2008 LIFE SCIENCES - XL

XL : LIFE SCIENCES

Duration: Three Hours Maximum Marks: 150

Read the following instructions carefully

- This question paper contains 32 printed pages including pages for rough work. Please check all pages and report discrepancy, if any.
- Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All the questions in this question paper are of objective type.
- 5. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as a wrong answer.
- 6. This question paper contains six sections as listed below. Section J is compulsory. Choose two more sections from the remaining sections K through O.

Section	Page	Section	Page
J. Chemistry	02	M. Botany	15
K. Biochemistry	06	N. Microbiology	22
L. Biotechnology	10	O. Zoology	26

Using HB pencil, mark the sections you have chosen by darkening the appropriate bubbles on the left hand side of the Objective Response Sheet (ORS) provided. Make sure you have correctly bubbled the sections you have chosen. ORS will not be evaluated if this information is NOT marked.

- 7. Each of the XL sections (J through O) carry 50 marks. Questions 1 through 6 are 1-mark questions, questions 7 through 28 are 2-mark questions. Questions 23 and 24 are a set of common data questions. The question pairs (25, 26) and (27, 28) are questions with linked answers. The answer to the second question of the above pairs will depend on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 8. Un-attempted questions will carry zero marks.
- 9. NEGATIVE MARKING: (Sections J through O): For Q.1 to Q.6, 0.25 mark will be deducted for each wrong answer. For Q.7 to Q.24, 0.5 mark will be deducted for each wrong answer. For the pairs of questions with linked answers, there will be negative marks only for wrong answer to the first question, i.e. for Q.25 and Q.27, 0.5 mark will be deducted for each wrong answer. There is no negative marking for Q.26 and Q.28.
- Calculator without data connectivity is allowed in the examination hall.
- 11. Charts, graph sheets and tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.

XL 1/32

J: CHEMISTRY (Compulsory)

Useful data for Section J: Chemistry

 $\ln 2 = 0.693$; $\ln 10 = 2.303$; $R = 8.314 J K^{-l} mol^{-l} = 0.083 L bar K^{-l} mol^{-l}$; K_{sp} (AgCl) = 1.8 x 10^{-10} ; K_{sp} (AgI) = 8.3 x 10^{-17} ; Trouton's constant = 85

O. 1 - O. 6 carry one mark each.

- Q.1 Which of the following will NOT conduct electricity?
 - (A) Solid metallic Na (B) Solid NaCl
- (C) Aqueous NaCl
- (D) Fused NaCl
- Q.2 The region in which the following spectral lines are observed is

P. Lyman series

Q. Balmer series

R. Paschen series

(A) P - UV, Q - UV/Vis, R - IR

(B) P - UV/Vis, Q - UV, R - IR

(C) P - IR, O - UV, R - Vis/IR

(D) P-UV, Q-IR, R-UV/Vis

Q.3 The pH of a 10⁻⁸ molar hydrochloric acid solution is

(A) exactly 8

(B) between 7 and 8

(C) exactly 7

(D) between 6 and 7

Q.4 The plot of concentration of A against time is a straight line with negative slope for the reaction:

A → products

The order of the reaction is

(A) -1

(B) 0

(C)

(D) 2

Q.5 Among the following four amines, which one is least basic in aqueous solution?

(A) CH₃NH₂

(B) (CH₃)₂NH

(C) (CH₃)₃N

(D) CH₃NHC₆H₅

Q.6 Which of the following acids is used for the preparation of cyclohexene from cyclohexanol?

(A) Conc. HNO3

(B) 48% HBr

(C) 85% H₃PO₄

(D) (COOH)

Q. 7 to Q. 24 carry two marks each.

- Q.7 An aqueous mixture solution is prepared which contains 0.1 M of KCl and 0.1 M KI. To this solution, a drop of 0.01 M aqueous solution of AgNO₃ is added. Which of the following statement is correct?
 - (A) A precipitate forms which is primarily AgI.
 - (B) A precipitate forms which is primarily AgCl.
 - (C) A precipitate forms which has equimolar amounts of AgCl and AgI.
 - (D) There will be no precipitation, as there is no common ion between potassium and silver salts.
- Q.8 1 g L⁻¹ solution of a protein exerts an osmotic pressure of 8.3 x 10⁻³ bar at 300 K. Calculate the molar mass of the protein.
 - (A) 2490 g mol⁻¹
- (B) 3000 g mol⁻¹
- (C) 4578 g mol⁻¹
- (D) 6100 g mol-1

Q.9 An electrochemical cell of the following representation was found to be a galvanic cell, where 'A' and 'B' represent different metals.

$$A(s) \mid A^{2+}(aq) \mid M \mid B^{2+}(aq) \mid M \mid B(s)$$

Which of the following statements with respect to the cell is correct?

- (A) The cell converts electrical energy to chemical energy spontaneously.
- (B) The cell uses electrical energy to deposit 'A' and dissolve 'B' spontaneously.
- (C) (A^{2+}/A) is a stronger reducing agent than (B^{2+}/B) .
- (D) (A²⁺/A) is a stronger oxidizing agent than (B²⁺/B).
- Q.10 For a first order reaction at a particular temperature, the half-life was found to be (100 ln2) seconds. The specific rate constant of the reaction is
 - (A) 0.01 s⁻¹
- (B) 100 s⁻¹
- (C) 230 s⁻¹
- (D) 693 s⁻¹
- Q.11 Liquid bromine boils at 59 °C. Assuming it to be a normal liquid, which of the following gives its standard molar enthalpy of vaporization?
 - (A) (8.314 x 332) J mol⁻¹

(B) (85 x 332) J mol⁻¹

(C) (332 / 85) J mol⁻¹

- (D) (332 / 8.314) J mol⁻¹
- Q.12 The limiting molar conductivities of some species are given in (S cm² mol⁻¹) units:

$$\Lambda^{0}(HCI) = 425.9$$
; $\Lambda^{0}(NaCI) = 126.4$; $\lambda^{0}(H^{+}) = 349.6$

Find the limiting molar conductivity of Na+ ion.

