MATHEMATICS

CODE :- 12

Time Allowed: Two Hours	Marks: 100
Name:	Roll No.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

Read instructions given below before opening this booklet:

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Any representation regarding questions and answers, candidate may give in writing to the Centre Supervisor just after the examination is over. Later on it will not be entertained.

SEAL

MP-11/Maths Series-B

1.	The centre of gravity of the surface of a hollow cone lies on the axis and divides it in the										
	ratio:	Ü					and divides it in the				
(A)	3:4	(B)	2:3	(C)	1:2	(D)	None of the above				
		. 1/ 1									

- $\lim_{x \to 0} \frac{(1+x)^{1/x} e + \frac{1}{2}ex}{x^2}$ is equal to: 2.
- $(B) \frac{11e}{24}$ (C) $-\frac{11e}{24}$ (A) (D) None of the above
- The value of a so that $f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ is continuous at x=0, is 3.
- (A) None of the above 1 (B) -1 (C)+ 1 (D) 4.
- A set is defined as:
- (A) a non empty collection of objects a collection of well defined objects (BY
- (C) a well defined collection of objects (D) None of the above
- The integer n for which $\lim_{x\to 0} \frac{(\cos x 1)(\cos x e^x)}{x^n}$ is a finite non-zero number is: 5.
- (A) 3 (B) (D) None of the above
- If the sum of n terms of the series 2,5,8,11,.... is 60100, then n is: 6.
- (A) 100 (B) 200 (C) 150 (D) None of the above
- 7. If a,4,b are in A.P. and a,2,b are in G.P., then a,1,b are in:
- (A) A.P. (B) G.P. (C) H.P. (D) None of the above
- 8. If a,b,c are in A.P. as well as in G.P., then
- (A) a=b=c(C) $a=b \neq c$ (D) -None of the above
- 9.
- If $x = 1 + y + y^2 + y^3 + \dots$ ad. inf.. then y is: (A) (D) None of the above
- 10. The nth term of the series $4+6+9+13+18+\dots$, is
- (B) $(n^2 + n + 6)/2$, (C) n(n+1)/2(A) n+1(D) None of the above

11.	If the matrix A	AB is ze	ero, then				•			
(A)	A=O or B=O			(B)	A=O a	and B=O				
(C)	it is not neces	sary tha	t either A=O o	r B=O;		(D)	None	of the above		
12.	If A and B are	two m	atrices such tha	at AB =	B and I	3A=A t	hen A ²	$+B^2$ is equal to:		
(A)	2AB	(B)	2BA	(C)	A+B		(D)	None of the above		
13.	If the system									
	ax+y=1, x+2y	=3 and	2x+3y=5 are c	onsiste	nt, then	a is giv	en by:	_		
(A)	1	(B)	0	(C)	2		(D)	None of the above		
14.	One root of th	=								
	$\begin{vmatrix} 3x + 8 & 3 \\ 0 & 3x - 3 \\ 3 & 3 \end{vmatrix}$	$\begin{array}{c} 3 \\ 3 \\ 3x - \end{array}$	=0, is;					65.		
(A)	$\frac{8}{3}$	(B)	$\frac{2}{3}$	(C)	$\frac{1}{3}$		(D)	None of the above		
15. I	15. Let $A = \{1,2,3,4,5\}$, $B = \{2,3,6,7\}$, then the number of elements in $(A \times B) \cap (B \times A)$ is:									
(A) 16.		boys i						None of the above ayed hockey and 336 and hockey, 80 played		
^								24 played all the three		
			rs of boys wh							
(A)	128	(B)	216	(C)	240		(D)	None of the above		
(A) 17.				, , , , , , , , , , , , , , , , , , ,		hers N	•	by xRy iff x is a factor		
17.				n natu	ai num	0015 11	611011	oy havy ha h lo w zweet-		
	of y (ie x	y). The	n K is :							
(A)	reflexive an	d symn	netric			(B)		itive and symmetric		
(C)	_		e but not symi			(D)		e of the above		
18.	If the functi	on $f:$	$[1,\infty) \rightarrow [1,\infty)$	is defin	ed by f	f(x)=2	x(x-1), th	en f^{-1} is:		
(A)	$\left(\frac{1}{2}\right)^{x(x-1)}$	`				(B)	$\frac{1}{2}$ [1+	$\sqrt{(1+4\log_2 x)}$		
(C)	$\frac{1}{2}\left[1-\sqrt{(1+4)^2}\right]$	$\frac{1}{\log_2 x}$				(D)	None	e of the above		
MP-1	1/Maths			S	eries-B	•				

