CHEMISTRY

Paper – 1

(THEORY)

(Three Hours)

(Candidates are allowed additional 15 minutes for **only** reading the paper.

They must NOT start writing during this time)

Answer **all** questions in **Part I** and **six** questions from **Part II**, choosing **two** questions from Section A, **two** from Section B and **two** from Section C.

All working, including rough work, should be done on the same sheet as, and adjacent to, the rest of the answer.

The intended marks for questions or parts of questions are given in brackets [].

Balanced equations must be given wherever possible and diagrams where they are helpful.

When solving numerical problems, all essential working must be shown.

In working out problems use the following data:

Gas Constant R = 1.987 cal deg^{-1} $mol^{-1} = 8.314$ JK^{-1} $mol^{-1} = 0.0821$ dm^3 atm $K^{-1}mol^{-1}$ $1 \ l \ atm = 1 \ dm^3$ atm = 101.3 $J. \ 1 \ Farday = 96500$ Coulombs.

PART I

Answer all questions

Question 1

(a)	Fill in	the blanks by choosing the appropriate word/words from those given in brackets:	[5]
	anion,	con, proton, neutron, decreases, increasing, lowering, one, two, acidic, basic, cation, paramagnetic, Lewis acid, Lewis base, carbonic acid, sulphurous acid, aric acid, ammonium carbonate, sodium bicarbonate, six, increases)	
	(i)	A positive catalyst the rate of a reaction by the activation energy.	
	(ii)	Human blood is a buffer solution of and	
	(iii)	BF ₃ is a since it is an deficient molecule.	
	(iv)	Oxygen is due to the presence of unpaired electrons.	
	(v)	A solution of FeCl ₃ is due to hydrolysis.	

(b)	Comp		he following statements by selecting the correct alternative from the en:	[5]
	(i)	[Co($NH_3)_5Br$] SO_4 and $[Co(NH_3)_5SO_4]$ Br exhibit	
		1.	Coordination isomerism.	
		2.	Ionisation isomerism.	
		3.	Hydrate isomerism.	
		4.	Geometrical isomerism.	
	(ii)	Canr	nizzaros' reaction is given by:	
		1.	Formaldehyde.	
		2.	Acetaldehyde.	
		3.	Acetone.	
		4.	Ethanol.	
	(iii)	Out	of the following solutions, the one having the highest boiling point will be:	
		1.	0.01 M Na ₂ SO ₄ .	
		2.	0.01 M KNO ₃ .	
		3.	0.01 M Urea.	
		4.	0.01 M Glucose.	
	(iv)	The	bond angle of water is:	
		1.	90°	
		2.	105°	
		3.	107.3°	
		4.	120°	
	(v)	The	co-ordination number of each ion in copper crystals is:	
		1.	4	
		2.	12	
		3.	14	
		4.	8	
(c)	Ans	swer tl	ne following questions:	[5]
	(i)		depression of freezing point caused by a 1M NaCl solution is 0.0123°C. t will be the depression of freezing point caused by a 1 M glucose solution?	
	(ii)		t happens to the pH of a solution containing equimolar amount of acetic acid sodium acetate when a few drops of dilute HCl is added? Give reason.	
	(iii)	_	ress the relationship between molar conductivity and specific conductivity of ution. What is the unit of molar conductivity?	
	(iv)	Give	the electrode reactions of the galvanic cell in which the reaction $(x^2 + 2x^2) + 2x^2 + 2x$	
	(v)		is the free energy change related to the enthalpy and entropy change of a tance?	

(d) N	Match t	he following:			[5]
	(i)	Buffer solution	(a)	Co-ordinate bond	
	(ii)	Co-ordination compounds	(b)	Raoult's Law	
	(iii)	Dilute solution	(c)	Warner's Theory	
	(iv)	Ammonium ion	(d)	Faraday's Law	
	(v)	Electrolysis	(e)	Henderson's equation	
		PA	RT I	Ī	
		Answer six questions choosing tv and two fi		· ·	
		SEC	TIO	N A	
Ques	tion 2	Answer an	y tw o	questions	
(a)	(i)	The vapour pressure of pure benzene When a non-volatile and non-electroly of benzene, the vapour pressure of molecular mass of the solid substance?	te sol the s	id weighing 2.175 g is added to 39.0 g	[3]
	(ii)	Calculate the standard enthalpy change $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$. Or ΔH_f° for $CO_2(g)$, $CO(g)$ and $H_2O_{(g)}$ are respectively.	Given	that	[3]
(b)	Give	reasons for the following:			
	(i)	A solution of copper sulphate is acidic	in na	ture.	[2]
	(ii)	The boiling point of p-nitrophenol is m	ore t	han that of o - nitrophenol.	[2]
Que	stion 3				
(a)	(i)	An element crystallizes in a structure Calculate its density if 200g of this element			[3]
	(ii)	Draw the electron dot structure of per the electrons of each atom.	chlor	ic acid clearly distinguishing between	[1]
(b)	(i)	What is the activation energy of a reac related to the activation energy? How this relationship?			[3]