- (A) 50.1
- (B) 76.3
- (C) 299.5
- (D) 476.0
- Q.13 The reactivity order for nitration of benzene, chlorobenzene, phenol and nitrobenzene is
 - (A) Benzene > Chlorobenzene > Phenol > Nitrobenzene
 - (B) Phenol > Benzene > Chlorobenzene > Nitrobenzene
 - (C) Nitrobenzene > Phenol > Chlorobenzene > Benzene
 - (D) Phenol > Chlorobenzene > Benzene > Nitrobenzene

The major product in the above reaction is

(A)

(B)

(C)

(D)

- Q.15 When a compound (M) is slowly heated with chloroform in alcoholic KOH solution, it produces an offensive smell. The compound M is
 - (A) N,N-Diethylaniline

(B) Diethylamine

(C) Ethylamine

(D) Triethylamine

Q.16 Which one of the following will lactonize in presence of acid?

(A) OH

(C) COOH

Q.17 The major condensation product in the reaction of benzaldehyde with excess amount of acetone in presence of dilute NaOH solution is

(A)

(B)

(C)

(D)

- Q.18 Ammonia gas can be dried over

- (A) conc. H₂SO₄ (B) anhydrous P₂O₅ (C) anhydrous CaO (D) anhydrous CaCl₂
- Q.19 Which of the following molecules will have zero dipole moment? H₂O, SiCl₄, CO₂, NH₃, BF₃
 - (A) H₂O, SiCl₄, BF₃
- (B) CO₂, NH₃, SiCl₄
- (C) H₂O, NH₃, BF₃
- (D) CO2, BF3, SiCl4
- Q.20 Which of the following pairs of complexes will NOT show any ligand field d-d transitions?
 - (A) K₄[Fe(CN)₆], [Ni(H₂O)₂(NH₃)₄]SO₄
- (B) [Cu(CH₃CN)₄]Cl, Na₃[CoCl₂(CN)₄]
- (C) [Cu(CH₃CN)₄]Cl, [Zn(NH₃)₄Cl₂]
- (D) [Cu(H₂O)₂(NH₃)₄]Cl₂, [Zn(H₂O)₄(NH₃)₄]SO₄
- Q.21 Which of the following substances will produce acidic oxides when burnt in excess air? Sodium (P), Sulfur (Q) and Methane (R)
 - (A) All three
- (B) Both Q and R
- (C) Only Q
- (D) Both P and R
- Q.22 In the ring test for nitrate ion, the brown color is due to the formation of
 - (A) [Fe(H₂O)₅(NO)]SO₄

(B) [Fe(H₂O)₅(NO₂)]SO₄

(C) [Fe(H2O)3(NO)3]SO4

(D) [Fe(H₂O)₅(NO₃)]SO₄

Common Data Questions

Common Data for Questions 23 and 24:

The compound (N) on treatment with the reagent (O) gives an alkene.

- Q.23 The appropriate reagent (O) required for this transformation is
 - (A) KOH / EtOH

(B) NaOMe / MeOH

(C) NaI / Acetone

- (D) NaNH₂
- Q.24 The alkene will be produced as
 - (A) P exclusively since it is going through E2 mechanism
 - (B) Q exclusively since it is going through E2 mechanism
 - (C) Equal amount of P and Q since it is going through E1 mechanism
 - (D) P as major amount since it is going through E1cB mechanism

Linked Answer Questions: Q.25 to Q.28 carry two marks each.

Statement for Linked Answer Questions 25 and 26:

CuSO₄ solution when treated with aqueous alkali (W) forms a blue precipitate (X), which dissolves on addition of excess W. Another aqueous alkali (Y) precipitates blue solid (Z) when reacted with CuSO4, but the blue precipitate (Z) does not dissolve with excess alkali (Y).

- Q.25 Identify W and X
 - (A) NH₄OH and Cu(OH)₂.CuSO₄
- (B) NH₄OH and Cu(OH)₂
- (C) NaOH and Cu(OH)2.CuSO4
- (D) NaOH and Cu(OH)₂
- Q.26 Identify Y and Z
 - (A) NH₄OH and Cu(OH)₂.CuSO₄
- (B) NH₄OH and Cu(OH)₂
- (C) NaOH and Cu(OH)2.CuSO4
- (D) NaOH and Cu(OH)₂

Statement for Linked Answer Questions 27 and 28:

For a first order reversible reaction

$$A \xrightarrow{k_f} B$$

at a temperature T, the standard molar free energy (ΔG^0) is equal to -2.303RT, and the rate constant of forward reaction (k_t) is $1 \times 10^{-3} \text{ s}^{-1}$.

