that

$$r + 2R = \left(\sqrt{r} \quad \cdot \quad \right)$$

5. To write the decimal number 37 in binary, how many binary digits are required?
(A) 5 (B) 6 (C) 7 (D) 4
Ans: (B)
Hints:

2	37	1
2	18	0
2	9	1
2	4	0
2	2	0
	1	

6. A junction diode has a resistance of 25 Ω when forward biased and 2500 Ω when reverse biased. The current in the diode, for the arrangement shown will be

(D) $\frac{1}{180}$ A

(A) $\frac{1}{15}$ A (B) $\frac{1}{7}$ A (B) $\frac{1}{7}$ A (C) $\frac{1}{25}$ A (C) $\frac{1}{25}$ A (C) $\frac{1}{25}$ A (C) $\frac{1}{25}$ A

Because diode is forward biased. So $I = \frac{V}{R_{eq}} = \frac{5}{35} = \frac{1}{7}A$

7. If the electron in a hydrogen atom jumps from an orbit with level $n_1 = 2$ to an orbit with level $n_2 = 1$ the emitted radiation has a wavelength given by (1) $\lambda = 5/2P$ (D) $\lambda = 4/2P$ (D) $\lambda = 8/4$

(A)
$$\lambda = 5/3R$$
 (B) $\lambda = 4/3R$ (C) $\lambda = R/4$ (D) $\lambda = 3R/4$
Ans: (B)
Hints: $\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3R}{4}$
 $\Rightarrow \lambda = \frac{4}{3R}$
What is the particle x in the following nuclear reaction :
 ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + x$
(A) electron (B) proton (C) Photon (D) Neutron
Ans: (D)
Hints: ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + {}^{1}_{0}X$
Hence X represents neutron ${}^{(1)}_{0}n$
An alternating current of rms value 10 A is passed through a 12 Ω resistor. The maximum potential difference across the resistor
is
(A) 20V (B) 90V (C) 1969.68V (D) none

Hints : $I_{rms} = 10A$

8.

9.

$$I_{rms} = \frac{I_0}{\sqrt{2}} \Longrightarrow I_0 = \sqrt{2} \times 10 = 10\sqrt{2}$$

Max. P.D. = $\sqrt{2} \times 10 \times 12 = 120 \times 1.414 = 169.68 V$

10. Which of the following relation represent Biot-Savart's law?

(A)
$$d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r}$$
 (B) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \hat{r}}{r^3}$ (C) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^3}$ (D) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^4}$

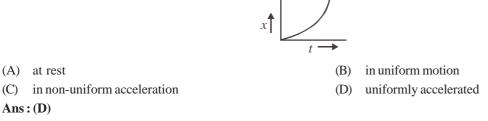
Ans: (C)

Hints:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{\ell} \times \vec{r})}{r^3}$$

Note :- In question paper current (I) is missing

11. \vec{A} and \vec{B} are two vectors given by $\vec{A} = 2\hat{i} + 3\hat{j}$ and $\vec{B} = \hat{i} + \hat{j}$. The magnitude of the component of \vec{A} along \vec{B} is

(A)
$$\frac{5}{\sqrt{2}}$$
 (B) $\frac{3}{\sqrt{2}}$ (C) $\frac{7}{\sqrt{2}}$ (D) $\frac{1}{\sqrt{2}}$


Ans:(A)

Hints : Magnitude of components of \vec{A} along $\vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} = \frac{(2\hat{i}+3\hat{j})(\hat{i}+\hat{j})}{\sqrt{2}} = \frac{5}{\sqrt{2}}$

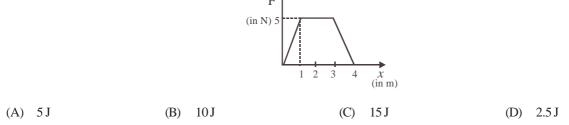
12. Given $\vec{C} = \vec{A} \times \vec{B}$ and $\vec{D} = \vec{B} \times \vec{A}$. What is the angle between \vec{C} and \vec{D} ? (A) 30° (B) 60° (C) 90° (D) 180° Ans: (D)

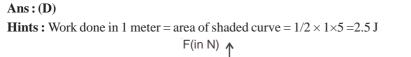
Hints: \vec{C} and \vec{D} are antiparellel since $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$

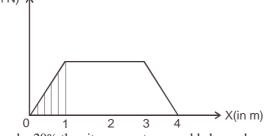
- 13. The acceleration 'a' (in ms⁻²) of a body, starting from rest varies with time t (in s) following the equation a = 3t + 4The velocity of the body at time t = 2s will be
 - (A) 10 ms^{-1} (B) 18 ms^{-1} (C) 14 ms^{-1} (D) 26 ms^{-1} Ans: (C) Hints: a = 3t + 4 $\frac{dV}{dt} = 3t + 4$ $\int_{0}^{V} dV = \int_{0}^{t} (3t + 4) dt$ $V = \frac{3t^{2}}{2} + 4t = \frac{12}{2} + 8 = 14 \text{ m/s}$
- 14. Figure below shows the distance-time graph of the motion of a car. If follows from the graph that the car is

Hints : Slope is increasing with constant rate. i.e motion is uniformaly accelerated

 $x = 1.2t^2 \Longrightarrow v = 2.4t \Longrightarrow a = 2.4 \text{ m/s}^2$


15. Two particles have masses m & 4m and their kinetic energies are in the ratio 2: 1. What is the ratio of their linear momenta ?


 $x = 1.2t^{2}$


(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{1}{16}$

Hints:
$$\frac{KE_1}{KE_2} = \frac{\frac{p_1^2}{2m}}{\frac{p_2^2}{2 \times 4m}} = \frac{2}{1} \Longrightarrow \frac{p_1}{p_2} = \frac{1}{\sqrt{2}}$$

16. The force F acting on a particle moving in a straight line is shown below. What is the work done by the force on the particle in the 1st meter of the trajectory ?

17. If the kinetic energy of a body changes by 20% then its momentum would change by -(A) 20%(B) 24%(C) 40%(D) 44%

Ans: (No answer matching)

Hints:
$$\frac{\frac{p_{f}^{2}}{2m} - \frac{p_{i}^{2}}{2m}}{\frac{p_{i}^{2}}{2m}} \times 100 = 20$$

$$\Rightarrow \frac{p_f}{p_i} = \sqrt{1.2} = 1.095 \Rightarrow \frac{p_f - p_i}{p_i} = 0.095$$

Therefore % increase = 9.5%

18. A bullet is fired with a velocity u making an angle of 60° with the horizontal plane. The horizontal component o the velocity of the bullet when it reaches the maximum height is

(A) u (B) 0 (C)
$$\frac{\sqrt{3u}}{2}$$
 (D) $\frac{u}{2}$

Ans: (\mathbf{D})

Hints : Horizontal velocity would be constant so the value of velocity at the highest point will be u/2

19. A particle is projected at 60° to the horizontal with a kinetic energy K. The kinetic energy at the highest point is

(A) K (B) zero (C)
$$\frac{K}{4}$$
 (D) $\frac{K}{2}$

Ans:(C)

Hints : At highest point kinetic energy = $1/2m (v \cos 60^\circ)^2 = 1/4 \times 1/2m v^2 = K/4$

20. The poisson's ratio of a material is 0.5. If a force is applied to a wire of this material, there is a decrease in the cross-sectional area by 4%. The percentage increase in the length is :

(A) 1% (B) 2% (C) 2.5% (D) 4%

Ans: (D)

Hints : Poisson ratio = 0.5

Therefore density is constant hence change in volume is zero we have

 $V = A \times \ell = constant$

$$\log V = \log A + \log \ell$$
 or $\frac{dA}{A} + \frac{d\ell}{\ell} = 0 \Longrightarrow \frac{d\ell}{\ell} = -\frac{dA}{A}$

That is 4%

21. Two spheres of equal masses but radii r_1 and r_2 are allowed to fall in a liquid of infinite column. The ratio of their terminal velocities is

(A) 1 (B) $r_1:r_2$ (C) $r_2:r_1$ (D) $\sqrt{r_1}:\sqrt{r_2}$

Ans: (Data incomplete)

Hints : We have
$$v_{T} = \frac{2r^{2}(\sigma - \rho)g}{9\eta}$$

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^2 \frac{(\boldsymbol{\sigma}_1 - \boldsymbol{\rho})}{(\boldsymbol{\sigma}_2 - \boldsymbol{\rho})}; \text{ given } \mathbf{m}_1 = \mathbf{m}_2 \Longrightarrow \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^3 = \frac{\boldsymbol{\sigma}_2}{\boldsymbol{\sigma}_1}$$

22. Two massless springs of force constants K₁ and K₂ are joined end to end. The resultant force constant K of the system is

(A)
$$K = \frac{K_1 + K_2}{K_1 K_2}$$
 (B) $K = \frac{K_1 - K_2}{K_1 K_2}$ (C) $K = \frac{K_1 K_2}{K_1 + K_2}$ (D) $K = \frac{K_1 K_2}{K_1 - K_2}$

Ans: (C)

Hints : In series $K_{eff} = \frac{K_1 K_2}{K_1 + K_2}$

23. A spring of force constant k is cut into two equal halves. The force constant of each half is

(A)
$$\frac{k}{\sqrt{2}}$$
 (B) k (C) $\frac{k}{2}$ (D) 2k

Ans: (D)

Hints : As $K \ell = \text{constant}$

K' = 2K

- 24. Two rods of equal length and diameter have thermal conductivities 3 and 4 units respectively. If they are joined in series, the thermal conductivity of the combination would be
 - (A) 3.43 (B) 3.5 (C) 3.4 (D) 3.34 Ans: (A)

Hints : In series $R = R_1 + R_2$

$$\frac{2\ell}{K_{eff}A} = \frac{\ell}{K_1A} + \frac{\ell}{K_2A}$$
$$K_{eff} = \frac{24}{7} = 3.43$$

25. 19 g of water at 30° C and 5 g of ice at -20° C are mixed together in a calorimeter. What is the final temperature of the mixture? Given specific heat of ice = 0.5 cal g⁻¹(°C)⁻¹ and latent heat of fusion of ice = 80 cal g⁻¹

(A) $0^{\circ}C$ (B) $-5^{\circ}C$ (C) $5^{\circ}C$ (D) $10^{\circ}C$ Ans: (C) Hints: $5 \times .5 \times 20 + 5 \times 80 + 5t = 19 \times 1 \times (30 - t)$ $t = 5^{\circ}C$

- 26. It is difficult to cook rice in an open vessel by boiling it at high altitudes because of
 - (A) low boiling point and high pressure (B) high boiling point and low pressure (C) low boiling point and low pressure
 - (D) high boiling point and high pressure

Ans: (C)

Hints : At high altitude pressure is low and boiling point also low

- The height of a waterfall is 50 m. If $g = 9.8 \text{ ms}^{-2}$ the difference between the temperature at the top and the bottom of the waterfall 27. is:
 - (A) 1.17 °C (B) 2.17°C (C) 0.117°C (D) 1.43° C Ans: (C)

Hints:
$$\frac{mgh}{J} = ms\Delta t \Longrightarrow \Delta t = 0.117^{\circ}C$$

28. The distance between an object and a divergent lens is m times the focal length of the lens. The linear magnification produced by the lens is

(A) m (B)
$$\frac{1}{m}$$
 (C) m+1 (D) $\frac{1}{m+1}$

Ans: (D)

Hints: u = -mf

$$\frac{1}{v} - \frac{1}{(-mf)} = -\frac{1}{f} \implies \qquad \frac{1}{v} = -\frac{1}{f} \left(1 + \frac{1}{m}\right) \implies -\frac{v}{u} = \left(\frac{1}{1+m}\right)$$

A 2.0 cm object is placed 15 cm in front of a concave mirror of focal length 10 cm. What is the size and nature of the image? 29. (C) 1.0 cm, real (A) 4 cm. real (B) 4 cm, virtual (D) None Ans: (A)

Hints:
$$\frac{1}{v} - \frac{1}{15} = \frac{1}{-10} \Rightarrow v = -30 \text{ cm}$$

$$m = \frac{-30}{-15} = 2$$
, image size = 4 cm

A beam of monochromatic blue light of wavelength 4200 Å in air travels in water of refractive index 4/3. Its wavelength in water 30. will be:

Hints : In water
$$\lambda = \frac{4200}{\frac{4}{3}} = 3150 \text{ Å}$$

- 31. Two identical light waves, propagating in the same direction, have a phase difference δ . After they superpose the intensity of the resulting wave will be proportional to
 - (A) $\cos \delta$ (B) $\cos(\delta/2)$ (C) $\cos^2(\delta/2)$ (D) $\cos^2\delta$ Ans: (C)

Hints:
$$I = 4I_0 \cos^2\left(\frac{\delta}{2}\right) \Rightarrow I \propto \cos^2\left(\frac{\delta}{2}\right)$$

32. The equation of state for n moles of an ideal gas is PV = nRT, where R is a constant. The SI unit for R is (B) JK⁻¹ mol⁻¹ (C) $J K g^{-1} K^{-1}$ (D) JK⁻¹ g⁻¹ (A) JK⁻¹ per molecule Ans: (B) Hints: JK⁻¹ mol⁻¹ At a certain place, the horizontal component of earth's magnetic field is $\sqrt{3}$ times the vertical component. The angle of dip at 33. that place is (A) 30° **(B)** 60° (C) 45° (D) 90° Ans: (A) **Hints**: $\tan \theta = \frac{V}{H} = \frac{1}{\sqrt{3}} \Longrightarrow \theta = 30^{\circ}$ The number of electron in 2 coulomb of charge is 34. (C) 1.6×10^{19} (A) 5×10^{29} (B) 12.5×10^{18} (D) 9×10^{11} Ans: (B) Hints: $n = \frac{2}{1.6 \times 10^{-19}} = 12.5 \times 10^{18}$ 35. The current flowing through a wire depends on time as $I = 3t^2 + 2t + 5$. The charge flowing through the cross section of the wire in time from t = 0 to t = 2 sec. is (A) 22C **(B)** 20C (C) 18C (D) 5C Ans: (A) Hints: $Q = \int_0^2 (3t^2 + 2t + 5) dt = 22C$ If the charge on a capacitor is increased by 2 coulomb, the energy stored in it increases by 21%. The original charge on the 36. capacitor is (A) 10C **(B)** 20 C (C) 30 C (D) 40 C Ans: (B) Hints: $\frac{q_f^2}{2C} - \frac{q_i^2}{2C} \times 100 = 21$ and $q_f - q_i = 2$ solving we get $q_i = 20$ coulomb 37. The work done in carrying a charge Q once around a circle of radius r about a charge q at the centre is (C) $\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{2\pi r}\right)$ (B) $\frac{qQ}{4\pi\varepsilon_0}\frac{1}{\pi r}$ (A) $\frac{qQ}{4\pi\varepsilon_0 r}$ (D) 0 Ans: (D) Hints : Work done by conservative force in a round trip is zero Four capacitors of equal capacitance have an equivalent capacitance C₁ when connected in series and an equivalent capaci-38. tance C_2 when connected in parallel. The ratio $\frac{C_1}{C_2}$ is: (A) 1/4 (B) 1/16 (D) 1/12 (C) 1/8 Ans: (B)

Hints:
$$C_1 = \frac{C}{4}$$
 and $C_2 = 4C \Longrightarrow \frac{C_1}{C_2} = \frac{1}{16}$

Magnetic field intensity H at the centre of a circular loop of radius r carrying current I e m.u is 39. (A) r/I oersted (B) $2\pi I/r$ oersted (C) $I/2\pi r$ oersted (D) $2\pi r/I$ oersted Ans: (B)

Hints:
$$H = \frac{\mu_0 I}{2r} = \frac{\mu_0}{4\pi} \times \frac{2\pi I}{r}$$

In e m.u system $\frac{\mu_0}{4\pi} = 1$. So $H = \frac{2\pi I}{r}$

.