		Conc. of A	Conc. of B	Initial rate	
		$(\text{mol } l^{-1})$	$(\text{mol } 1^{-1})$	$(\text{mol } l^{-1} S^{-1})$	
		0.1	0.1	4.0×10^{-4}	
		0.2	0.2	1.6×10^{-3}	
		0.5	0.1	1.0×10^{-2}	
		0.5	0.5	1.0×10^{-2}	
	Calc	rulate:			
	(1)	The order with respect to A	and B for the reaction.		
	(2)	The rate constant of the read	ction.		
Que	stion 4	4			
(a)	(i)	What is the type of hybrid reactive in nature.	lization in PCl ₅ molecule?	Explain why PCl ₅ is very	[2]
	(ii)	If 100 ml. of 0.1 M CH ₃ CC will be the pH of the resulti		of 0.5 M CH ₃ COONa, what	[3]
(b)	Give	e reasons why:			[5]
	(i)	Aluminium trichloride exist	ts as a dimer.		
	(ii)	When H ₂ S is passed throunitrate, only copper is preci	•	ed copper nitrate and zinc	
			SECTION B		
			Answer any two questions		
Que	stion :	5			
(a)	Expl	ain how fluorine is prepared	by the electrolysis of potass	sium hydrogen fluoride.	[3]
(b)	Give	e balanced equations for each	of the following reactions:		
	(i)	Fluorine and dilute NaOH.			
	(ii)	Ozone and aqueous potassiu	ım oxide.		[2]
Que	stion (6			
(a)	Nam	ne the following compounds a	ccording to I.U.P.A.C. rule	s:	
	(i)	$[Co(NH_3)_6] Cl_3$			
	(ii)	$K[Pt Cl_3(NH_3)]$			[2]
(b)	_	ain why an aqueous solution errous ion.	of potassium hexcyanofer	rrate(II) does not give a test	[1]

(ii) Consider the following data for the reaction $A + B \rightarrow Products$.

[3]

- (c) Draw the geometrical isomers of the compound [Co (NH₃)₂ Cl₂] [1]
- Write the formula of potassium trioxalatoferrate (III). (d) [1]

Question 7

- (a) Write the steps involved in the preparation of potassium dichromate from chromite ore. [3]
- (b) Explain why transition metals form many co-ordination complexes. [2]

SECTION C

Answer any **two** questions

Question 8

- How can the following conversions be brought about?
 - (i) Methyl amine to ethylamine. [2]
 - (ii) Propanol to isopropyl alcohol. [2]
 - (iii) Acetaldehyde to Acetone. [2]
- (b) Name the organic compounds which have the same molecular formula C₂H₆O. [3] Write the reactions of these two compounds with PCl₅.
- (c) An alkyl halide having the molecular formula C₄H₉Cl is optically active. What is its [1] structural formula?

Question 9

- (a) Identify the compounds A, B, C and D. [2] CH₃ COOH $\xrightarrow{LiAIH_4}$ A $\xrightarrow{\text{red }P,I_2}$ B $\xrightarrow{Alc.KCN}$ C $\xrightarrow{H^+,H_2O}$ D
- (b) Give one good chemical test to distinguish between the following pairs of compounds: [2]
 - (i) Benzoic acid and phenol.
 - Formaldehyde and Acetaldehyde. (ii)
- (c) Fill in the blanks and name the following reactions.

(i)
$$C_6H_5NH_2 + CHCl_3 + 3KOH_{(alc.)} \xrightarrow{\Delta} + KCl + 3H_2O$$

(ii)
$$C_6H_5COCl + H_2 \xrightarrow{Pd/BaSO_4} + HCl$$

(iii) OH
$$OH + C_6H_5COCl \longrightarrow HCl$$

30

[3]

(d) Give reasons for the following

[3]

- (i) Phenol is acidic but ethanol is not.
- (ii) Acetaldehyde does not give Cannizzaro's reaction but formaldehyde and benzaldehyde give the reaction.

Question 10

- (a) What are proteins? How are they formed? What is the primary structure of proteins?
- [3]

(b) Give the monomers of:

[2]

- (i) Bakelite.
- (ii) Nylon 66.
- (c) An organic compound (A) on treatment with acetic acid in the presence of Sulphuric acid produces an ester (B). (A) on mild oxidation gives (C). (C) reduces Tollen's reagent to give silver mirror and (D). (D) on reacting with Phosphorous pentachloride followed by ammonia gives (E). (E) on dehydration produces methyl cyanide. Identify (A), (B), (C), (D) and (E) and write the relevant reactions.