- Q.27 The equilibrium constant of the reaction is
- (B) 19.09 (C) 10

- The rate constant of the backward reaction (k_b) is
- (A) $5.26 \times 10^{-5} \text{ s}^{-1}$ (B) $1 \times 10^{-2} \text{ s}^{-1}$ (C) $4.35 \times 10^{-5} \text{ s}^{-1}$ (D) $1 \times 10^{-4} \text{ s}^{-1}$

END OF SECTION - J

K: BIOCHEMISTRY

Q. 1 - Q. 6 carry one mark each.

Q.1	Which of the fol	llowing inhibitor	incouples e	lectron transport and ox	idative	phosphorylation?	
	(A) Azide	(B) Dinitr	rophenol	(C) Oligomycin	(D)	Rotenone	
Q.2	The catalytic eff	iciency of an enzy	yme is repr	esented by			
	(A) V _{max}	(B) K _M		(C) k _{cat}	(D)	k_{cat} / K_M	
Q.3	Which of the fo	llowing activate p	rotein kinas	se C ?			
	(A) Inositol 1,4 (C) Inositol	,5 -triphosphate		(B) Cyclic AMP (D) Diacylglycerol			
Q.4	Transcription in	itiation sites can b	e determin	ed by			
	(A) Footprinting (C) Primer exter			(B) Northern blottin (D) Nick translation	_		
Q.5	One common fe	ature between B	and T cells	is that			
	(B) both cells po (C) both B cell i	roduce antibodies ossess MHC class receptor and T cel an produce cytoki	l receptor u	ndergo rearrangement			
Q.6	In hybridoma technology, the myeloma cells used						
		ity to produce Ig GPRTase and abil	ity to produ	ace Ig			
. 7 to	Q.24 carry t	wo marks eacl	n.				
Q.7	Match the funct Column (P) Protein sy (Q) Protein de (R) Protein g	nthesis gradation	(1) Endo	oplasmic reticulum i body ssome			
	(A)	(B)		(C)	(D)		
	P-3	P-1		P-1	P-4		
	Q-2 R-1	Q-3 R-2		Q-4 R-3	Q-1 R-2		
Q.8	Match the polys Colum (P) Chitin (Q) Hemic (R) Glycon	ellulose (2 gen (3	Column I D-Glucos	e glucosamine	sacchari	de in Column II.	
	(A)	(B)		(C)	(D)		
	P-1	P-2		P-4	P-:		
	Q-3	Q-4		Q-2	Q-:		
	R-4	R-1		R-3	R-1		

Q.9	The T _m of phosphatidy	l choline A is	s hi	gher than T _m of phosphatidyl	choline B because	
	(B) A has longer chair	fatty acid an	d n	nore unsaturated fatty acid than		
	(C) A has shorter chair (D) A has more <i>cis</i> -un					
2.10				and S having molecular mass 5 n. The order of their elution w		50 KDa is
	(A) P, Q, R, S	(B) S, R, Q	, P	(C) Q, P, R, S	(D) P, Q, S, F	
2.11	function			entity of each enzyme that is re	esponsible for the	ir catalytic
	(P) Ribonuclease (Q) Lysozyme		(1)	Oxyanion Pentacovalent phosphorus		
	(R) Chymotrypsin		3)	Carbonium ion		
	(S) Carboxypeptidase		(4)	Mixed anhydride		
	(A)	(B)		(C)	(D)	
	P-3	P-2		P-2	P-4	
	Q-2	Q-3		Q-1	Q-3	
	R-4 S-1	R-1 S-4		R-3 S-4	R-2 S-1	
0.12	Match the function of	following co	fact	ore		
2.12	Match the function of	lollowing co	Tacı	ors		
	(P) Thiamine pyroph			Acyl group transfer		
	(Q) Coenzyme A (R) Pyridoxal phospi			Transfer of one carbon compo Group transfer to / or from an		
	(S) Tetrahydrofolate			Aldehyde transfer	illio acid	
	(A)	(B)		(C)	(D)	
	P-4	P-4		P-4	P-3	
	Q-3	Q-3		Q-1	Q-1	
	R-1	R-2		R-3	R-4	
	S-2	S-1		S-2	S-2	
2.13	Match the enzymes in	Column I wi	ith t	heir metabolic pathways in Co	olumn II.	
	Column I			Column II		
	(P) Succinyl Co A sy			(1) β- Oxidation		
	(Q) Acyl Co A dehyd	irogenase		(2) Calvin cycle		
	(R) Transketolase	- h h - t	J.	(3) Tricarboxylic		
	(S) Ribulose 1,5- bis	pnospnate car	002	tylase (4) Pentose phosp	onate pathway	
	(A)	(B)		(C)	(D)	
	P - 1	P - 3		P - 2	P-3	