40. Which of the following materials is the best conductor of electricity? (A) Platinum (B) Gold (C) Silicon Ans: (D)

41. Which statement is incorrect

(A) Phenol is a weak acid

(C) Phenol liberates CO₂ from Na₂CO₃ soln

Hints: Phenol does not liberate CO₂ from Na₂CO₃ solution

• •

$$(Weak acid) \xrightarrow{O^{-}Na^{+}} 2 \xrightarrow{O^{-}Na^{+}} + H_2CO_3$$

Note : Strong acid is not formed by weak acid

In which of the following reactions new carbon-carbon bond is not formed :

(A) Cannizaro reaction (B) Wurtz reaction (C) Aldol condensation (D) Friedel-Craft reaction Ans: (A)

(D) Copper

(D)2

(B) Phenol is an aromatic compound

(D) Phenol is soluble in NaOH

Hints : In cannizaro's reaction no new C-C bond is formed

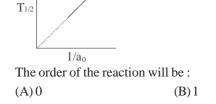
e.g. $\overset{\parallel}{\mathbb{H}} \overset{\parallel}{\mathbb{H}} \overset{\parallel}{\longrightarrow} CH_{3}OH + HCOO^{-}Na^{+}$

A compound is formed by substitution of two chlorine for two hydrogens in propane. The number of possible isomeric 43. compounds is

Ans: (C)

42.

Hints: $C_3H_8 \xrightarrow{-2H} C_3H_6Cl_2$, following isomers of $C_3H_6Cl_2$ is possible


CI H CI H-C-C-H	H H H H-C-C-C-Cl	H CI H H-C-C-C-H	Н СІ СІ , Н—С—С [—] С—Н
$\begin{array}{c c} I & I & I \\ H & H & H \end{array}$	H H Cl	H Cl H	H H H H
(I)	(II)	(III)	(IV)
D		11 1.0	

Due to presence of chiral carbon compound (IV) is optically active and forms an enantiomer. So total no of isomers =5 44. Which one of the following is called a carbylamine?

(A) R CN (B) R CONH₂ (C) R-CH=NH (D) R NC
Ans: (D)
$$(D)$$

45. For making distinction between 2-pentanone and 3-pentanone the reagent to be employed is $(A) K_2 Cr_2 O_7 / H_2 SO_4$ (B) Zn-Hg/HCl (C) SeO₂ (D) Iodine/NaOH **Hints :** In 2-pentanone *ie.*, $CH_3-C-CH_2CH_2CH_3$, CH_3-C- group is present due to which it can show iodoform test. *i.e.*, $\begin{array}{c} \underset{l}{\overset{}{\coprod}} \\ CH_{3}-C-CH_{2}-CH_{2}-CH_{3}-\overset{}{\underbrace{I_{2}}/NaOH} \end{array} \quad CHI_{3}\downarrow + CH_{3}CH_{2}-C$ (Yellow ppt.) 46. Which one of the following formulae does not represent an organic compound? $(B)C_4H_8O_4$ $(C)C_4H_7CIO_4$ $(D) C_{4}H_{0}O_{4}$ $(A) C_4 H_{10} O_4$ Ans: (D) **Hints :** Unsaturation factor = 0, 1, 1, 0.5Hence (D) 47. The catalyst used for olefin polymerization is (A) Ziegler-Natta Catalyst (B) Wilkinson Catalyst (C) Raney nickel catalyst (D) Merrifield resin Ans: (A) **Hints**: $TiCl_3 + (C_2H_5)_3 Al$ 48. The oxidant which is used as an antiseptic is : (B) KMnO₄ (A) KBrO₂ (C) CrO₂ (D) KNO₂ Ans: (B) 49. Which of the following contributes to the double helical structure of DNA (A) hydrogen bond (B) covalent bond (C) disulphide bond (D) van-der Waal's force Ans: (A) 50. The monomer used to produce orlon is (A) CH₂=CHF (B) CH₂=C Cl₂ (C) CH₂=CH Cl (D) CH,=CH-CN Ans: (D) Hints: Orlon or PAN $Monomer \Rightarrow CH_2 = CH - CN$ 51. 1 mole of photon, each of frequency 2500 S⁻¹, would have approximately a total energy of : (A) 1 erg(B) 1 Joule (C)1eV (D)1MeV Ans: (A) **Hints**: Total Energy = Nhv = $6.022 \times 10^{23} \times 6.626 \times 10^{-34}$ J.S. $\times 2500$ s⁻¹ = 9.9 erg ≈ 10 erg In (A) option, it should be 10 erg instead of 1 erg. If n, number of radioatoms are present at time t, the following expression will be a constant : 52. (C) d In n/dt (A) n_t/t (B) $\ln n_t/t$ $(D) t n_{t}$ Ans: (C) **Hints**: $-\frac{dN}{dt} = \lambda N \implies -\frac{d\ln N}{dt} = \lambda$ Hence (C)

53. The following graph shows how $T_{1/2}$ (half-life) of a reactant R changes with the initial reactant concentration a_0 .

(D)3

Hints:
$$t_{\frac{1}{2}} \propto \frac{1}{a^{n-1}}$$

Hence (C)

54. The second law of thermodynamics says that in a cyclic process :

(A) work cannot be converted into heat

(B) heat cannot be converted into work

(C) work cannot be completely converted into heat (D) heat cannot be completely converted into work **Ans : (D)**

Hints : Because 0 K temperature is unattainable.

55. The equilibrium constant (K) of a reaction may be written as :

(A)
$$K = e^{-\Delta G/RT}$$
 (B) $K = e^{-\Delta G^0/RT}$ (C) $K = e^{-\Delta H/RT}$ (D) $K = e^{-\Delta H^0/RT}$

Ans: (B)

Hints: $\Delta G^{\circ} = -RT \ln K$

$$\Rightarrow \frac{\Delta G^{\circ}}{-RT} = \ln K$$
$$\therefore K = e^{-\Delta G^{\circ}/RT}$$

56. For the reaction $SO_2 + \frac{1}{2}O_2 = SO_3$, if we write $K_p = K_c (RT)^x$, then x becomes

(A) -1 (B)
$$-\frac{1}{2}$$
 (C) $\frac{1}{2}$ (D) 1

Ans: (B) Hints: $K_{p} = K_{C}(RT)^{x}$ $x = (\Sigma n_{(g)})_{p} - (\Sigma n_{(g)})_{R}$ $= 1 - \frac{3}{2} = -\frac{1}{2}$

57. If it is assumed that $\frac{235}{92}U$ decays only by emitting α and β particles, the possible product of the decay is :

(A)
$$\frac{^{225}}{^{89}}Ac$$
 (B) $\frac{^{227}}{^{89}}Ac$ (C) $\frac{^{230}}{^{89}}Ac$ (D) $\frac{^{231}}{^{89}}Ac$

Ans: (B)

Hints : New mass no. $= 235 - 2 \times 4 = 227$

New at. no. = $92 - 2 \times 2 + 1 = 92 - 4 + 1 = 89$

58.The time taken for 10% completion of a first order reactin is 20 mins. Then, for 19% completion, the reaction will take
(A) 40 mins(B) 60 mins(C) 30 mins(D) 50 mins

Ans: (A)
Hints:
$$t = \frac{2.303}{\lambda} \log \frac{N_0}{N}$$

$$20 = \frac{2.303}{\lambda} \log \frac{100}{90} \qquad \dots \dots (i)$$
$$t = \frac{2.303}{\lambda} \log \frac{100}{81} \qquad \dots \dots (ii)$$
equation (i) / (ii)
$$\therefore t = 40 \text{ min.}$$

59. Which of the following will decrease the pH of a 50 ml solution of 0.01 M HCl?

(A) addition of 5 ml of 1 M HCl(C) addition of 50 ml of 0.002 M HClAns: (A)

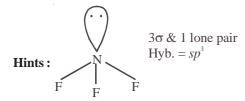
Hints : $50 \text{ ml } 0.01 \text{ M} = 50 \times 0.01 = 0.5 \text{ millimole}$

 $5 \text{ ml } 1 \text{ (M)} \equiv 5 \times 1 = 5 \text{ millimole}$ Total millimoles = 5.5 millimole

Total volume = 55 ml.

Molarity = $\frac{5.5}{55} = 0.1(M) = 10^{-1} (M)$

pH = 1


60. Equal volumes of molar hydrochloric acid and sulphuric acid are neutralised by dilute NaOH solution and x kcal and y kcal of heat are liberated respectively. Which of the following is true?

(A) x=y (B)
$$x = \frac{y}{2}$$
 (C) x=2y (D) none of the above

Ans: (\mathbf{B})

Hints : Enthalpy of 1 g equivalent of strong acid and 1 g equivalent strong base = 13.7 kcal Equal volume contains double eq. of H_2SO_4 than HCl

- 61. Hybridisation of central atom in NF_3 is
 - (A) sp³ (B) sp (C) sp² (D) dsp² Ans: (A)

62. Of the following compounds the most acidic is

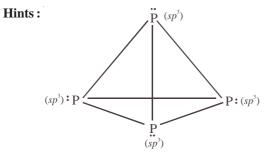
(A) As_2O_3 (B) P_2O_5 (C) Sb_2O_3 (D) Bi_2O_3 Ans: (B)

Hints : In a group as we go downwards, the oxide basic character increases hence maximum acidic oxide is P_2O_5

63. The half-life of a radioactive element is 10 hours. How much will be left after 4 hours in 1 g atom sample? (A) 45.6×10^{23} atoms (B) 4.56×10^{23} atoms (C) 4.56×10^{21} atoms (D) 4.56×10^{20} atoms **Ans : (B)**

Hints: $t_{\frac{1}{2}} = 10 \text{ hr.}$ $K = \frac{0.693}{10}$ $4 = \frac{2.303 \times 10}{0.693} \log \frac{1}{N}$ $\log \frac{1}{N} = \frac{4 \times 0.693}{2.303 \times 10} = 0.12036$ $\log N = -0.12036 = \overline{1.87964}$ $N = 7.575 \times 10^{-1} \text{ g atoms}$ $\therefore \text{ No. of atoms} = 7.575 \times 10^{-1} \times 6.023 \times 10^{23} \text{ atoms} = 4.56 \times 10^{23} \text{ atoms}$

(B) addition of 50 ml of 0.01 M HCl(D) addition of Mg


64.	For the Paschen series the	values of n_1 and n_2 in the express	ion $\Delta E = Rhc\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ ar	e
	(A) $n_1 = 1$, $n_2 = 2, 3, 4$ Ans: (C)	(B) $n_1 = 2, n_2 = 3, 4, 5$	(C) $n_1 = 3$, $n_2 = 4$, 5, 6	(D) $n_1 = 4, n_2 = 5, 6, 7$
	Hints : In Paschen series el	ectron shifting to third shell i.e., r	$n_1 = 3$ to $n_2 = 4, 5, 6, \dots$	
65.		ng condition is the relation $\Delta H =$		stem?
	(A) Constant Pressure		(B) Constant temperature	
	(C) Constant temperature a	nd pressure	(D) Constant temperature, pr	ressure and composition
	Ans:(A)			
	Hints : This is applicable w	when pressure remains constant.		
66.	An organic compound mad	e of C, H and N contains 20% nite	rogen. Its molecular weight is :	
	(A) 70	(B) 140	(C) 100	(D) 65
	Ans: (A)			
		in a molecule minimum one ator	n of N is present	
	<i>i.e.</i> , $20\% \equiv 14$	Molecular weight $=$ 70		
	$100\% \equiv 14 \times 5 = 70$			
67.	-	he state of hybridization of Cu ⁺² is		
	(A) sp^3	$(B) d^3s$	(C) sp^2f	(D) dsp^2
	Ans: (D)			
	Hints : In $[Cu(NH_3)_4]^+$			
	formation)	nuization and shape of the comple	ex is square planar. (One e is exc.	ited from $3d$ to $4p$ during complex
68.		e when Cl ₂ gas is passed through	conc. NaOH solution is :	
	(A) Oxidation	(B) Reduction	(C) Displacement	(D) Disproportionation
	Ans: (D)	, , ,		
		Oxidation		
	Hints: $\int_{1}^{0} Cl_2 + NaOH$ (conc.	& hot) $\operatorname{NaCl}^{-1} + \operatorname{NaCl}^{+5}$	↓ NO + H O	
	Hints:		$10_3 + 11_20$	
		Reduction		
	Hence the reaction is			
69.	"Electron" is an alloy of			
	(A) Mg and Zn	(B) Fe and Mg	(C) Ni and Zn	(D) Al and Zn
	Ans: (A)	$= \mathbf{M}_{\mathbf{x}}(0, 0, 0) + \mathbf{T}_{\mathbf{x}}(1, 0) + \mathbf{T}_{\mathbf{x}}(1, 0)$	50()	
70.		of Mg(95%) + Zn(4.5%) and Cu(0 be restored into original form by		
70.	(A) Chlorine	$(B) BaO_{2}$	$(C) H_2O_2$	$(D) MnO_2$
	Ans: (C)	$(\mathbf{D})\mathbf{D}\mathbf{a}\mathbf{O}_2$	$(C)\Pi_2O_2$	(D) where D_2
		unting is due to PbS which is oxid	lised by H O to form white PbS	0
	$PbS + H_2O_2 \rightarrow PbSO_4$		$1150005911_20_2 = 1010111 + 111001005$	
	(Black) (white)			
71.		ne which has the capability to for	m complex compound and also	possesses oxidizing and reducing
	properties is :			
	$(A) HNO_3$	(B) HNO ₂	(C) HCOOH	(D) HCN
	Ans: (B) $H_{NO_2}^{+3}$			
	Hints : Here oxidation state	e of N lies between -3 to $+5$		