Q-4

R - 1

S - 3

Q-1

R-2

S - 4

Q - 2

R - 3

S - 4

Q-1

R-4

S - 2

Q.14		coneogenesis are rec ise in gluconeogenes		y coordinated. Which of the following will activate		
	(A) Acetyl CoA (C) ADP		(B) Fructose 2 (D) ATP	2,6 - bispl	nosphate	
Q.15		nidine ring are derive sphate (Q) Inosine n	ed from nono phosphate (R) As	spartate (S	S) Glutamate	
	(A) PQ	(B) PR	(C) PS		(D) QR	
Q.16	(P) increase the en(Q) act at cell nucle(R) interact with the	azymatic activity of p eus ne plasma membrane	true for steroid hormon ore-existing target enzy receptors of target cell acts as transcriptional e	me Is		
	(A) PR	(B) QS	(C) PQ		(D) RS	
Q.17	Match the items or (P) DNA polymera (Q) RNA polymera (R) Serine protease	ase II		colin nitin	ulphonyl fluori	de (PMSF)
	(A)	(B)	(C)		(D)	
	P- 2	P- 3	P- 2		P- 1	
	Q- 3 R- 1	Q- 1 R- 2	Q- 1 R- 2		Q- 2 R- 4	
Q.18	typical melting cur	ve of a linear double	gestion with λ exonucle e stranded DNA. On Co ottom of the centrifuge (B) Bacterion (D) RFII M13	sCI-ethidi tube. The shage P22	um bromide eq e nucleic acid i	uilibrium
Q.19	The following 4 di		prepared by mixing the to cause a net transfer	e compon		
	(B) Reduced ubique(C) Oxidized ubique	uinone and oxidized	o-c1 complex and reduc			
Q.20	Nucleated cells ter	nds to be more resista	ant to complement med	diated lysi	is than RBC be	cause
	 (A) many nucleated cells can endocytose the membrane attack complex (B) membrane attack complex cannot get inserted in the nucleated cell membrane (C) membrane attack complex can get inactivated by the nucleated cells (D) membrane attack complex get inactivated hence cannot get inserted in the nucleated cell membrane 					
Q.21			neavy chain and rhodar g pattern of the progen			
	(B) anti-μ and anti	c or membrane staini	n membrane asm and on membrane ing with either anti μ o		dy	

- Q.22 Serum IgM cannot activate the complement by itself because
 - (A) it does not have complement binding site
 - (B) it is planar in which complement binding sites in the Fc region are not accessible.
 - (C) it gets degraded and hence unable to activate the complement
 - (D) it needs metal ions to activate complement

Common Data Questions

Common Data for Questions 23 and 24:

A Caenorhabditis contig for one region of chromosome 2 contains contiguous locations marked 1, 2, 3, 4, 5, 6, 7, 8 and 9. Cosmid clones a, b, c, d and e overlap the locations 2-4, 3-5, 4-6, 5-8, 8-9 respectively. A cloned pBR322-x hybridize to cosmids b, c and d and pUC18-y hybridize to cosmids d and e.

- Q.23 The approximate locations of x and y are
 - (A) 4 and 7
- (B) 5 and 8
- (C) 4 and 8
- (D) 5 and 7
- Q.24 Both pBR322-x and pUC18-y will hybridize to cosmids
 - (A) b
- (B) d
- (C) e
- (D) c

Linked Answer Questions: Q.25 to Q.28 carry two marks each.

Statement for Linked Answer Question 25 and 26:

In animal cells concentration of sodium ions is higher outside the cell and less inside the cell, yet sodium does not enter the cells.

- Q.25 The cellular environment is maintained by generating a gradient and transporting the Na + outside the cell through
 - (A) diffusion process

- (B) passive transport via Na+K+ pump
- (C) active transport via Na+-K+ pump
- (D) sodium ions not be transported
- Q.26 Digitoxigenin, a cardiotonic steroid that inhibits ATPase when applied on extra cellular face of membrane, helps in accumulation of Ca ²⁺ inside the cardiac muscle cells by
 - (A) activating Na⁺-K⁺ pump and blocking Na⁺-Ca⁺⁺ exchanger
- (B) inhibiting Na⁺-K⁺ pump and blocking Na⁺-Ca⁺⁺ exchanger
- (C) having no effect on Na+-K+ pump
- (D) increasing passive diffusion

Statement for Linked Answer Questions 27 and 28:

Nearly 46% of 45s pre-rRNA is unstable. The remaining portion of it forms mature 5.8s, 18s and 28s rRNA having lengths 160 bases, 1.9 kb and 5.1 kb respectively. The content of pre rRNA per human genome is 7.8x10⁻¹⁵ g.

- Q.27 The mol.wt. of 45s pre-rRNA is
 - (A) $2x10^6$
- (B) 4.5×10^5
- $(C) 4.5 \times 10^6$
- (D) 3.9x10⁷
- Q.28 The number of pre-rRNA genes per genome is approximately
 - (A) 10
- (B) 100
- (C) 1000
- (D) 10,000

L: BIOTECHNOLOGY

Q. 1 - Q. 6 carry one mark each	Q.	. 1	- Q.	6	carry	one	mark	each.
---------------------------------	----	-----	------	---	-------	-----	------	-------

Q.1	Diauxic pattern of biomass growth is ass	ociated with				
	 (P) multiple lag phases (Q) sequential utilization of multiple sultiples (R) simultaneous utilization of multiple (S) absence of lag phase 					
	(A) P, R (B) P, Q	(C) R, S (D) Q, S				
Q.2	Zinc fingers are characteristics of					
	(A) blood clotting proteins(B) RNA chaperones(C) DNA binding proteins(D) lysosomal hydrolases					
Q.3	Parthenogenetic embryos in plants are th	nose which are formed by				
	(A) unfertilized eggs (B) fertilized eggs (C) sporophytic cells (D) male gametophyte	TO A PARTICULAR TO A SECONDARY OF THE SE				
Q.4	Which one of the following is the growt tissue culture?	h factor used for growth of tissues and organs in plant				
	(A) Cysteine	(B) Cytokinin				
	(C) Cytidylate	(D) Cyclic AMP				
Q.5	Which of the following techniques is be	st suited for immobilizing an affinity ligand?				
	(A) Physical adsorption	(B) Gel entrapment				
	(C) Cross-linking with a polymer	(D) Covalent linkage to a spacer arm				
Q.6	Multiplication of genetically identical co	opies of a cultivar by asexual reproduction is known as				
	(A) aclonal propagation	(B) vegetative propagation				
	(C) polyclonal propagation	(D) clonal propagation				
Q. 71	to Q.24 carry two marks each.					
Q.7	Identify the correct statements for the 'HAT medium'					
	 (P) Includes drug aminopterin to block major pathway for synthesis of deoxyribonucleotides (Q) Hypoxanthine is precursor for thymidine (R) Includes drug aminopterin to block major pathway for synthesis of polypeptides (S) Cells can grow in presence of aminopterin only if they have enzymes thymidine kinase and hypoxanthine-guanine phosphoribosyl transferase 					
	(A) P, Q	(B) P, S				
	(C) R, S	(D) Q, S				