72. Atoms in a P_4 molecule of white phosphorus are arranged regularly in the following way :

(A) at the corners of a cube

(C) at the corners of a tetrahedron Ans: (C)

- (B) at the corners of a octahedron
- (D) at the centre and corners of a tetrahedron

73. Which of the following statements is not correct (A) Silicon is extensively used as a semiconductor (B) Carborundum is SiC (C) Silicon occurs in free state in nature Ans: (C)

(D) Mica contains the element silicon

Hints : Silicon exist in nature in combined state as SiO₂

In aluminium extraction by the Bayer process, alumina is extracted from bauxite by sodium hydroxide at high temperature and 74. pressures :

$$Al_2O_3(s) + 2OH^-(aq) \rightarrow 2Al_2O_2(aq) + H_2O(1)$$

Solid impurities such as Fe_2O_3 and SiO_2 are removed and then $\text{Al}(\text{OH})_4^-$ is reprecipitated :

 $2Al(OH)_4^- \rightarrow Al_2O_3.3H_2O(s) + 2OH^-(aq)$. In the industrial world :

(A) Carbon dioxide is added to precipitate the alumina

- (B) Temperature and pressure are dropped and the supersaturated solution seeded
- (C) Both (A) and (B) are practised
- (D) The water is evaporated

Ans: (B)

Ans: (C)

75. The addition of HBr to 2-pentene gives

(A) 2-bromopentane only

(C) 2-bromopentane and 3-bromopentane

(B) 3-bromopentane only

(D) 1-bromopentane and 3-bromopentane

Hints:
$$\overset{5}{CH_{3}}-\overset{4}{CH_{2}}-\overset{3}{CH_{2}}-\overset{2}{CH_{3}}\overset{1}{H}Br^{-}$$
 $CH_{3}-CH_{2}-CH_{2}-CH_{3}$
 $\overset{}{H}Br^{-}$ $\overset{}{$

76. Ethelene can be separated from acetylene by passing the mixture through : (A) fuming H_2SO_4 (B) pyrogallol (C) ammoniacal Cu₂Cl₂ (D) Charcoal powder Ans: (C) **Hints** : H–C=C–H + Cu₂Cl₂ \rightarrow Cu⁺C⁻ = C⁻Cu⁺ \downarrow Red ppt. $H_2C=CH_2 + Cu_2Cl_2 \rightarrow No. ppt$ 77. Reaction of R OH with R'MgX produces : (B) R'H (A) RH (C) R - R (D) R' - R'Ans: (B) $R \xrightarrow{-\delta} \begin{pmatrix} +\delta & -\delta & +\delta \\ -H & +R' - MgX \longrightarrow R - O - MgX + R' - H \\ \uparrow & \uparrow & \uparrow & (Alkane) \end{pmatrix}$ Hints: Weakly Acts as base acidic H In the compound $HC \equiv C - CH = CH_2$ the hybridization of C-2 and C-3 carbons are respectively : 78. (A) $sp^3 \& sp^3$ (B) $sp^2 \& sp^3$ (C) $sp^2 \& sp$ (D) $sp^{3} \& sp$ Ans: (C) **Hints :** $H-C = C - CH = CH_2$ (Double bond is preferred) $f_{sp} = f_{sp^2}$ The two structures written below represent 79. CH_3 CH, OH -н НО ____ но— —он н— —ОН Н— CH₂OH ĊH, (A) pair of diastereomers (B) pair of enantiomers (C) same molecule (D) both are optically inactive Ans: (C) CH, OH CH₃ $HO \xrightarrow{R} H \xrightarrow{I80^{\circ}} HO \xrightarrow{R} H \xrightarrow{I80^{\circ}} HO \xrightarrow{R} H \xrightarrow{I} I \& II are same Fischer projection because I and I are same Fischer projection because I are same Fischer p$ Hints: CH2OH ĊH, Ι Π Which of the following carbocations will be most stable? 80. (B) $CH_3 - \overset{+}{C}H_3$ (C) $(CH_3)_2 \overset{+}{C}H$ (D) $CH_2 = CH - \overset{+}{C}H_2$ (A) Ph_3C Ans: (A) Hints: Ph-C-Ph| (Highly resonance stabilized) Ph

PHYSICS

SECTION-II

- 1 The displacement x of a particle at time t moving under a constant force is $t = \sqrt{x} + 3$, x in meters, t in seconds. Find the work done by the force in the interval from t = 0 to t = 6 second.
 - A. $t = \sqrt{x} + 3 \Rightarrow x = (t-3)^2 \Rightarrow v = 2(t-3)$ v at t = 0, -6 m/s v at t = 6 sec., 6 m/s change in KE is zero \Rightarrow work done = 0
- 2 Calculate the distance above and below the surface of the earth at which the acceleration due to gravity is the same

A.
$$\frac{GM}{(R+h)^2} = \frac{GM(R-h)}{R^3}$$
on solving we get
$$-Rh + R^2 - h^2 = 0$$
$$h = \frac{-R + \sqrt{R^2 + 4R^2}}{2} = \frac{(\sqrt{5} - 1)R}{2}$$

- 3 A ray of light travelling inside a rectangular glass block of refractive index $\sqrt{2}$ is incident on the glass-air surface at an angle of incidence of 45°. Show that the ray will emerge into the air at an angle of refraction equal to 90°
 - A. Given $C = 45^{\circ}$

4

$$\sin c = \frac{1}{\mu} = \frac{1}{\sqrt{2}} = \sin 45^\circ$$

So the ray will graze the interface after refraction at an angle of 90°

Two cells each of same e.m.f 'e' but of internal resistances r_1 and r_2 are connected in series through an external resistance R. If the potential difference between the ends of the first cell is zero, what will be the value of R in terms r_1 and r_2 ?

A.
$$I = \frac{2e}{r_1 + r_2 + R}$$
; now $e - Ir_1 = 0$
 $\implies r_2 - r_1 + R = 0, R = (r_1 - r_2)$

- 5 At time t = 0, a radioactive sample has a mass of 10 gm. Calculate the expected mass of radioactive sample after two successive mean lives.
 - **A.** Two successive mean lives = $\frac{2}{\lambda}$

No. of nuclei after two mean lives = $N_0 e^{-(\lambda) \left(\frac{2}{\lambda}\right)} = \frac{N_0}{e^2}$

Therefore mass
$$=\frac{10}{e^2}gm$$

CHEMISTRY

SECTION-II

6 Calculate the number of H⁺ ion present in 1 ml of a solution whose pH is 10.

A. pH = 10

 $[H^+] = 10^{-10} M$

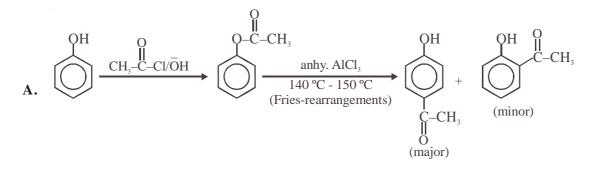
In 1000 ml solution there are $6.023\times 10^{13}\,H^{\scriptscriptstyle +}$ ions

In 1 ml solution there are 6.023×10^{10} H⁺ ions

7 Give the structure of pyro-sulfuric acid. How would you prepare it? What would you observe when colourless HI is added to pyro-sulfuric acid?

A.

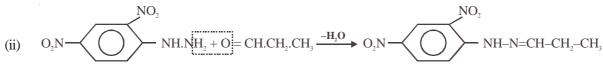
$$O$$
 O
 $HO-S-O-S-OH$ $(H_2S_2O_7)$
 $HO-S-O-S-OH$ $(H_2S_2O_7)$
 O O
(Pyro-sulfuric acid)
(Oleum)


Preparation of $H_2S_2O_7$: $H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7$ (98%) (Oleum)

$$H_2SO_4 + 2HI \longrightarrow 2H_2O + SO_2 + I_2$$

(Colourless) (Violet colour)

- 8 Write with a balanced chemical equation how gypsum is used for the conversion of ammonia into ammonium sulfate without using H_2SO_4 .
 - A. Balanced reaction is


$$2NH_3 + CaSO_4 + CO_2 + H_2O = (NH_4)_2SO_4 + CaCO_2$$

9 Convert phenol to p-hydroxy acetophenone in not more than 2 steps.

10 An organic compound 'A' on treatment with ammoniacal silver nitrate gives metallic silver and produces a yellow crystalline precipitate of molecular formula $C_9H_{10}N_4O_4$, on treatment with Brady's reagent. Give the structure of the organic compound 'A'.

- **A.** Compound (A) is an aldehyde. It should be propanal CH₃CH₂CHO Reactions :
 - (i) $CH_3CH_2CHO \xrightarrow{Ammoniacal}{AgNO_3} Ag \downarrow$ (Tollen's reagent)

(2, 4-Dinitro phenyl hydrazine) (Brady's reagent)

(Yellow ppt. with mol. formula $C_9H_{10}N_4O_4$)

<u>WB-JEE - 2009</u>

BIOLOGY QUESTIONS & ANSWERS

1.	The length of DNA hgav	÷ ^	0	0	
	(A) 78 Å	(B) 78.4 Å	(C) 74.8 Å	(D) 78.2 Å	
	Ans: (D)				
2	Hints : Distance between ad	• •			
2.	Which I_g is produced in prin				
	(A) $I_g A$	(B) $I_g E$	$(C)I_{g}G$	(D) I _g M	
	Ans: (D) Hints: IgM is produced in a	primary response to the given an	tigen		
3.	• •	d Blood Corpuscles of man is	ugen		
	(A) 7.2 µ m	(B) 8.1 μ m	(C) 9.2 μ m	(D) 10.3 µ m	
	Ans: (A)				
	Hints : The average diamete	r of RBC of man is 7.2 μ m			
4.	FAD is electron acceptor du	ring oxidation of which of the fo	llowing?		
	(A) α -ketoglutarate \rightarrow Su	ccinyl CoA	(B) Succinic acid \rightarrow Fumaric	acid	
	(C) Succinyl CoA \rightarrow Succir	nic acid	(D) Fumaric acid \rightarrow Malic ac	id	
	Ans : (B)				
	Hints : FAD is electron acce	eptor during oxidation of succinic	e acid to fumaric acid		
5.	The chemical nature of horn	mones secreted by α & δ cell	ls of pancreas is –		
	(A) Glycolipid	(B) Glycoprotein	(C) Steroid	(D) Polypeptide	
	Ans: (D)				
	Hints : Hormones produced	l by $lpha$ cells (glucagon) and eta	cells (somatostatin) are polypep	otide	
6.	The genetic material of Rabi	ies virus is			
	(A) Double stranded RNA	(B) Single stranded RNA	(C) Double stranded DNA	(D) ssDNA	
	Ans : (B)				
	Hints : The genetic materia				
7.	T-lymphocyte is produced in				
	(A) Bone marrow	(B) Spleen	(C) Pancreas	(D) Thymus	
	Ans: (A)	oduced in hone memory but met	in thumus		
	Hints : T-lymphocyte are produced in bone marrow but mature in thymus				

8.	How many ATP molecules a	re obtained from fermentation o	f 1 molecule of glucose?	
0.	(A) 2	(B)4	(C)3	(D) 5
	Ans: (A)	(2):		
		TP are produced by fermentation	of one molecule of glucose	
9.	Number of nitrogenous bas		for one molecule of glueose	
).	(A) 3	(B)2	(C) 1	(D) 5
	(A) 5 Ans: (A)	(b)2	(C)1	(D) 5
	Hints : Three nitrogenous b	access one found in a coden		
10	•			
10.	A character which is expres			
	(A) Dominant	(B) Recessive	(C) Co-dominant	(D) Epistatic
	Ans: (A)			
	Hints : Dominant gene is ex		1 10	
11.	-	ion chromosomes are most cond		
	(A) Prophase	(B) Metaphase	(C) Anaphase	(D) Telophase
	Ans : (B)			
	Hints : Chromosome is mo			
12.	Which of the following is c			
	(A) Haemophilic-Y chromos		(B) Down's syndrome - 21st	
	(C) Sickle cell anaemia-X ch	romosome	(D) Parkinson's disease-X an	d Y chromosome
	Ans : (B)			
	-	s trisomy of 21st chromosome		
13.	Genetically engineered bac	teria are being employed for pro	duction of	
	(A) Thyroxine	(B) Human insulin	(C) Cortisol	(D) Epinephrine
	Ans: (B)			
	Hints : Human insulin is no	w being produced by genetically	engineered bacteria (E.coli). Th	is insulin is called Humulin
14.	Scientific name of sunflowe	r is		
	(A) Hibiscus rosa-sinensis	(B) Solanum nigram	(C) Oryza sativa	(D) Helianthus annus
	Ans: (D)			
	Hints :Helianthus annuus is	s sunflower		
15.	By which of the following r	nethods, new and better varietie	s of plants can be formed?	
	(A) Selection		(B) Grafting	
	(C) Hybridization		(D) Hybridization followed b	y selection
	Ans: (D)			
	Hints : Better variety of pla	nt can be formed by hybridisatio	on followed by selection.	
16.	Which one is product of ae			
	(A) Malic acid	(B) Ethyl alcohol	(C) Lactic acid	(D) Pyruvic acid
	Ans: (A)			
	Hints : Malic acid is produ	ct of aerobic respiration		
17.	CO_2 acceptor in C_3 cycle is	Ĩ		
	(A) OAA	(B) RUBP	(C) PEP	(D) Malic acid
	Ans: (B)			
		biphosphate) is CO ₂ acceptor in	n C. plant	
18.	Virus was discovered by wh	2	- 3 r	
10.	(A) Stanley	(B) Ivanowsky	(C) Herelle	(D) Beijerinek
	Ans: (B)	(·) - · ····· · · ···· j	(-)	(-)
	Hints : Ivanowsky discover	ed virus		