2008				LIFE SCIENCES—X		
Q.8	'terminal transfera	se'. The stock solution of this stock solution	ation of dTTP that is used a on is added to a total volun	es by using dTTP and the enzyme is a substrate has a concentration of the of 200 µl reaction. What will be		
	(A) 7.5 μM	(B) 75 μM	(C) 0.75 μM	(D) 0.075 μM		
Q.9	Assertion: The en immensely in deve	zymatic degradatic eloping somatic cel	se of following Assertion I on of cell wall to obtain sing Il genetics in plants of two cells must occur thro	gle cell called protoplast has helped		
		r] are true but [r] is [r] is false	is the correct reason for [a] s not the correct reason for [[a]		
Q.10	In bioinformatics,	the term 'BLAST'	refers to			
	(A) database retric(B) computationa(C) computationa(D) computationa	l tool for sequence l tool to view geno		ignment		
Q.11	Match the terms in group 1 with their possible explanations in group 2					
	Group 1		Group 2			
	P. Orthologs Q. Paralogs R. Proteome S. Transgenic		3. Genes from different	having foreign gene protein expressed by a genome species related to each other ecies related to each other		
	(A) P-2, Q-4, R-1 (B) P-4, Q-3, R-2 (C) P-3, Q-4, R-2 (D) P-1, Q-2, R-3	, S-1 , S-1				
Q.12	Which of the following statements are true with respect to a special complex called 'dicer'?					
		ribonuclease and R in gene silencing	and DNA fragments RNA fragments			
	(A) P, R	(B) Q, R	(C) P, S	(D) Q, S		
Q.13	Some living cells to describe this pr		ve the capacity to give rise t	to whole organism. The term used		
	(A) morphogenes (C) totipotency	is	(B) androgenes (D) organogene			

Q.14 Match the items in group 1 with the terms given in group 2

Group 1

(P) Lactobacillus and Bifidobacteria

- (Q) Polychlorobenzenes (PCBs)
- (R) Fructo-oligosaccharides
- (S) \(\beta\)-Lactams
- (A) P-2, Q-4, R-1, S-3
- (C) P-4, O-1, R-2, S-3

Group 2

- 1. Prebiotics
- 2. Probiotics
- 3. Antibiotics
- 4. Xenobiotics
- (B) P-3, Q-4, R-1, S-2
- (D) P-1, O-3, R-4, S-2
- Match the coefficients in group 1 with their corresponding downstream processing steps given in group 2

Group 1

- (P) Sedimentation coefficient
- (Q) Partition coefficient
- (R) Rejection coefficient
- (S) Activity coefficient
- (A) P-3, Q-1, R-4, S-2
- (C) P-4, O-3, R-1, S-2

Group 2

- 1. Aqueous two-phase extraction
- 2. Ultrafiltration
- 3. Dialysis
- 4. Centrifugation
- (B) P-2, O-1, R-4, S-3
- (D) P-4, O-1, R-2, S-3
- Match the bioreactor components in group 1 with the most appropriate function given in group 2 Q.16

Group 1

- (P) Marine type impeller
- (Q) Draft tube
- (R) Diaphragm valve
- (S) Sparger
- (A) P-4, Q-2, R-1, S-3
- (C) P-3, Q-4, R-2, S-1

Group 2

- 1. Recirculation of medium
- 2. Aeration of medium
- 3. Animal cell cultivation
- 4. Sterile operation
- (B) P-3, Q-1, R-4, S-2
- (D) P-2, Q-1, R-4, S-3
- Evaluate the Michaelis constant for the following lipase catalyzed trans-esterification reaction for 0.17 the production of biodiesel

 k_{-1} k_2 Vegetable oil + Lipase

→ Oil-lipase complex → Biodiesel + Glycerol

where, $k_1 = 3 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$; $k_{-1} = 4 \times 10^4 \text{ s}^{-1}$ and $k_2 = 2 \times 10^3 \text{ s}^{-1}$.

- (A) 4.2×10^{-3} M (B) 14.0×10^{-4} M (C) 6.4×10^{-6} M
- (D) 1.4 x 10⁻⁴ M
- In a chemostat, evaluate the dilution rate at the cell wash-out condition by applying Monod's model Q.18 with the given set of data: $\mu_{\text{max}} = 1 \text{ h}^{-1}$; $Y_{\text{X/S}} = 0.5 \text{ g g}^{-1}$; $K_{\text{S}} = 0.2 \text{ g L}^{-1}$; $S_0 = 10 \text{ g L}^{-1}$
 - (A) 1.00 h⁻¹
- (B) 0.49 h⁻¹
- (C) 0.98 h⁻¹
- (D) 1.02 h⁻¹

Q.19 Match the products in group 1 with their producer organisms given in group 2

Group 1

- (P) Ethanol
- (Q) L-Lysine
- (R) Biopesticide
- (S) Vancomycin
- (A) P-2; Q-3; R-4; S-1
- (C) P-4; Q-1; R-2; S-3

Group 2

- 1. Streptomyces orientalis
- 2. Saccharomyces cerevisiae
- 3. Corynebacterium glutamicum
- 4. Bacillus thuringiensis
- (B) P-3; Q-4; R-1; S-2
- (D) P-2; Q-1; R-4; S-3
- Q.20 A polymerase chain reaction was performed beginning with 400 template DNA molecules in a 100 μl reaction. After 20 cycles of polymerase chain reaction, how many molecules of the amplified product will be present in 0.1 μl of reaction?
 - (A) 2.19×10^4

(B) 4.19×10^4

(C) 2.19×10^5

- (D) 4.19 x 10⁵
- Q.21 A bacterial culture with an approximate biomass composition of CH_{1.8}O_{0.5}N_{0.2} is grown aerobically on a defined medium containing glucose as the sole carbon source and ammonia being the nitrogen source. In this fermentation, biomass is formed with a yield coefficient of 0.35 gram dry cell weight per gram of glucose and acetate is produced with a yield coefficient of 0.1 gram acetate per gram of glucose. The respiratory coefficient for the above culture will be
 - (A) 0.90
- (B) 0.95
- (C) 1.00
- (D) 1.05
- Q.22 A bacterial culture having a specific oxygen uptake rate of 5 mmol O₂ (g-DCW)⁻¹hr⁻¹ is being grown aerobically in a fed-batch bioreactor. The maximum value of the volumetric oxygen transfer coefficient is 0.18s⁻¹ for the stirred tank bioreactor and the critical dissolved oxygen concentration is 20% of the saturation concentration (8 mg/ml). The maximum density to which the cells can be grown in the fed-batch process without the growth being limited by oxygen transfer, is approximately
 - (A) 14 g/l
- (B) 26 g/l
- (C) 32 g/1
- (D) 65 g/l

Common Data Questions

Common Data for Questions 23 and 24:

An enzyme (24000 Da) undergoes first-order deactivation kinetics while catalyzing a reaction according to Michaelis-Menten kinetics ($K_m = 10^4$ M). The enzyme has a turnover number of 10^4 molecules-substrate/min-(molecule enzyme) and a deactivation constant (k_d) of 0.1 min⁻¹ at the reaction conditions. The reaction mixture initially contains 0.6 mg/l of active enzyme and 0.02 M of the substrate.

- Q.23 The time required to convert 10% of the substrate will be approximately
 - (A) 16 min
- (B) 24 min
- (C) 32 min
- (D) 8 min
- Q.24 The maximum possible conversion for the enzymatic reaction will be
 - (A) 100%
- (B) 50%
- (C) 25%
- (D) 12.5%

Linked Answer Questions: Q.25 to Q.28 carry two marks each.

Statement for Linked Answer Questions 25 and 26:

A Nick Translation reaction in a final volume of 100 μ l was carried out by using 25 μ Ci of labeled [α - 32 P]-dCTP for labeling a 1.2 Kb γ -Interferon DNA fragment.

Q.25 After completion of Nick translation reaction, 10 μl of reaction was spotted on a glass-fibre filter that upon counting resulted into 4.2 x 10⁴ cpm in reaction. Another 10 μl was processed for TCA precipitation to determine radioisotope incorporation. The TCA precipitated sample gave 2.94 x 10⁴ cpm. What is the percent of [α-³²P]-dCTP incorporation into the DNA sample?

(A) 40%

(B) 50%

(C) 60%

(D) 70%

Q.26 If 2.94 x 10⁴ cpm of TCA precipitable counts of the 10 µl sample were taken from 1/10 dilution of the 100 µl Nick Translation reaction containing 1 µg of γ-Interferon DNA, what is the specific activity of the labeled product?

(A) 1.47 x 10⁶ cpm / μg

(B) $1.47 \times 10^7 \text{ cpm} / \mu g$

(C) $2.94 \times 10^6 \text{ cpm} / \mu g$

(D) $2.94 \times 10^{7} \text{ cpm} / \mu g$

Statement for Linked Answer Questions 27 and 28:

A double reciprocal plot was created from the specific growth rate and limiting-substrate concentration data obtained from a chemostat experiment. A linear regression gave values of 1.25 hr and 100 mg-hr-l⁻¹ for the intercept and slope, respectively.

Q.27 The respective values of the Monod kinetic constants μ_m (hr⁻¹) and K_s (mg/l) are as follows:

(A) 0.08, 8

(B) 0.8, 0.8

(C) 0.8, 80

(D) 8, 8

Q.28 The same culture (with the μ_m and K_s values as computed above) is cultivated in a 10-litre chemostat being operated with a 50 ml/min sterile feed containing 50 g/l of substrate. Assuming an overall yield coefficient of 0.3 g-DCW/g-substrate, the respective values of the outlet biomass and substrate concentrations are

(A) 15 g/l, 48 mg/l

(B) 15 g/l, 0.48 g/l

(C) 48 g/l, 15 g/l

(D) 4.8 g/l, 4.8 g/l

END OF SECTION - L

M: BOTANY

Q. 1 - Q. 6 carry one mark each.

- Q.1 C₄ photosynthesis is a biochemical and structural syndrome that enhances
 - (A) Concentration of CO2 in the bundle sheath cells
 - (B) Photorespiration
 - (C) Requirement of water and nitrogen
 - (D) Lower radiation use efficiency
- Q.2 Pioneering work conducted in green revolution
 - (A) C. Subramanium