19.	Electron microscope is base	d on principle of		
	-	(B) Resolution of glass lenses	(C) Magnification of glass len	ses (D) Refraction of light
	Ans: (A)			
	Hints : Electrton microscope	e is based on principle of electron	nagnetic theory	
20.	Citric acid cycle is the alterna	ate name of which of the followin	g?	
	(A) HMP shunt	(B) Glycolysis	(C) TCA cycle	(D) Calvin cycle
	Ans:(C)			
	Hints : Citric acid cycle or K	rebs' cycle or Tricarboxylic acid c	cycle is alternative names.	
21.	Vascular tissue in higher pla	nts develop from which of the fol	llowing :	
	(A) Procambium	(B) Protoderm	(C) Periblem	(D) Cortex
	Ans: (A)			
	Hints : Procambium forms v	ascular tissue in higher plants		
22.	Which element is cause of e	tai etai disease		
	(A) Hg	(B) Pb	(C) Cd	(D) As
	Ans:(C)			
	Hints : Etai etia is caused by	Cd		
23.	Chromosomes can be staine	d with one of the following chem	nicals	
	(A) Acetocarmine	(B) Safranine	(C) Light green	(D) Eosin
	Ans:(A)			
	Hints : Acetocarmine is used	d to stain chromosome		
24.	Which one of the following	is the American Poultry breed		
	(A) Australop	(B) Minovca	(C) Assel	(D) Rhod Island Red
	Ans:(D)			
	Hints : Rhod island Red is th	e American Poultry Breed		
25.	Which part of the human bra	in is largest :		
	(A) Cerebellum	(B) Thlamus	(C) Cerebrum	(D) Medulla
	Ans:(C)			
	Hints : Cerebrum is the large	est part of brain		
26.	When the other floral parts a	re arranged at the base of the gyr	noecium, the flower is called :	
	(A) Hypogynous flower	(B) Perigynous flower	(C) Epigynous flower	(D) Agynous flower
	Ans: (A)			
	Hints : Hypogynous flower			
27.	In a CAM plant the concentr	ation of organic acid :		
	(A) increases during the day		(B) decreases or increases dur	e ,
	(C) increases during night		(D) decreases during any time	
	Ans:(C)			
	-	concentration of organic acid inc	creases during night	
28.	Protein coat of virus is know			
	(A) Capsid	(B) Virion	(C) Virioid	(D) Bacterial wall
	Ans: (A)			
	Hints : Protein coat of virus	-		
29.		ion during Krebs' cycle per gluco		
	(A) 2 ATP molecules	(B) 8 ATP molecules	(C) 36 ATP molecules	(D) 38 ATP molecules
	Ans: (A)			
	Hints : Net yield of 2ATP for	r two Krebs' cycle (1 glucose mol	lecule) is produced at SLP	

30.	Feedback inhibition of enzy	mes is affected by which of the fo	llowing	
	(A) enzyme Ans : (C)	(B) substrate	(C) end products	(D) intermediate end products
	Hints : Feedback inhibition	is affected by end products		
31.	The discovery of gibberellin	is is related with one of the follow	ving :	
	(A) Blast disease of rice		(B) Rust disease of wheat	
	(C) 'Bakanae' disease of rice	•	(D) Early blight disease of po	otato
	Ans: (C)			
	Hints : Bakanae disease of	rice/foolish seedling disease, dise	covered in Japan	
32.	Ornithophily refers to the po	ollination by which of the followi	ng :	
	(A) Insects	(B) Birds	(C) Snails	(D) Air
	Ans: (B)			
	Hints : Pollination by bird is	called ornithophily.		
33.	Which f the following is an e	example of man-made ecosystem?	?	
	(A) Herbarium	(B) Aquarium	(C) Tissue culture	(D) Forest
	Ans: (B)	-		
	Hints : Aquarium is man-ma	ade ecosystem		
34.	-	esent in the following organelle :		
	(A) Peroxysome	(B) Chloroplast	(C) Mitochondrion	(D) Lysosome
	Ans: (C)	· · · · ·		
	Hints : Mitochondrion has r	respiratory enzymes for food oxid	lation	
35.	Pellagra is caused due to de	ficiency of the vitamin :		
	(A) Thiamin	(B) Niacin	(C) Pyridoxin	(D) Biotin
	Ans: (B)			
	Hints : Pellagra is caused by	Niacin (nicotinic acid)		
36.	Which one of the following	Leucocytes transforms into mac	rophages?	
	(A) Eosinophil	(B) Basophil	(C) Monocyte	(D) Lymphocyte
	Ans: (C)		· · · •	
	Hints : Monocytes transform	ns to form macrophages		
37.	Mention the "Incubation Pe	eriod" of P.vivax :		
	(A) 10–14 days	(B) 20–25 days	(C) 30 days	(D) 45 days
	Ans: (A)			
	Hints : Incubation period of	P.vivax is 10-14 days.		
38.	The specific region of Hypo	othalamus, responsible for physic	ological sweat secretion, is	
	(A) Para-ventricular nucleus	(B) Supra-Optic nucleus	(C) Median Eminence	(D) Pars Distalis
	Ans: (A)			
	Hints : Paraventricular nucl	eus of hypothalamus is related to	sweat secretion	
39.	The duration of cardiac cycl	e is :		
	(A) 0.8 sec	(B) 0.8 μ sec	(C) 0.08 sec	(D) 0.008 sec
	Ans: (A)			
	Hints : The duration of card	liac cycle is 0.8 sec		
40.	The intensity levels of whis	pering noise is :		
	(A) $10-15 \text{dB}$	(B) $20-40 \text{dB}$	(C) $45 - 50 dB$	(D) $50 - 55 dB$
	Ans: (A)	、 /	· /	. /

41.	The wildlife Protection Act $(A) = 1074$			1092		1001
	(A) 1974	(B) 1981	(C)	1986	(D)	1991
40	Ans: (A)	Maltaca and other sugar is				
42.	In honey the percentage of (A) 9.2	(B) 8.81	(\mathbf{C})	10.5		11.2
	(A) 9.2 Ans: (B)	(B) 8.81	(C)	10.5	(D)	11.2
43.	Identify the correct type of a	food chain .				
43.	identify the context type of	dead animal \rightarrow blow fly magg	$rots \rightarrow c$	rommon frog → snake		
	(A) Grazing food chain	(B) Detrital food chain	(C)	Decomposer food chain	(D))	Predator food chain
	Ans: (B)	(D) Detritar food chain	(C)	Decomposer rood enam	(D)	Tredator 1000 cham
	. ,	hain. Always starts from dead or	oanic m	aterial		
44.		the Biological species concept ?	-			
	(A) Hybridization	(B) Natural population	(C)	Reproductive isolation	(D)	Gene Pool
	Ans: (A)	() I I I I I I I I I I I I I I I I I I	(-)	I		
		ot applicable to the bilogical spec	cies con	cept.		
45.	DNA sequence that code fo					
	(A) Introns	(B) Exons	(C)	Control regions	(D)	Intervening sequences
	Ans. (B)					
	Hints : Exon is a part of DN	NA which codes for a protein				
46.	Which one of the following	is a systemic insecticide ?				
	(A) Malathion	(B) Parathion	(C)	Endrin	(D)	Furadan
	Ans:(D)					
	Hints : The systemic insect	ticide is parathion.				
47.	The resolving power of a co	mpound microscope will increas	se with -	_		
	(A) decrease in wave leng	th of light and increase in numer	rical ape	erture		
	(B) increase in wave lengt	th of light and decrease in numer	rical ape	erture		
	(C) increase in both wave	length of light and numerical ap	perture			
	(D) decrease in both wave	e length of light and numerical ap	perture			
	Ans: (A)					
	Hints : Decrease in wavele	ength of light and increase in nun	nerical a	aperature is responsible.		
48.	Osteomalacia is a disease ca	aused by the deficiency of —				
	(A) Calciferol	(B) Retinol	(C)	Tocopherol	(D)	Phylloquinone
	Ans: (A)					
	Hints : Osteomalacia is cau	used by calciferol deficiency in b	oody			
49.	Which is the correct sequent blood ?	nce of arrangement of types of V	V.B.C. i	n decreasing order in tern	ns of 1	number per mm ³ of human
	(A) Eosinophils > Basoph	ils > Neutrophils	(B)	Basophils > Eosinophils	>Ne	eutrophils
	(C) Neutrophils > Eosinop	phils > Basophils	(D)	Eosinophils > Neutrophi	ils > E	Basophils
	Ans: (C)					-
50.	Cells in G_0 phase of cell cycl	le				
	(A) Exit cell cycle	(B) Enter cell cycle	(C)	Suspend cell cycle	(D)	Terminate cell cycle
	Ans: (C)					
	Hints : G_0 is the arrest / sus	spended phase of cell cycle.				
51.	Choose the correct non-prot					
	(A) Hydroxyproline	(B) hydroxylysine	(C)	cystine	(D)	γ amino butyric acid
	Ans: (D)					

52.	Seedless Banana is(A) Parthenocarpic fruitAns: (A)	(B)	Multiple fruit	(C)	Drupe fruit	(D)	True fruit
	Hints : It is formed by parthe						
53.	The major site of protein brea			is in t	he		
	(A) Kidney	(B)	Spleen	(C)	Liver	(D)	Bone-Marrow
	Ans: (C)						
54.	Collagen is a						
	(A) Phosphoprotein	(B)	Globulin	(C)	Derived Protein	(D)	Scleroprotein
	Ans: (D)						
~~	Hints : Collagen is scleropr			les1s			
55.	The "Repeating Unit" of gly	-			<u>C1</u>		Calasta
	(A) Fructose	(B)	Mannose	(C)	Glucose	(D)	Galactose
	Ans: (C)		an of alwages				
56.	Hints : Glycogen is a homop Graham's Law is correlated w	-	ler of glucose				
50.	(A) Diffusion	(B)	Osmoregulation	(C)	Osmosis	(D)	Adsorption
	Ans: (A)	(D)	Osmoregulation	(C)	Osmosis	(D)	Ausorption
				1			
	Hints : Graham's law of diff	iusion	rate of diffusion α	1			
				ity of	particle		
57.	Which of the following does					-	
	(A) Acetyl-choline	(B)	Glutamic acid	(C)	Epinephrine	(D)	Tyrosine
	Ans: (D)						
50	Hints : Tyrosine is not a neu				-11		
58.	The generation of excitation					tronor	-i
	(A) Generation of end-plate	-		(B)	Release of calcium from	-	hin
	(C) Formation of cross-line Ans: (B)	Lages	between actin and myosin	(D)	Hydrofysis of ATF to AL)r	
	Hints : During generation of	excit	tation contraction coupling	ralciu	m is attached to troponin		
59.	In AIDS, HIV kills :	CACI	auton contraction coupling (caleiu	in is attached to troponini.		
57.	(A) Antibody molecule	(B)	T _{HELPER} cell	(C)	Bone-Marrow cells	(D)	TCytotoxic cell
	Ans: (B)	(-)		(-)		(-)	- Cytotoxic cen
	Hints: HIV kills helper T cel	lls.					
60.	Generally artificial Pacemak		nsists of one battery made up	of			
	(A) Nickel	(B)	Dry Cadmium	(C)	Photo Sensitive Material	(D)	Lithium
	Ans: (D)		·				
	Hints : Lithium halide batter	y is us	sed in artificial pacemaker				
61.	Goitre can occur as a conseq	uence	e of all the following except	:			
	(A) Iodine deficiency			(B)	Pituitary Adenoma		
	(C) Grave's disease			(D)	Excessive intake of exog	enous	thyroxine
	Ans: (D)						
	Hints: Excessive intake of e	exoge	nous thyroxine will not proc	luce the	he symptoms of Goitre.		
62.	Pernicious anaemia results d	ue to	deficiency of				
	(A) Vit B_1	(B)	VitA	(C)	Vit B ₁₂	(D)	Iron
	Ans: (C)						

	Hints : Pernicious anaemia	is cau	sed by deficiency of vit B ₁₂	or Cya	anocobalamine.		
63.	Which of the following subs	tance	s yield less than 4 Kcal/mo	l whe	n its phosphate bond is h	ydroly	sed
	(A) Creatine Phosphate	(B)	ADP	(C)	Glucose-6-Phosphate	(D)	ATP
	Ans: (C)						
64.	The Genetic deficiency of AI	DH-re	eceptor leads to				
	(A) Diabetes mellitus	(B)	Glycosuria	(C)	Diabetes Insipidus	(D)	Nephrogenic Diabetes
	Ans: (D)		-		_		
	Hints : Nephrogenic diabete	es is d	ue to genetic deficiency of A	DH-1	receptor linked to x-chror	nosom	e.
65.	Out of A-T, G-C pairing, base	es of l	DNA may exist in alternate v	valenc	cy state owing to arranger	nent ca	alled
	(A) Tautomerisational muta	ation		(B)	Analogue substitution		
	(C) Point mutation			(D)	Frameshift mutation		
	Ans: (A)						
	Hints : Tautomers are isomer result in the formed migration			ly inte	erconvert by a chemical r	eaction	n. Commonly this reaction
66.	Cellular Totipotency was first	st den	nonstrated by				
	(A) F.C. Steward	(B)	Robert Hooke	(C)	T.Schwann	(D)	A.V. Leeuwenhock
	Ans: (A)						
67.	Molecular scissors which cut	t DNA	A at specific site is				
	(A) Pectinase			(B)	Polymerase		
	(C) Restriction endo nucle	ase		(D)	Ligase		
	Ans: (C)						
	Hints : Restriction endonuc	lease	is used to cut DNA at specif	fic site	e (molecular scissor).		
68.	SO ₂ pollution is indicated by						
	(A) <i>Desmodium</i> (Grasses)	(B)	Sphagnum (Mosses)	(C)	Usnea (Lichens)	(D)	Cucurbita (Climbers)
	Ans: (C)						
	Hints : Lichon is the indicate	or of a	SO ₂ pollution				
69.	Sporopollenin is chemically						
	(A) Homopolysaccharide	(B)	Fatty substance	(C)	Protein	(D)	Heteropolysaccharide
	Ans : (B)						
	Hints : Sporopollenin is che	emica	lly a fatty substance that per	rsits ii	n fossil state.		
70.	During replication of DNA, O	Okaza	ki fragments are formed in tl	he dire	ection of :		
	(A) $3' \rightarrow 5'$	(B)	$5' \rightarrow 3'$	(C)	$5' \rightarrow 5'$	(D)	$3' \rightarrow 3'$
	Ans: (B)						
	Hints : Okazaki fragments an	e for	med in the direction of $5' \rightarrow$	3′, tł	ney join after wards.		
71.	The chemical nature of chron	natin	is as follows :				
	(A) Nucleic acids			(B)	Nucleid acid & histone	proteii	18
	(C) Nucleic acids, histone	& no	n histone proteins	(D)	Nucleic acids & non-his	stone p	proteins
	Ans: (C)						
	Hints : Chromatin = nucleic	acid	+ histone proteins + non - hi	stone	proteins.		
72.	Choose the minor carp from t	he fo	llowing :				
	(A) Cyprinus carpio			(B)	Labeo calbasu		
	(C) Labeo bata			(D)	Ctenopharyngodon ide	ella	
	Ans: (C)						
	Hints : Laveo bata is a mino	r carp	o., it size is smaller and grow	th rat	e slower.		
73.	The scientific name of Asian	tiger	mosquito :				
	(A) Aedes aegypti	(B)	Aedes albopictus	(C)	Aedes taeniorhynchus	(D)	Aedes albolineatus

	Ans: (B)							
	Hints : Aedes albopictus is an Asian tiger mosquito.							
74.	The size of filtration slits of		• •					
	(A) 10 nm	(B)	15 nm	(C)	20 nm	(D)	25 nm	
	Ans: (D)							
	Hints : Average size of filte	eration	slit of glomerulus is 25 nm.					
75.	Ornithorhynchus is an exam	nple of	:					
	(A) Dinosaur	(B)	Monotreme mammal	(C)	Marsupial mammal	(D)	Eutherian mammal	
	Ans: (B)							
	Hints: Ornithorhynchus	Duckbi	lled platypus) is monotrem	e.				
76.	Scirpophage incertulus is a	n exan	ple of :					
	(A) Monophagus pest	(B)	Diphagus pest	(C)	Oligophagus pest	(D)	Polyphagus pest	
	Ans: (A)							
	Hints : Scrirpophaga ince	rtelus	is a monophagus pest that	feeds	on a single plant.			
77.	Which one of the following	ances	tors of man first time showe	ed bip	edal movement?			
	(A) Australopithecus	(B)	Cro-magnon	(C)	Java apeman	(D)	Peking man	
	Ans: (A)							
78.	Trophic levels in ecosystem	n is for	med by :					
	(A) only bacteria			(B)	only plants			
	(C) only herbivores			(D)	Organisms linked in foo	d chai	n	
	Ans: (D)							
	Hints : Trophic levels in ec	•		inked	in the food chain.			
79.	The life span of Honey bee							
	(A) $3-4$ months	(B)	1-2 months	(C)	6-7 months	(D)	10-12 months	
	Ans: (A)							
80.	Name of a gaseous plant ho							
	(A) IAA	(B)	Gibberellin	(C)	Ethylene	(D)	Abscisic acid	
	Ans.: (C)							
	Hints : Ethylene is a gased	ous pla	nt hormone that acts for rip	ening				

For more files visit www.educationobserver.com/forum

BIOLOGY

SECTION-II

- Name one each specific plant hormone which perform the following exclusive physiological roles :
 a. Maintenance of apical dominance of shoots
 b. Internodal elongation
 - c. Enhancement of cell division

- d. Change of sex in flowers
- A. a) Apical dominance of shoot is maintained by Auxin
 - b) Internodal elongation by gibberellin
 - c) Enhancement of cell division by cytokinin
 - d) Change of sex in flowers G.A/Auxin/CK
- 2. Mention the function of the enzyme aconitase in Kreb's cycle

A. Citrate
$$\xrightarrow{Aconitase}, Fe^{2+}$$
 Cis aconitate
Cis aconitate $\xrightarrow{Aconitase}$ Isocitrate

3. Write down the scientific names of potato and tomato plants

А.	Name	Scientific name	family		
	Patato	Solanum tuberosum	Solanaceae		
	Tomato	Lycopersicum esculentum	Solanaceae		

- 4. Why honey bee is regarded as social insect?
 - A. In bee hive labour based division in found, each having specific function. Queen bee lays eggs, while sterile females act as workers to perform all works of the hive including collection of nectar, formation of honey, rearing of young etc. Drone or male bees only act during the process of mating to provide spermatozoa
- 5. What are biopesticides ? Give two examples.
 - A. Biopestisides are those biological agents that are used for control of weeds, insects and pathogens
 - a) Nicotine-tobaco
 - b) Azadirachtin-Neem
- 6. What is Biosphere Reserve? State the main functions of biosphere reserve
 - A. Biosphere Reserve are multipurpose protected areas which are meant for preserving genetic diversity. It has 3 zones.
 - 1) Core or Natural zone
 - 2) Buffer zone
 - 3) Transition zone or Manupulation zone.
 - Function a) Restoration
 - b) Conservation
 - c) Development
 - d) Monitoring
 - e) Education and Research

- 7. What are stem cells ?
 - A. Stem cells are cells found in most, if not all, multicellular orginism. They are characterised by the ability to renew themselves through mitotic cell division and differentiating into diverse range of specialised cell types. Example : Bone marrow cells
- 8. How ADH increases Blood Pressure?
 - **A.** ADH hormone is associated with water absorption by kidney. Hyposecretion of ADH leads to low water absorption and volume of urine is increased so. vol of blood will decrease and finally BP will decrease. More ADH leads to increased blood volume and consequently high B.P. ADH also related to vasoconstriction leading to high B.P.
- 9. Name two end-products of β -oxidation of fatty acid
 - A. Two products of β Oxidation
 - a) Acetyl CoA
 - b) FADH₂
 - c) NADH,
- 10. Mention of transformation event of immature sperm to matured spermatozoa. State the specific location of Sertoli cell within Testis.
 - **A.** Cell membrane and nuclear membrane start dissociation. Golgi structure modifies to form acrosome cap to contain the enzymes. Mitochondria increases in number and arrange in the middle piece. Distal centriole acts as basal body to give rise to flagella.

<u>WB-JEE - 2009</u>

MATHEMATICS QUESTIONS & ANSWERS

If C is the reflecton of A (2, 4) in x-axis and B is the reflection of C in y-axis, then |AB| is 1. (B) $2\sqrt{5}$ (C) $4\sqrt{5}$ (D) 4 (A) 20 Ans: (C) **Hints**: $A \equiv (2,4)$; $C \equiv (2,-4)$; $B \equiv (-2,-4)$ (2, 4) $|AB| = \sqrt{(2 - (-2))^2 + (4 - (-4))^2} = \sqrt{4^2 + 8^2}$ $=\sqrt{16+64} = \sqrt{80} = \sqrt{16\times5} = 4\sqrt{5}$ 0, The value of $\cos 15^\circ \cos 7\frac{1^\circ}{2}\sin 7\frac{1^\circ}{2}$ is C(2, -4)2. (A) $\frac{1}{2}$ (C) $\frac{1}{4}$ (B) $\frac{1}{\circ}$ (D) Ans: (B) **Hints**: $\cos 15^{\circ} \cos 7\frac{1}{2}^{0} \sin 7\frac{1}{2}^{0} = \frac{1}{2} \left(2\sin 7\frac{1}{2}^{0} \cos 7\frac{1}{2}^{0} \right) .(\cos 15^{\circ})$ $\frac{1}{2}(\sin 15^\circ)(\cos 15^\circ) = \frac{1}{4}(2\sin 15^\circ\cos 15^\circ) = \frac{1}{4} \times \sin 30^0 = \frac{1}{8}$ The value of integral $\int_{-1}^{1} \frac{|x+2|}{x+2} dx$ is 3. (B) 2 (C) 0 (A) 1 (D) -1 Ans: (B) **Hints:** $I = \int_{-1}^{1} \frac{|x+2|}{x+2} dx$, $x+2 = v \implies dx = dv$ $\therefore I = \int_{1}^{3} \frac{|v|}{v} dv = \int_{1}^{3} \frac{v}{v} dv = \int_{1}^{3} dv = 2$

4. The line y = 2t² intersects the ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 in real points if
(A) $|\mathbf{i}| \le 1$ (B) $|\mathbf{i}| < 1$ (C) $|\mathbf{i}| > 1$ (D) $|\mathbf{i}| \ge 1$
Ans: (A)
Hints: $\frac{x^2}{9} + \frac{y^2}{4} = 1$; $y = 2t^2$
 $\frac{x^2}{9} + \frac{4t^4}{4} = 1 \Rightarrow \frac{x^2}{9} + t^4 = 1 \Rightarrow x^2 = 9(1 - t^4)$
 $x^2 \ge 0 \Rightarrow 9(1 - t^4) \ge 0 \Rightarrow t^4 - 1 \le 0$
 $\Rightarrow (t^2 - 1)(t^2 + 1) \le 0$
 $\Rightarrow t^2 - 1 \le 0$ ($\because t^2 + 1 > 0$)
 $\Rightarrow |t| \le 1$
5. General solution of sin x + cosx = $\min_{a \in IR} \{1, a^2 - 4a + 6\}$ is
(A). $\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$ (B) $2n\pi + (-1)^n \frac{\pi}{4}$ (C) $n\pi + (-1)^{n+1} \frac{\pi}{4}$ (D) $n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$
Ans: (D)
Hints: $\sin x + \cos x = \min_{a \in IR} \{1, a^2 - 4a + 6\}$
 $a^2 - 4a + 6 = (a - 2)^2 + 2$ $\therefore \min_{a \in IR} (a^2 - 4a + 6) = 2$
 $\therefore \min_{a \in IR} \{1, a^2 - 4a + 6\} = \min\{1, 2\} = 1$
 $\sin x + \cos x = 1 \Rightarrow \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = \frac{1}{\sqrt{2}}$
 $\Rightarrow \sin\left(x + \frac{\pi}{4}\right) = \sin \frac{\pi}{4}, \Rightarrow x + \frac{\pi}{4} = n\pi + (-1)^n \cdot \frac{\pi}{4}$
 $\Rightarrow x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$
6. If A and B square matrices of the same order and AB = 3I, then A⁺ is equal to

(A) 3B (B) $\frac{1}{3}$ B (C) 3B⁻¹ (D) $\frac{1}{3}$ B⁻¹

Ans: (B)

Hints: AB = 3I, A⁻¹.AB = 3.A⁻¹I
$$\Rightarrow$$
 B = 3A⁻¹ \Rightarrow A⁻¹ = $\frac{1}{3}$ B

The co-ordinates of the focus of the parabola described parametrically by $x = 5t^2 + 2$, y = 10t + 4 are 7. (A) (7,4) (B) (3.4) (C) (3,-4) (D) (-7,4) Ans: (A) Ans: (A) Hints: $x = 5t^2 + 2$; y = 10t + 4, $\left(\frac{y-4}{10}\right)^2 = \left(\frac{x-2}{5}\right)$ or, $(y-4)^2 = 20(x-2)$ (7, 4)(2, 4)> x For any two sets A and B, A - (A - B) equals 8. (C) $A \cap B$ (D) $A^{C} \cap B^{C}$ (A) B (B) A - BAns: (C) **Hints:** $A - (A - B) = A - (A \cap B^{c}) = A \cap (A \cap B^{c})^{c} = A \cap (A^{c} \cup B) = (A \cap A^{c}) \cup (A \cap B) = A \cap B$ If $a = 2\sqrt{2}$, b = 6, $A = 45^{\circ}$, then 9. (A) no triangle is possible (B) one triangle is possible (C) two triangle are possible (D) either no triangle or two triangles are possible Ans: (A) **Hints**: $a = 2\sqrt{2}$; b = 6; $A = 45^{\circ}$ $\frac{a}{\sin A} = \frac{b}{\sin B} \Longrightarrow \sin B = \frac{b}{a} \sin A$ \Rightarrow sinB = $\frac{6}{2\sqrt{2}}$ sin45° = $\frac{3}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{3}{2} \Rightarrow$ No triangle is possible since sinB > 1 10. A Mapping from IN to IN is defined as follows : $f: IN \rightarrow IN$ $f(n) = (n+5)^2, n \in IN$ (IN is the set of natural numbers). Then (A) f is not one-to-one (B) f is onto (C) f is both one-to-one and onto (D) f is one-to-one but not onto Ans: (D) **Hints**: $f: IN \rightarrow IN$; $f(n) = (n+5)^2$ $(n_1 + 5)^2 = (n_2 + 5)^2$ $\implies (n_1 - n_2) (n_1 + n_2 + 10) = 0$ \Rightarrow n₁ = n₂ \rightarrow one-to-one There does not exist $n \in IN$ such that $(n + 5)^2 = 1$ Hence f is not onto

In a triangle ABC if sin A sin $B = \frac{ab}{c^2}$, then the triangle is (A) equilateral (B) isosceles (C) right angled (D) obtuse angled Ans: (C)

Hints :
$$\sin A \sin B = \frac{ab}{c^2}$$

11.

$$\Rightarrow c^{2} = \frac{ab}{\sin A \sin B} = \left(\frac{a}{\sin A}\right) \left(\frac{b}{\sin B}\right)$$
$$\Rightarrow c^{2} = \left(\frac{c}{\sin C}\right)^{2} \Rightarrow \sin^{2}C = 1 \Rightarrow \sin C = 1 \Rightarrow C = 90^{\circ}$$

12.
$$\int \frac{\mathrm{d}x}{\sin x + \sqrt{3}\cos x} \text{ equals}$$

(A)
$$\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}-\frac{\pi}{6}\right)\right|+c$$
 (B) $\frac{1}{2}\ln\left|\tan\left(\frac{x}{4}-\frac{\pi}{6}\right)\right|+c$ (C) $\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{6}\right)\right|+c$ (D) $\frac{1}{2}\ln\left|\tan\left(\frac{x}{4}+\frac{\pi}{3}\right)\right|+c$

where c is an arbitrary constant **Ans**: (C)

Hints:
$$\int \frac{dx}{\sin x + \sqrt{3} \cos x} = \int \frac{dx}{2\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right)} = \frac{1}{2}\int \frac{dx}{\sin\left(x + \frac{\pi}{3}\right)}$$
$$= \frac{1}{2}\int \csc\left(x + \frac{\pi}{3}\right) dx = \frac{1}{2}\log\left|\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)\right| + c$$
$$= \frac{1}{2}\ln\left|\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)\right| + c$$
The value of $\left(1 + \cos\frac{\pi}{6}\right)\left(1 + \cos\frac{\pi}{3}\right)\left(1 + \cos\frac{2\pi}{3}\right)\left(1 + \cos\frac{7\pi}{6}\right)$ is

(A)
$$\frac{3}{16}$$
 (B) $\frac{3}{8}$ (C) $\frac{3}{4}$ (D) $\frac{1}{2}$

Ans: (A)

13.