(B) M. S. Swaminathan

(C) E. C. Cocking

(D) Norman Bourlag

- Q.3 'Bordeaux mixture' contains
 - (A) Copper nitrate and ferric chloride
- (B) Copper sulphate and slaked lime
- (C) Copper sulphate and ferric chloride
- (D) Ferric chloride and slaked lime
- Q.4 The 'Kornberg's enzyme' is now known as
 - (A) DNA polymerase III

(B) DNA polymerase II

(C) DNA polymerase I

- (D) DNA ligase
- Q.5 Genome sequencing of rice will help to
 - (A) Characterize genes present in the rice genome
 - (B) Validate the genes available in other plants
 - (C) Control agri-business
 - (D) Control rice germplasm
- Q.6 Identify the correct statement
 - (A) Cytokinin does not regulate cell division in plants
 - (B) Kinetin was discovered as a breakdown product of DNA
 - (C) Osmotic adjustment of cells does not help water balance in plants
 - (D) Cytokinin enhances leaf senescence

Q. 7-Q. 24 carry two marks each.

- Q.7 Identify the correct statements
 - P Caryopsis, one-seeded dry indehiscent fruit of Gramineae
 - Q Lithocyst, a cell containing starch
 - R Aleurone layer contains protein granules and enzymes
 - S Embryo development is not of a single cell origin
 - (A) Q, R

XL

- (B) P, S
- (C) P, R
- (D) Q, S

Q.8 NADH \rightarrow Q \rightarrow ? \rightarrow Cyt $c_1 \rightarrow$? \rightarrow Cyt $(a + a_3) \rightarrow$ O₂

Sequence of electron transfer in oxidative phosphorylation is given above. Complete the missing sequence

(A) Cyta and Cytb

(B) Cyta and Cyta

(C) Cytb and Cytc

(D) Cytb and Cytb,

Q.9				point of view ? ccumulate metals from the			
	R Using R	cation of soil phenolic po T-PCR to quantify gene on plant phylogeny and e	expression in plants				
	(A) P, Q	(B) P, R	(C) R, S	(D) P, S			
Q.10	Q 'Entropy R The tran	ond law of thermodynam y' is a measure of the ava sfer of energy through the	illable energy resulting the food chain of an ecos	law of conservation of energy from transformations ystem is termed as 'energy flow r of energy towards more avail	w'		
	(A) P, Q	(B) P, R	(C) Q, R	(D) Q, S			
Q.11	(L) are two gene were crossed wi	es on chromosome no. 2	of sweet pea. Plants wit wer and short pollen gra	in (l) recessive to long pollen in the hard flower and long pollen gains. The hybrids were test cro	grains		
		Red flower with long Red flower with shor White flower with shor White flower with sho	t pollen grain g pollen grain				
	What wo	ould be the map distance	between R and L?				
	(A) 16 cM	(B) 8 cM	(C) 10 cM	(D) 30cM			
Q.12	P Gramino Q Brassica R Gramino	d Michelia champaca bel eae and Chenopodiaceae aceae and Malvaceae eae and Magnoliaceae ceae and Myristicaceae		milies.			
	(A) P	(B) Q	(C) R	(D) S			
Q.13	Q All mus R Dioscor	manufactured from Gelia	ploured mushrooms are a used as antifertility dru		ia of		
	(A) P, R	(B) P, Q	(C) Q, R	(D) R, S			
Q.14	Identify the corr	rect statements					
	P Heterosis is a proven way of increasing productivity of many crop plants Q Weed caused considerable yield loss and reduce farmer's income R PR (Pathogenesis related) proteins protect plants against bacteria S Marker assisted selection can improve crops in field						
	(A) P, S	(B) R, S	(C) Q, R	(D) P, Q			

16/32

- Q.15 Which of the following statements are true on ecological point of view?
 - P Biodiversity is affected by environmental pollution
 - Q Alternative agriculture is designed to sustain crop yield while enhancing inputs of fossil fuel, pesticides, etc.
 - R Global climate change is caused by human activities
 - S Acid rain is caused by excessive CO₂ in the air
 - (A) P, Q
- (B) P, R
- (C) Q, R
- (D) R, S

Q. 16 - Q. 22 are matching exercises. In each question, each item P, Q, R and S in Group I matches one of the items in Group II. Choose the correct match from the alternatives A, B, C and D.

Q.16

Group I

S $Fe^{3+} + K_4[Fe(CN)_6 \rightarrow Fe_4[Fe(CN)_6]_3 + 4K^+$

(1)	
(A)	
P-3	
Q-1	
R-4	
S-6	

S-3

- 1.Kranz anatomy
- 2. Single protoplast culture
- 3. Binary vector
- 4. Microinjection

(D)

P-3

0-4

R-1

S-6

- 5. Partial plasmid map
- 6. Ferric-Ferro-Cyanide complex

Q.17		Group-I	Group- II			
	P	Foliaceous bracts	A large and commonly boat shaped bract enclosing a cluster of flowers			
	Q Spathe		One or more whorls of bracteoles developing at the base of a calyx			
	R	Petaloid bracts	3. Green, flat and leaf like in appearance			
	S	Involucre	 4. Brightly coloured bracts looking somewhat like petals 5. Special bracts- small, dry and scaly 6. One or more whorls of bracts, normally green in colo present around a cluster of flowers 			
	(A)	(B)	(C) (D)			
	P-5	P-3	P-3 P-4			
	Q-2	Q-1	Q-6 Q-5			
	R-3	R-4	R-3 R-2			
	S-4	S-6	S-2 S-1			

Q.18	(Group-I		Grou	p- II	
	P	Atropin		1. Digitalis pi	urpurea	
	Q	Cocaine	2. Triticun			
	Q R	Digitalis		3. Erythroxyle	on coca	
	S Hops			4. Humulus lupulus 5. Atropa belladonna 6. Datura stramonium		
	(A)		(B)	(C)	(D)	
	P-6		P-3	P-5	P-6	
	Q-5		Q-2	Q-3	Q-5	
	R-4		R-4	R-1	R-3	
	S-2		S-1	S-4	S-1	

	Group-I	Grou	ıp- II
P	Late blight of potato	1. Synchytriu	m endobioticui
Q	Early blight of potato	2. Rhizoctoni	a solani
Q R S	Black scurf of potato	3. Alternaria	solani
S	Wart diseases of potato	5. Phytophth	ora colocasiae ora arecaceae ora infestans
(A)	(B)	(C)	(D)
P-6	P-6	P-5	P-4
Q-3	Q-3	Q-3	Q-3
R-2	R-1	R-2	R-2
S-1	S-2	S-1	S-1

Q.19

LIFE SCIENCES-XL

2008				
Q.20		Group-I	Group- II	
	P	Insect Resistance Rice	1. psy	
	Q	Non-antibiotic selection system	2. cry1Ab	
	R	Antibiotic marker gene	3. hpt	
	S	C ₄ photosynthesis	4. PEPC 5. PMI 6. Rubisco	
	(A)	(B)	(C)	(D)
	P-2	P-5	P-2	P-1
	Q-1	Q-2	Q-5	Q-2
	R-3	R-1	R-3	R-4
	S-4	S-6	S- 4	S-6
Q.21		Group-I	Group- II	
	D	D Malandara'	1 Di	t.
	P	P. Maheshwari E. Hood	Plant embryology Genetics	
	Q R	B. McClintock		
	S	S. M. Sarkar	Agrobacterium transformatio Growth hormone	
	5	S. IVI. Sdikdi		
			Molecular biology Systematic botany	
	(A)	(B)	(C)	(D)
	P-1	P-1	P-1	P-2
	Q-6	Q-3	Q-2	Q-1
	R-3	R-2	R-6	R-5
	5.2	\$.1	9.5	6.3

Q.22		Group-I	Grou	р- П
	P Q R S	IPR Selectable reporter gene Vectorless DNA transfer Selectable marker gene	 Intellectual property rights International plant registration Protoplast system Agrobacterium system Neomycin phosphotranferase Green fluorescent protein 	
	(A) P-1 Q-6 R-3 S-5	(B) P-1 Q-6 R-4 S-2	(C) P-2 Q-6 R-3 S-5	(D) P-2 Q-5 R-4 S-6

Q-3 R-2 S-4

Q-6 R-3 S-2

XL

S-5

S-3

Common Data Questions

Common Data for Questions 23 and 24:

Union of stamens may involve adhesion or cohesion. Arrangement of stamens of a flower is given below:

- Q.23 Identify the type of stamen
 - (A) Diadelphous
 - (C) Polydelphous

- (B) Monadelphous
- (D) Syngenesious
- Q.24 Identify the family from the type of stamens
 - (A) Malvaceae
- (B) Solanaceae
- (C) Compositae
- (D) Apiaceae

Linked Answer Questions: Q.25 to Q.28 carry two marks each.

Statement for Linked Answer Questions 25 and 26:

The following reaction is taking place in aerobic organisms

$$CH_{3}COSCoA + O = C - COO^{-} \xrightarrow{H_{2}O} COO^{-}$$

$$CH_{2} \qquad CH_{2}$$

$$COO^{-} \qquad HO-C-COO^{-} + CoASH$$

$$CH_{2} \qquad CH_{2}$$

$$CH_{2} \qquad COO^{-}$$

- Q.25 Identify the products from the above reaction
 - (A) Isocitrate and Coenzyme A
 - (C) Pyruvate and acetyl CoA

- (B) Citrate and Coenzyme A
- (D) Succinate and acetyl CoA
- Q.26 Identify the enzyme and the type of reaction
 - (A) Citrate synthase and condensation reaction
 - (B) Citrate synthatase and condensation reaction
 - (C) Isocitrate dehydrogenase and oxidative decarboxylation
 - (D) Aconitase and dehydration reaction

Statement for Linked Answer Questions 27 and 28:

The visible spectrum of light lies between 400-700 nm. The correlation of expression of wavelength is given below:

 $1m \to 10^3 \text{ mm} \to 10^6 \mu\text{m} \to 10^9 \text{ nm} \to 10^{10} \text{ A}^{\circ}$

	Colour Spectrum	Wavelength (nm)
P	Blue	1. 500-550
Q	Green	2. 450-500
R	Yellow	3. 650-700
S	Red	4. 550-600

Q.27 Identify the correct combination from the above options

(A)	(B)	(C)	(D)
P-1	P-2	P-2	P-3
Q-2	Q-1	Q-1	Q-1
R-4	R-3	R-4	R-2
S-3	S-4	S-3	S-4

- Q.28 For conversion of wavelength from nm to A° and µm
 - (A) Divide the wavelength by 10 and 10^{-3}
 - (B) Multiply the wavelength by 10 and 10⁻³
 - (C) Divide the wavelength by 10 and 10⁻⁴
 - (D) Multiply the wavelength by 10 and 10⁻⁵

END OF SECTION - M