Hints:
$$\left(1 + \cos\frac{\pi}{6}\right) \left(1 + \cos\frac{\pi}{3}\right) \left(1 + \cos\frac{2\pi}{3}\right) \left(1 + \cos\frac{7\pi}{6}\right)$$

= $\left(1 + \frac{\sqrt{3}}{2}\right) \left(1 + \frac{1}{2}\right) \left(1 - \frac{1}{2}\right) \left(1 - \frac{\sqrt{3}}{2}\right) = \left(1 - \frac{3}{4}\right) \left(1 - \frac{1}{4}\right) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$

14. If
$$P = \frac{1}{2} \sin^2 \theta + \frac{1}{3} \cos^2 \theta$$
 then
(A) $\frac{1}{3} \le P \le \frac{1}{2}$ (B) $P \ge \frac{1}{2}$ (C) $2 \le P \le 3$ (D) $-\frac{\sqrt{13}}{6} \le P \le \frac{\sqrt{13}}{6}$
Ans: (A)
Hints: $P = \frac{1}{2} \sin^2 \theta + \frac{1}{3} \cos^2 \theta = \frac{1}{2} \sin^2 \theta + \frac{1}{3} (1 - \sin^2 \theta) = \frac{1}{3} + \frac{1}{6} \sin^2 \theta$
 $0 \le \sin^2 \theta \le 1 \Rightarrow \frac{1}{3} \le \frac{1}{3} + \frac{1}{6} \sin^2 \theta \le \frac{1}{3} + \frac{1}{6}$
 $\Rightarrow \frac{1}{3} \le P \le \frac{1}{2}$
15. A positive acute angle is divided into two parts whose tangents are $\frac{1}{2}$ and $\frac{1}{3}$. Then the angle is
(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{5}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$
Ans: (A)
Hints: Angle $\theta = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \tan^{-4} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} \right)$
 $= \tan^{-1} \left(\frac{5/6}{5/6} \right) = \tan^{-1}(1) = \pi/4$
16. If $f(x) = f(a - x)$ then $\int_{0}^{a} xf(x) dx$ is equal to
(A) $\int_{0}^{a} f(x) dx$ (B) $\frac{a^2}{2} \int_{0}^{a} f(x) dx$ (C) $\frac{a}{2} \int_{0}^{a} f(x) dx$ (D) $-\frac{a}{2} \int_{0}^{a} f(x) dx$
Ans: (C)
Hints: $f(x) = f(a - x)$, $I = \int_{0}^{a} xf(x) dx = \int_{0}^{a} (a - x)f(a - x) dx$
 $= \int_{0}^{a} (a - x)f(x) dx = a \int_{0}^{a} f(x) dx - 1$
 $\therefore 2I = a \int_{0}^{a} f(x) dx \Rightarrow I = \frac{a}{2} \int_{0}^{a} f(x) dx$

17. The value of
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+4)(x^{2}+9)}$$
 is
(A) $\frac{\pi}{60}$ (B) $\frac{\pi}{20}$ (C) $\frac{\pi}{40}$ (D) $\frac{\pi}{80}$
Ans: (A)
Hints: $\int_{0}^{\infty} \frac{dx}{(x^{2}+4)(x^{2}+9)} = \int_{0}^{\pi/2} \frac{\sec^{2}\theta}{(\tan^{2}\theta+4)(\tan^{2}\theta+9)} d\theta$ (putting x = tan θ)
 $= \frac{1}{5} \int_{0}^{\pi/2} \frac{(9+\tan^{2}\theta)-(4+\tan^{2}\theta)\sec^{2}\theta}{(\tan^{2}\theta+4)(\tan^{2}\theta+9)} d\theta$
 $= \frac{1}{5} \left[\int_{0}^{\pi/2} \frac{\sec^{2}\theta}{4+\tan^{2}\theta} d\theta - \int_{0}^{\pi/2} \frac{\sec^{2}\theta}{9+\tan^{2}\theta} d\theta \right]$
 $= \frac{1}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{\tan\theta}{2} \right) \right]_{0}^{\pi/2} - \frac{1}{3} \tan^{-1} \left(\frac{\tan\theta}{3} \right) \right]_{0}^{\pi/2} \right]$
 $= \frac{1}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{\tan\theta}{2} \right) \right]_{0}^{\pi/2} - \frac{1}{3} \tan^{-1} \left(\frac{\tan\theta}{3} \right) \right]_{0}^{\pi/2} \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{1}{6} = \frac{\pi}{60}$
18. If $I_{1} = \int_{0}^{\pi/4} \sin^{2}x dx$ and $I_{2} = \int_{0}^{\pi/4} \cos^{2}x dx$, then,
(A) $I_{1} = I_{2}$ (B) $I_{1} < I_{1}$ (C) $I_{1} > I_{2}$ (D) $I_{2} = I_{1} + \pi/4$
Ans: (B)
Hints: $I_{1} = \int_{0}^{\pi/4} \sin^{2}x dx$; $I_{2} = \int_{0}^{\pi/4} \cos^{2}x dx$
 $I_{1} > I_{1}$, i.e. $I_{1} < I_{2}$ (B) $\frac{1}{12a}$ (C) $\frac{4\sqrt{2}}{3a}$ (D) $\frac{3a}{4\sqrt{2}}$

Ans: (C)
Hints:
$$y = a \sin^3 t$$
; $x = a \cos^3 t$
 $\frac{dy}{dt} = 3a\sin^2 t \cos t$; $\frac{dx}{dt} = -3 a \cos^2 t \sin t$
 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3a\sin^2 t \cos t}{-3a\cos^2 t \sin t} = -\frac{\sin t}{\cos t} = -\tan t$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-\tan n\right) = \frac{d}{dt}\left(-\tan n\right) \frac{dt}{dx}$$

$$= \left(-\sec^{2} t\right) \frac{1}{-3a\cos^{2} t \sin t} = \frac{1}{+3a\cos^{4} t \sin t}$$

$$\frac{d^{2}y}{dx^{2}} \bigg|_{u=\pi/4} = \frac{1}{3a\left(\frac{1}{\sqrt{2}}\right)^{4}\left(\frac{1}{\sqrt{2}}\right)} = \frac{\left(\sqrt{2}\right)^{5}}{3a} = \frac{4\sqrt{2}}{3a}$$
20. The smallest value of 5 cos 0 + 12 is
(A) 5 (B) 12 (C) 7 (D) 17
Ans : (C)
Hints : 5 cos 0 + 12 , -1 ≤ cos 0 ≤ 1
= -5 < 5 cos 0 < 5
∴ 5 cos 0 + 12 ≥ -5 + 12 ⇒ 5 cos 0 + 12 ≥ 7
21. The general solution of the differential equation $\frac{dy}{dx} = e^{y+x} + e^{y-x}$ is
(A) $e^{-y} = e^{x} - e^{+x} + c$ (B) $e^{-y} = e^{-x} - e^{x} + c$ (C) $e^{-y} = e^{x} + e^{-x} + c$ (D) $e^{y} = e^{x} + e^{-x} + c$
where c is an arbitrary constant
Ans : (B)
Hints : $e^{-y} dy = (e^{x} + e^{-x}) dx$ Integrate
 $-e^{-y} = e^{x} - e^{-x} + c \cdot e^{-y} = e^{-x} - e^{+x} + c$
(D) $(r+2)!$
Ans : (A)
Hints : (a) (Hints : $(a+1)(n+2)$($n+r$)
 $= \frac{(n+r)!}{n!r!} r! = r! n^{n+r}C_{n}$
23. The integrating factor of the differential equation $x\log x \frac{dy}{dx} + y = 2\log x$ is given by
(A) e^{x} (B) $\log x$ (C) $\log (\log x)$ (D) x
Ans: (B)
Hints; $\frac{dy}{dx} + \frac{1}{x\log x} y = \frac{2}{x}$
If $= e^{\int x\log x} d^{x}} = e^{\int \frac{1}{y} \frac{1}{y} \frac{d^{y}}{dx}}$

If $x^2 + y^2 = 1$ then 24. (A) $yy'' - (2y')^2 + 1 = 0$ (B) $yy'' + (y')^2 + 1 = 0$ (C) $yy'' - (y')^2 - 1 = 0$ (D) $yy'' + (2y')^2 + 1 = 0$ Ans: (B) Hints: 2x + 2yy' = 0 $\mathbf{x} + \mathbf{y}\mathbf{y}' = \mathbf{0}$ $1 + yy'' + (y')^2 = 0$ 25. If $c_0, c_1, c_2, \ldots, c_n$ denote the co-efficients in the expansion of $(1 + x)^n$ then the value of $c_1 + 2c_2 + 3c_3 + \ldots + nc_n$ is (D) $(n+2) 2^{n-1}$ (A) $n.2^{n-1}$ (B) $(n+1)2^{n-1}$ (C) $(n+1) 2^n$ Ans. (A) **Hints:** $(1+x)^n = c_0 + xc_1 + x^2c_2 + \dots x^nc_n$ $n(1+x)^{n-1} = c_1 + 2xc_2 + \dots + nx^{n-1}c_n$ Put x = 1 $n(2)^{n-1} = c_1 + 2c_2 + 3c_2 \dots + nc_n$ A polygon has 44 diagonals. The number of its sides is 26. (A) 10 (B) 11 (C) 12 (D) 13 Ans: (B) **Hints** : ${}^{n}C_{2} - n = 44$ $\frac{n(n-1)}{2} - n = 44$ $n\left[\frac{n-1}{2}-1\right] = 44$ n(n-3) = 88 $n(n-3) = 11 \times 8$ n = 11If α , β be the roots of $x^2 - a(x - 1) + b = 0$, then the value of $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - a\beta} + \frac{2}{a + b}$ 27. (A) $\frac{4}{a+b}$ (B) $\frac{1}{a+b}$ (C) 0 (D) -1 Ans: (C) **Hints :** $x^2 - ax = a + 3$ $\alpha\beta = a + b$ $\alpha + \beta = a$ $\alpha^2 - a\alpha = -(a+b)$ $\beta^2 - a\alpha = -(a+b)$ $-\frac{1}{a+b} - \frac{1}{a+b} + \frac{2}{a+b} = 0$ The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is 90°. The eccentricity of 28. the ellipse is _

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{\sqrt{3}}$ (C) $\sqrt{\frac{2}{3}}$ (D) $\sqrt{\frac{1}{2}}$

Ans : (D)
Hints :
$$\frac{\pi}{de} = \tan \frac{\pi}{4}$$

 $b = ae \Rightarrow \frac{b}{a} = e$
 $e^{2} = 1 - \frac{b^{2}}{a^{2}}$
(0, b)
 $e^{2} = 1 - \frac{b^{2}}{a^{2}}$
(0, b)
 $e^{2} = 1 - e^{2}$
29. The order of the differential equation $\frac{d^{2}y}{dx^{2}} = \sqrt{1 - (\frac{dy}{dx})^{2}}$ is
(A) 3 (B) 2 (C) 1 (D) 4
Ans : (B)
30. The sum of all real rots of the equation $|x - 2|^{2} + |x - 2| - 2 = 0$
(A) 7 (B) 4 (C) 1 (D) 5
Ans : (B)
Hints : Put $|x - 2| = y$
 $y^{4} + y - 2 = 0$
(y - 1) (y + 2) = 0
 $y = 1$ (Not possible)
 $x - 2 + 1$
 $x = 3, 1$
Sum = 4
31. If $\int_{-1}^{4} f(x)dx = 4$ and $\int_{2}^{4} (3 - f(x))dx = 7$ then the value of $\int_{-1}^{2} f(x)dx$
(A) -2 (B) 3 (C) 4 (D) 5
Ans : (D)
Hints : $\int_{-1}^{4} f(x)dx = 4$
 $3(4 - 2) - \int_{2}^{4} f(x)dx = 4$
 $3(4 - 2) - \int_{2}^{4} f(x)dx = 4$
 $\frac{3}{4} - 2 - \int_{2}^{4} f(x)dx = 4$

32. For each $n \in N$, $2^{3n} - 1$ is divisible by (A) 7 (B) 8 (C) 6 (D) 16 where N is a set of natural numbers Ans: (A) **Hints**: $2^{3n} = (8)^n = (1+7)^n = 1 + {^nC_17} + {^nC_27^2} \dots + {^nC_n7^n}$ $2^{3n} - 1 = 7[{}^{n}C_{1} + {}^{n}C_{2}7 + \dots]$ The Rolle's theorem is applicable in the interval $-1 \le x \le 1$ for the function 33. (A) f(x) = x(B) $f(x) = x^2$ (C) $f(x) = 2x^3 + 3$ (D) f(x) = |x|Ans: (B) **Hints:** $f(x) = x^2$ and f(1) = f(-1) for f(x) = |x| but at x = 0, f(x) = |x| is not differentiable hence (B) is the correct option. f(1) = 1 = f(-1)34. The distance covered by a particle in t seconds is given by $x = 3 + 8t - 4t^2$. After 1 second velocity will be (A) 0 unit/second (B) 3 units/second (C) 4 units/second (D) 7 units/second Ans: (A) **Hints :** $v = \frac{dx}{dt} = 8 - 8t$ t = 1, v = 8 - 8 = 0If the co-efficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ be same, then the value of 'a' is 35. (B) $\frac{7}{3}$ (C) $\frac{7}{\alpha}$ (A) $\frac{3}{7}$ (D) $\frac{9}{7}$ Ans: (D) Hints: $(3 + ax)^9 = {}^9C_03^9 + {}^9C_13^8(ax) + {}^9C_23^7(ax)^2 + {}^9C_33^6(ax)^3$ ${}^9C_23^7a^2 = {}^9C_33^6a^3$ $\frac{9}{7} = a$ The value of $\left(\frac{1}{\log_2 12} + \frac{1}{\log_4 12}\right)$ is 36. (B) $\frac{1}{2}$ (A) 0 (C) 1 (D) 2 Ans: (C) **Hints**: $\log_{12} 3 + \log_{12} 4 = \log_{12} 12 = 1$ 37. If $x = \log_a bc$, $y = \log_b ca$, $z = \log_c ab$, then the value of $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ will be (A) x + y + z(B) 1 (C) ab + bc + ca(D) abc Ans: (B) **Hints**: $1 + x = \log_a a + \log_a bc = \log_a abc$ $\frac{1}{1+x} = \log_{abc} a$, Similarly $\frac{1}{1+y} = \log_{abc} b$ $\frac{1}{1+z} = \log_{abc} c, \text{ Ans.} = \log_{(abc)} abc = 1$

38. Using binomial theorem, the value of (0.999)³ correct to 3 decimal places is (A) 0.999 (B) 0.998 (C) 0.997 (D) 0.995 Ans: (C) **Hints**: ${}^{3}C_{0} - {}^{3}C_{1}(.001) + {}^{3}C_{2}(.001)^{2} - {}^{3}C_{3}(.001)^{3}$ = 1 - .003 + 3(.000001) - (.000000001) = 0.99739. If the rate of increase of the radius of a circle is 5 cm/.sec., then the rate of increase of its area, when the radius is 20 cm, will be (D) 400π (A) 10π **(B)** 20π (C) 200π Ans: (C) **Hints :** $A = \pi r^2$ $\frac{dr}{dt} = 5$ $\frac{\mathrm{dA}}{\mathrm{dt}} = 2\pi r \frac{\mathrm{dr}}{\mathrm{dt}} = 2\pi 20(5)$ $= 200 \,\pi$ 40. The quadratic equation whose roots are three times the roots of $3ax^2 + 3bx + c = 0$ is (A) $ax^2 + 3bx + 3c = 0$ (B) $ax^2 + 3bx + c = 0$ (C) $9ax^2 + 9bx + c = 0$ (D) $ax^2 + bx + 3c = 0$ Ans: (A) Hints: $3a\alpha^2 + 3b\alpha + c = 0$ $x = 3\alpha \Longrightarrow \alpha = \frac{x}{3}$ $3a\frac{x^2}{9} + 3b.\frac{x}{3} + c = 0$ $ax^2 + 3bx + 3c = 0$ Angle between $y^2 = x$ and $x^2 = y$ at the origin is 41. (A) $2\tan^{-1}\left(\frac{3}{4}\right)$ (B) $\tan^{-1}\left(\frac{4}{3}\right)$ (C) $\frac{\pi}{2}$ (D) Ans : (C) Hins: Angle between axes (since co-ordinate axes are the tangents for the given curve). In triangle ABC, a = 2, b = 3 and $\sin A = \frac{2}{3}$, then B is equal to 42. (A) 30° (B) 60° (C) 90° (D) 120° Ans: (C) **Hints:** $\frac{a}{\sin A} = \frac{b}{\sin B}$ $\sin B = \frac{b}{a} \cdot \sin A = \frac{3}{2} \cdot \frac{2}{3} = 1$ $B = \frac{\pi}{2}$

43.
$$\int_{0}^{1000} e^{x-[x]} \text{ is equal to}$$
(A) $\frac{e^{1000}-1}{e-1}$ (B) $\frac{e^{1000}-1}{1000}$ (C) $\frac{e-1}{1000}$ (D) $1000 (e-1)$
Ans : (D)
Hins : $I = 1000 \int_{0}^{1} e^{x-[x]}$
 $= 1000 \int_{0}^{1} e^{x} dx = 1000 (e^{x})_{0}^{1} = 100 (e-1)$
Period of function is 1

44. The coefficient of x^n , where n is any positive integer, in the expansion of $(1 + 2x + 3x^2 + \infty)^{1/2}$ is

(A) 1 (B)
$$\frac{n+1}{2}$$
 (C) $2n+1$ (D) $n+1$

Ans: (A)

$$s = 1 + 2x + 3x^{2} \dots \infty$$

Hints:
$$\frac{xs = x + 2x^{2} + \dots \infty}{s(1-x) = 1 + x + x^{2} + \dots \infty}$$
$$s = \frac{1}{(1-x)^{2}}$$
$$f(x) = \frac{1}{1-x}, \quad f(x) = (1-x)^{-1} = 1 + x + x^{2} + x^{3} \dots \infty = 1$$

45. The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 + y^2 = a^2$ intersect at two distinct points if (A) a < 2 (B) 2 < a < 8 (C) a > 8 (D) a = 2Ans. (B) Hints: $C_1(5, 0) r_1 = \sqrt{25 - 16} = 3$ $C_2(0, 0) r_2 = a$ $r_1 \& r_2 < C_1 C_2 < r_1 + r_2$ $|a - 3| < \sqrt{25} < a + 3$ |a - 3| < 5 < a + 3 -5 < a - 3 < 5 2 < a -2 < a < 82 < a < 8

46.
$$\int \frac{\sin^{4} x}{\sqrt{1-x^{2}}} dx \text{ is equal to}$$
(A) $\log(\sin^{4} x) + c$ (B) $\frac{1}{2}(\sin^{-1} x)^{2} + c$ (C) $\log(\sqrt{1-x^{2}}) + c$ (D) $\sin(\cos^{4} x) + c$
where is an arbitrary constant
Ans: (B)
Hints: $1 = \int dt$ $\sin^{-1} x = t$
 $= \frac{1}{2}t^{2} + c$ $\frac{1}{\sqrt{1-x^{2}}}dx = dt$
 $= \frac{1}{2}(\sin^{-1} x)^{2} + c$
47. The number of points on the line $x + y = 4$ which are unit distance apart from the line $2x + 2y = 5$ is
(A) 0 (B) 1 (C) 2 (D) Infinity
Ans: (A)
Hints: $x + y = \frac{5}{2}$
 $PQ = \frac{4-\frac{5}{2}}{\sqrt{2}} = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4}$
48. Simplest form of $\frac{2}{\sqrt{2+\sqrt{2}+\sqrt{2+2\cos 4x}}}$ is
(A) $\sec \frac{x}{2}$ (B) $\sec x$ (C) $\csc x$ (D) 1
Ans: (A)
Hints: $\frac{2}{\sqrt{2+\sqrt{2}+\sqrt{2+2\cos 2x}}} = \frac{2}{\sqrt{2+\sqrt{2+2\cos 2x}}} = \frac{2}{\sqrt{2+\sqrt{22\cos^{2}x}}}$
 $= \frac{2}{\sqrt{2+2\cos x}} = \frac{2}{2\cos \frac{x}{2}} = \sec \frac{x}{2}$
49. If $y = \tan^{-1} \sqrt{\frac{1-\sin x}{1+\sin x}}$, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{6}$ is
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) 1 (D) -1
Ans: (A)

Hints:
$$y = \tan^{-1} \sqrt{\frac{1 - \cos\left(\frac{\pi}{2} - x\right)}{1 + \cos\left(\frac{\pi}{2} - x\right)}}$$

$$= \tan^{-1} \sqrt{\frac{2\sin^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}} = \tan^{-1} \left| \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \right| = \left(\frac{\pi}{4} - \frac{x}{2}\right)$$
$$\frac{dy}{dx} = -\frac{1}{2}$$

50. If three positive real numbers a, b, c are in A.P. and abc = 4 then minimum possible value of b is

(A)
$$2^{\frac{3}{2}}$$
 (B) $2^{\frac{3}{2}}$ (C) $2^{\frac{1}{3}}$ (D) $2^{\frac{5}{2}}$
Ans: (B)
Hints: $(b - d) b (b + d) = 4$
 $(b^2 - d^2) b = 4$
 $b^3 = 4 + d^2 b$
 $b^3 \ge 4 \Longrightarrow b \ge (2)^{\frac{2}{3}}$

51. If $5\cos 2\theta + 2\cos^2 \frac{\theta}{2} + 1 = 0$, when $(0 < \theta < \pi)$, then the values of θ are :

(A)
$$\frac{\pi}{3} \pm \pi$$
 (B) $\frac{\pi}{3}, \cos^{-1}\left(\frac{3}{5}\right)$ (C) $\cos^{-1}\left(\frac{3}{5}\right) \pm \pi$ (D) $\frac{\pi}{3}, \pi - \cos^{-1}\left(\frac{3}{5}\right)$

Ans: (D)

Hints: $5\cos 2\theta + 1 + \cos \theta + 1 = 0$

$$5(2\cos^2 \theta - 1) + \cos \theta + 2 = 0$$

$$10\cos^2 \theta + \cos \theta - 3 = 0$$

$$(5\cos \theta + 3)(2\cos \theta - 1) = 0$$

$$\cos \theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

$$\cos \theta = \frac{\pi}{3}$$

52. For any complex number *z*, the minimum value of |z| + |z-1| is

(A) 0 (B) 1 (C) 2 (D) -1 Ans: (B) Hints: 1 = |z - (z - 1)| $1 \le |z| + |z - 1|$ 53. For the two circles $x^2 + y^2 = 16$ and $x^2 + y^2 - 2y = 0$ there is / are (A) one pair of common tangents (B) (C) three common tangents (D) Ans: (D) Hints: $C_1(0,0)$ $r_1 = 4$

- (B) only one common tangent
- (D) no common tangent

 $C_{2}(0,1) r_{2} = \sqrt{0+1} = 1$ $C_{1}C_{2} = \sqrt{0+1} = 1$ $r_{1} - r_{2} = 3$ $C_{1}C_{2} < r_{1} - r_{2}$

54. If C is a point on the line segment joining A (-3, 4) and B (2, 1) such that AC = 2BC, then the coordinate of C is

(A)
$$\left(\frac{1}{3}, 2\right)$$
 (B) $\left(2, \frac{1}{3}\right)$ (C) $(2, 7)$ (D) $(7, 2)$

Ans: (A)

Hints:

A(-3, 4) C B(2, 1)

 $C\left(\frac{4-3}{3},\frac{2+4}{3}\right)$ $C\left(\frac{1}{3},2\right)$

55. If *a*, *b*, *c* are real, then both the roots of the equation (x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0 are always (A) positive (B) negative (C) real (D) imaginary **Ans : (C)**

Hints : $3x^2 - 2x(a+b+c) + ab + bc + ca = 0$

$$D = 4(a+b+c)^{2} - 4.3(ab+bc+ca)$$

= $4(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
= $2[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$
= $[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$
>0

56. The sum of the infinite series $1 + \frac{1}{2!} + \frac{1.3}{4!} + \frac{1.3.5}{6!} + \dots$ is

(A) <i>e</i>	(B) e^2	(C) \sqrt{e}	(D) $\frac{1}{e}$
Ans:(C)			
	1.3.5(2n-1)		

Hints : $T_n = \frac{1.3.5....(2n-1)}{2n}$

$$= \frac{\left| 2n \right|}{\left| 2n (2.4...2n) \right|}$$
$$= \frac{\left| 2n \right|}{2^{n} \left| n \right| 2n}$$
$$= \frac{x^{n}}{\left| n \right|} \frac{1}{2} = x$$
$$\therefore \frac{x}{\left| 1 \right|} + \frac{x^{2}}{\left| 2 \right|} + \dots = e^{x} - 1$$
$$\exp = 1 + e^{x} - 1 = e^{x} = e^{\frac{y}{2}}$$

57. The point (-4, 5) is the vertex of a square and one of its diagonals is 7x - y + 8 = 0. The equation of the other diagonal is (A) 7x - y + 23 = 0 (B) 7y + x = 30 (C) 7y + x = 31 (D) x - 7y = 30Ans: (C)

Hints:
$$x + 7y = k$$
(1)
 $-4 + 35 = k$
 $31 = k$
 $x + 7y - 31 = 0$
A
B (-4, 5)

58. The domain of definition of the function $f(x) = \sqrt{1 + \log_e(1-x)}$ is

(A)
$$-\infty < x \le 0$$
 (B) $-\infty < x \le \frac{e-1}{e}$ (C) $-\infty < x \le 1$ (D) $x \ge 1-e$

Ans: (B)

Hints: $1 - x > 0 \Rightarrow x < 1$ $1 + \log_e (1 - x) \ge 0$ $\log_e (1 - x) \ge -1 \Rightarrow 1 - x \ge e^{-1}$ $x \le 1 - \frac{1}{e}$ $x \le \frac{e - 1}{e}$

59. For what value of *m*, $\frac{a^{m+1} + b^{m+1}}{a^m + b^m}$ is the arithmetic mean of '*a*' and '*b*'?

(A) 1 (B) 0 (C) 2 (D) None **Ans: (B) Hints:** $\frac{a^{m+1} + b^{m+1}}{a^m + b^m} = \frac{a+b}{2}$ m = 0 Satisfy.

60. The value of the limit
$$\lim_{x\to 1} \frac{\sin(e^{x-1}-1)}{\log x}$$
 is
(A) 0 (B) e (C) $\frac{1}{e}$ (D) 1
Ans : (D)
Hints: $\lim_{k\to 0} \frac{\sin(e^{k}-1)}{\log(1+h)}$ Put $x = 1+h$
 $= \lim_{k\to 0} \frac{\sin(e^{k}-1)}{(e^{k}-1)} \cdot \frac{(e^{k}-1)}{h}$ $\frac{1}{\log(1+h)}$
 $= 1.1, 1$
 $= 1.1$
61. Let $f(x) = \sqrt{x+3}$ then the value of $x = 1 + h$ $\frac{1}{1} = 1$
62. Let $f(x) = \sqrt{x+3}$ then the value of 3 function is not defined.
(A) 0 (B) does not exist (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$
Ans : (B)
Hints: Because on left hand side of 3 function is not defined.
(2. $f(x) = x + |x|$ is continuous for
(A) $x \in (-\infty, \infty)$ (B) $x \in (-\infty, \infty) - \{0\}$ (C) only $x > 0$ (D) no value of x
Ans : (A)
Hints: $f(x) = \begin{cases} 2x : x \ge 0 \\ 0 : x < 0 \end{cases}$
(C) $\frac{1}{2}$ (D) $\frac{1}{2}$
(D) $\frac{1}{2}$
Ans : (A)
Hints: $f(x) = \begin{cases} 2x : x \ge 0 \\ 0 : x < 0 \end{cases}$
(D) no value of x
Ans : (A)
Hints: $f(x) = \begin{cases} 2x : x \ge 0 \\ 0 : x < 0 \end{cases}$
(D) $\frac{2a}{b}$ (D) $\frac{2b}{a}$ (C) $\frac{a}{b}$ (D) $\frac{b}{a}$
Ans : (B)
Hints: 1.et $\frac{1}{2} \cos^{-1} \left(\frac{a}{b}\right) = 0$, then $\cos 2\theta = \frac{a}{b}$

$$\tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right]$$
$$= \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) = 2\left(\frac{1 + \tan^2\theta}{1 - \tan^2\theta}\right) = \frac{2}{\cos 2\theta} = \frac{2}{\frac{a}{b}} = \frac{2b}{a}$$

64. If $i = \sqrt{-1}$ and *n* is a positive integer, then $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is equal to (A) 1 (B) *i* (D) 0 (C) i^n Ans: (D) **Hints**: $i^{n}(1+i+i^{2}+i^{3}) = i^{n}(1+i-1-i) = 0$ $\int \frac{dx}{x(x+1)}$ equals 65. (A) $\ln \left| \frac{x+1}{x} \right| + c$ (B) $\ln \left| \frac{x}{x+1} \right| + c$ (C) $\ln \left| \frac{\mathbf{x} - \mathbf{1}}{\mathbf{x}} \right| + c$ (D) $\ln \left| \frac{\mathbf{x} - \mathbf{1}}{\mathbf{x} + \mathbf{1}} \right| + c$ where c is an arbitrary constant. Ans: (B) Hints: $\int \frac{dx}{x(x+1)} = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \int \frac{dx}{x} - \int \frac{dx}{x+1} = \ln|x| - \ln|x+1| + C = \ln\left|\frac{x}{x+1}\right| + C$ If a, b, c are in G.P. (a > 1, b > 1, c > 1), then for any real number x (with $x > 0, x \neq 1$), $\log_a x$, $\log_b x$, $\log_c x$ are in 66. (D) G.P. but not in H.P. (A) G.P. (B) A.P. (C) H.P. Ans: (C) **Hints :** *a*, *b*, *c* are in G.P.

$$\Rightarrow \frac{1}{\log_x a}, \frac{1}{\log_x b}, \frac{1}{\log_x c}$$
 are in H.P.

 $\Rightarrow \log_{x} a, \log_{x} b, \log_{x} c$ are in A.P.

 $\Rightarrow \log_a x, \log_b x, \log_c x \text{ are in H.P.}$

67. A line through the point A (2, 0) which makes an angle of 30° with the positive direction of *x*-axis is rotated about A in clockwise direction through an angle 15°. Then the equation of the straight line in the new position is

(A)
$$(2-\sqrt{3})x + y - 4 + 2\sqrt{3} = 0$$

(B) $(2-\sqrt{3})x - y - 4 + 2\sqrt{3} = 0$
(C) $(2-\sqrt{3})x - y + 4 + 2\sqrt{3} = 0$
(D) $(2-\sqrt{3})x + y + 4 + 2\sqrt{3} = 0$

Ans: (\mathbf{B})

Hints: Equation of line in new position :

$$y - 0 = \tan 15^{\circ} (x - 2)$$
$$\Rightarrow y = \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\right)(x - 2)$$
$$\Rightarrow y = \frac{\left(\sqrt{3} - 1\right)^2}{2}(x - 2)$$

$$\Rightarrow 2y = (4 - 2\sqrt{3})(x - 2)$$
$$\Rightarrow y = (2 - \sqrt{3})(x - 2)$$
$$\Rightarrow (2 - \sqrt{3})x - y - 4 + 2\sqrt{3} = 0$$

68. The equation $\sqrt{3} \sin x + \cos x = 4$ has (A) only one solution (B) two solutions **Ans**: (D)

(C) infinitely many solutions (D) no solution

Hints :
$$\sqrt{3}\sin x + \cos x = 2\sin\left(x + \frac{\pi}{6}\right) \le 2$$
. Therefore

 $\sqrt{3}\sin x + \cos x = 4$ cannot have a solution

69. The slope at any point of a curve y = f(x) is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1, 1). The equation of the curve is (A) $y = x^3 + 2$ (B) $y = -x^3 - 2$ (C) $y = 3x^3 + 4$ (D) $y = -x^3 + 2$

Hints: $\frac{dy}{dx} = 3x^2 \Rightarrow \int dy = \int 3x^2 dx \Rightarrow y = x^3 + C$ Curve passes through (-1, 1). Hence $1 = -1 + C \Rightarrow C = 2$ $\therefore y = x^3 + 2$

70. The modulus of $\frac{1-i}{3+i} + \frac{4i}{5}$ is

(A)
$$\sqrt{5}$$
 unit (B) $\frac{\sqrt{11}}{5}$ unit (C) $\frac{\sqrt{5}}{5}$ unit (D) $\frac{\sqrt{12}}{5}$ unit

Hints:
$$\frac{1-i}{3+i} + \frac{4i}{5} = \frac{5-5i+4i(3+i)}{5(3+i)} = \frac{5-5i+12i-4}{5(3+i)} = \frac{1+7i}{5(3+i)} = \frac{(1+7i)(3-i)}{5(9+1)}$$
$$= \frac{3+21i-i+7}{5\times10} = \frac{10+20i}{5\times10} = \frac{1+2i}{5}$$

: Modulus
$$=\sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \sqrt{\frac{1}{25} + \frac{4}{25}} = \sqrt{\frac{1}{5}} = \frac{\sqrt{5}}{5}$$
 unit

71. The equation of the tangent to the conic $x^2 - y^2 - 8x + 2y + 11 = 0$ at (2, 1) is (A) x + 2 = 0 (B) 2x + 1 = 0 (C) x + y + 1 = 0 (D) x - 2 = 0Ans: (D) Hints: Equation of tangent at (x_1, y_1) is $xx_1 - yy_1 - 4(x + x_1) + (y + y_1) + 11 = 0$ $x_1 = 2; y = 1$ \therefore Equation of tangent is 2x - y - 4(x + 2) + (y + 1) + 11 = 0or -2x - 8 + 12 = 0 or -2x + 4 = 0or 2x = 4or x = 2or x - 2 = 0

72. A and B are two independent events such that $P(A \cup B') = 0.8$ and P(A) = 0.3. The P(B) is

(A)
$$\frac{2}{7}$$
 (B) $\frac{2}{3}$ (C) $\frac{3}{8}$ (D) $\frac{1}{8}$

Ans: (A)

Hints : Let P(B) = x

 $P(A \cup B') = P(A) + P(B') - P(A \cap B') = 0.3 + (1 - x) - 0.3(1 - x)$

or 0.8 = 1 - x + 0.3x

- or 1 0.7x = 0.8
- or 0.7x = 0.2

or
$$x = \frac{2}{7}$$

73. The total number of tangents through the point (3, 5) that can be drawn to the ellipses $3x^2 + 5y^2 = 32$ and $25x^2 + 9y^2 = 450$ is (A) 0 (B) 2 (C) 3 (D) 4 Ans: (C)

Hints : (3, 5) lies outside the ellipse $3x^2 + 5y^2 = 32$ and on the ellipse $25x^2 + 9y^2 = 450$. Therefore there will be 2 tangents for the first ellipse and one tangent for the second ellipse.

74. The value of
$$\lim_{n \to \infty} \left[\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right]$$
 is
(A) $\frac{\pi}{4}$ (B) $\log 2$ (C) zero (D)1
Ans : (A)

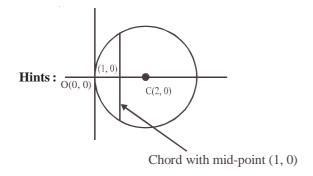
Hints:
$$\lim_{n \to \infty} \left[\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right]$$
$$= \lim_{n \to \infty} \sum_{r=1}^n \frac{n}{n^2 + r^2} = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{1}{1 + \left(\frac{r}{n}\right)^2} = \int_0^1 \frac{dx}{1 + x^2} = \left[\tan^{-1} x \right]_0^1 = \frac{\pi}{4}$$

75. A particle is moving in a straight line. At time *t*, the distance between the particle from its starting point is given by $x = t - 6t^2 + t^3$. Its acceleration will be zero at

(A) t = 1 unit time (B) t = 2 unit time (C) t = 3 unit time (D) t = 4 unit time **Ans : (B)**

Hints: $x = t - 6t^2 + t^3$ $\frac{dx}{dt} = 1 - 12t + 3t^2$ $\frac{d^2x}{dt^2} = -12 + 6t$ Acceleration = $\frac{d^2x}{dt^2}$

 $\therefore \text{Acceleration} = 0 \Longrightarrow 6t - 12 = 0 \Longrightarrow t = 2$


76. Three numbers are chosen at random from 1 to 20. The probability that they are consecutive is

(A)
$$\frac{1}{190}$$
 (B) $\frac{1}{120}$ (C) $\frac{3}{190}$ (D) $\frac{5}{190}$
Ans: (C)
Hints: Total number of cases; ${}^{20}C_3 = \frac{20 \times 19 \times 18}{2 \times 3} = 20 \times 19 \times 3 = 1140$
Total number of favourable cases = 18
 \therefore Required probability $= \frac{18}{1140} = \frac{3}{190}$
77. The co-ordinates of the foot of the perpendicular from (0, 0) upon the line $x + y = 2$ are
(A) (2,-1) (B) (-2, 1) (C) (1, 1) (D) (1, 2)
Ans: (C)
Hints: Let P be the foot of the perpendicular. P lies on a line perpendicular to $x + y = 2$.
 \therefore Equation of the line on which P lies is of the form : $x - y + k = 0$
But this line passes through (0, 0).
 $\therefore k = 0$
Hence, co-ordinates of P may be obtained by solving $x + y = 2$ and $y = x$
 $\therefore x = 1, y = 1$
Hence, P = (1, 1)
78. If A is a square matrix then,

(A) $A + A^{T}$ is symmetric (B) AA^{T} is skew - symmetric (C) $A^{T} + A$ is skew - symmetric (D) $A^{T}A$ is skew symmetric **Ans**: (A)

Hints:
$$(A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T}$$

79. The equation of the chord of the circle $x^2 + y^2 - 4x = 0$ whose mid point is (1, 0) is (A) y=2 (B) y=1 (C) x=2 (D) x=1Ans: (D)

Equation : x = 1

80. If $A^2 - A + I = 0$, then the inverse of the matrix A is (A) A - I (B) I - A (C) A + I (D) A Ans: (B) Hints: $A^2 - A + I = 0 \Rightarrow A^2 = A - I \Rightarrow A^2 \cdot A^{-1} = A \cdot A^{-1} - A^{-1} \Rightarrow A = I - A^{-1} \Rightarrow A^{-1} = I - A$

MATHEMATICS

SECTION-II

1. A train moving with constant acceleration takes t seconds to pass a certain fixed point and the front and back end of the train pass the fixed point with velocities u and v respectively. Show that the length of the trai is $\frac{1}{2}(u + v)t$.

A.
$$v = u + at$$

 $a = \frac{v - u}{t}$
 $v^2 = u^2 + 2aS$
 $\frac{v^2 - u^2}{2a} = S \Longrightarrow S = \frac{(v + u)(v - u)}{2a} = \frac{at(v + u)}{2a} = \frac{u + v}{2}t$
Show that

$$\frac{\sin\theta}{\cos 3\theta} + \frac{\sin 3\theta}{\cos 9\theta} + \frac{\sin 9\theta}{\cos 27\theta} = \frac{1}{2}(\tan 27\theta - \tan\theta)$$

A.
$$T_{1} = \frac{2\sin\theta}{2\cos3\theta} \cdot \frac{\cos\theta}{\cos\theta} = \frac{\sin 2\theta}{2\cos 3\theta \cos \theta}$$
$$= \frac{1}{2} \cdot \frac{\sin(3\theta - \theta)}{\cos 3\theta \cos \theta}$$
$$T_{1} = \frac{1}{2} (\tan 3\theta - \tan \theta)$$
$$T_{2} = \frac{1}{2} (\tan 9\theta - \tan 3\theta)$$
$$T_{3} = \frac{1}{2} (\tan 27\theta - \tan 9\theta)$$
$$T_{1} + T_{2} + T_{3} = \frac{1}{2} (\tan 27\theta - \tan \theta)$$

3. If $x = \sin t$, $y = \sin 2t$, prove that

2.

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0$$

A. $y = \sin(2\sin^{-1}x)$
$$\frac{dy}{dx} = \cos(2\sin^{-1}x) \cdot \frac{2}{\sqrt{1-x^2}}$$

$$\sqrt{1-x^2}\frac{dy}{dx} = 2\cos(2\sin^{-1}x)$$

$$(1 - x^{2})\left(\frac{dy}{dx}\right)^{2} = 4 \cdot \cos^{2}(2\sin^{-1}x) = 4[1 - \sin^{2}(2\sin^{-1}x)]$$
$$(1 - x^{2})\left(\frac{dy}{dx}\right)^{2} = 4[1 - y^{2}]$$

Again differentiate

$$(1-x^{2})2 \cdot \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2} (-2x) = -8y\frac{dy}{dx}$$

Divide by $2\frac{dy}{dx}$

$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0$$

4. Show that, for a positive integer n, the coefficient of x^k ($0 \le K \le n$) in the expansion of

$$1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^n is^{n+1}C_{n-k}$$

A.
$$S = \frac{1 - (1 + x)^{n+1}}{1 - (1 + x)} = \frac{(1 + x)^{n+1} - 1}{x}$$

Coefficient of
$$x^{k}$$
 in $\frac{(1+x)^{n+1}}{x} - \frac{1}{x}$ = Coefficient of x^{k+1} in $(1+x)^{n+1} = {n+1 \choose k+1} = {n+1 \choose k+1}$

5. If m, n be integers, then find the value of $\int_{-\pi}^{\pi} (\cos mx - \sin nx)^2 dx$

$$A. I = \int_{-\pi}^{\pi} (\cos^2 mx + \sin^2 nx - 2\sin nx.\cos mx)dx$$

$$= \int_{-\pi}^{\pi} \cos^2 mx dx + \int_{-\pi}^{\pi} \sin^2 nx dx - 2 \int_{-\pi}^{\pi} \sin nx.\cos mx dx$$

$$= 2\int_{0}^{\pi} \cos^2 mx dx + 2\int_{0}^{\pi} \sin^2 nx dx - 0 \qquad (Odd \dots)$$

$$= 2\int_{0}^{\pi} (1 + \cos 2mx) dx + \int_{0}^{\pi} (1 - \cos 2nx) dx$$

$$= \pi + \frac{1}{2m} (\sin 2mx)_{0}^{\pi} + \pi - \frac{1}{2n} (\sin 2nx)_{0}^{\pi}$$

$$= \pi + \pi + \frac{1}{2m} (0 - 0) - \frac{1}{2n} (0 - 0)$$

$$= 2\pi$$

6. Find the angle subtended by the double ordinate of length 2a of the parabola $y^2 = ax$ at its vertex.

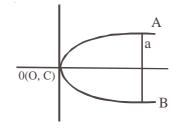
A.
$$y^2 = ax, a^2 = ax, a = x$$
 [put y = a]
A (a, a), B(a, -a)
Slope OA = $\frac{a}{a} = 1$
Slope of OB = $\frac{-a}{a} = -1$
Ans. = $\frac{\pi}{2}$

7. If f is differentiable at x = a, find the value of

$$Lt_{x \to a} \frac{x^{2} f(a) - a^{2} f(x)}{x - a}.$$

A.
$$Lt_{x \to a} \frac{x^{2} f(a) - a^{2} f(x)}{x - a}, \frac{0}{0} \text{ form by LH}$$

$$= Lt_{x \to a} \frac{2x f(a) - a^{2} f^{1}(x)}{1}$$


$$= 2af(a) - a^{2} f^{1}(a)$$

8. Find the values of 'a' for which the expression $x^2 - (3a - 1)x + 2a^2 + 2a - 11$ is always positve.

A.
$$x^2 - (3a - 1)x + 2a^2 + 2a - 11 > 0$$

D < 0
 $(3a - 1)^2 - 4(2a^2 + 2a - 11) < 0$
 $9a^2 - 6a + 1 - 8a^2 - 8a + 44 < 0$
 $a^2 - 14a + 45 < 0$
 $(a - 9)(a - 5) < 0$
 $5 < a < 9$

9. Find the sum of the first n terms of the series $0.2 + 0.22 + 0.222 + \dots$

A.
$$S = \frac{2}{9} [0.9 + 0.99 + 0.999 + \dots]$$
$$= \frac{2}{9} [(1 - 0.1) + (1 - 0.01) + (1 - 0.001) \dots]$$
$$= \frac{2}{9} [n - (0.1 + 0.01 \dots + n \text{ terms})]$$

$$= \frac{2}{9}n - \frac{2}{9}\frac{(0.1)[1 - (0.1)^n]}{[1 - (0.1)]}$$
$$\frac{2}{9}n - \frac{2}{9}\frac{(0.1)}{(0.9)}[1 - (0.1)^n]$$
$$\frac{2}{9}n - \frac{2}{81} + \frac{2}{81}(0.1)^n$$

10. The equation to the pairs of opposite sides of a parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5$. Find the equations of its diagonals.

A.
$$x = 2$$
(i)
 $x = 3$ (ii)
 $y = 1$ (iii)
 $y = 5$ (iv)

A(2, 1), B(3, 1), C(3, 5), D(2, 5)

Equation of AC

$$\frac{x-2}{3-2} = \frac{y-1}{5-1}, \quad x-2 = \frac{y-1}{4}$$

$$4x-8 = y-1, \quad 4x-y-7 = 0$$
Equation of BD
$$\frac{x-3}{2-3} = \frac{y-1}{5-1}$$

$$\frac{x-3}{-1} = \frac{y-1}{4}, \quad -4x+12 = y-1$$

$$4x+y-13 = 0$$