		J		011 W 111.	uii Ouii	unow	· stolle is i	1. 11	he greatest distance to
	which he	can throw	it, wil	l be:					
(A)	h	(B)	h/2		(C)	2h	(D))	None of the above
20	A body is	s moving	in a str	aight li	ne wit	h unifo	rm accelei	ratio	on. It covers distances
	of 10m ar	nd 12m in	third a	nd four	th sec	ond res	pectively, 1	then	the initial velocity in
	m/sec is	•							
(A)	5	(B)	4	~	(C)	3	(D))	None of the above
21.	From the	top of a	tower	of heig	ght 10	0 m , a l	oall is proj	jecte	ed with a velocity of
	10m/sec.	It takes	5 secon	nd to r	each t	he grou	und. If g=	10m	n/sec ² , then angle of
	projection	n is:							
(A)	60°	(B)	45°		(C)	30°	(D))	None of the above
22.	If the end	ala ar hata	voon tu	va fama	of		a amitu da s		π
	If the ang	gie a beiv	ween tv	wo torc	es or e	equai ii	agnitude 1	s re	duced to $\alpha - \frac{\pi}{3}$, then
	the magn	itude of th	eir rest	ıltant b	ecome	s $\sqrt{3}$ ti	mes of the	ear	lier one. The angle α
,	is:								
(A)	$\frac{\pi}{2}$	(B)	$\frac{2\pi}{2\pi}$		(0)	π	(D))	None of the above
ŕ	3		3		1	2		,	
:3	A force $\sqrt{}$	5 units ac	ets alon	g the li	ne.				
	$\frac{x-3}{2} = \frac{y}{(-1)^n}$	$\frac{-4}{-1}$. The	momen	t of the	force	about t	he point (4	,1)	along z axis is :
(A)	5		N				•		
(<i>B</i>)	$\sqrt{5}$		1						
(C)	$-\sqrt{5}$								
(D)	None of t	he above							
24	Weights 2	2,3,4 and	5 lbs ar	re suspe	ended	from ui	niform leve	er 6:	ft long at distances of
	1,2,3 and	4 ft respe	ctively	from	one en	d. If the	e weight o	f le	ver is 11 lbs, then the
	distance o	of the poin	t at wh	ich it w	ill bal	ance fro	om this end	l is	:
(A)	$\frac{63}{25}$ ft		(B ₄)	73 ft		(C)	$\frac{83}{6}$ fr	ſΓ	None of the above
- /	25		(300)	25		(0)	25	(**	, rione or me accide

25.	Two cars A	and B	are moving	g uniform	ly on t	wo strai	ght re	oads at right angles to
	one another	at 40	and 20 km	/h respec	tively.	A passo	es the	intersection of roads
	when B has	still to	move 50 ki	m to reacl	h it. Th	e shorte	st dis	tance between the two
	cars is:							
(A)	$20\sqrt{5}$ kms.		(B) 20 kms	•	(C) 2	25 kms.	(D) None of the above
26.	Let R be a rel	ation of	n a set A suc	h that R^{-1}	$= R \cdot T$	hen R is	:	
(A)	reflexive		(B) symr	metric	(C) t	ransitive	;	(D) None of the above
27.	The range of	the fund	ction $f(x) =$	P is:				
(A)	{1,3}	(P)	{1,2,3}	(C)	{2,3,4	}	(D)	None of the above
28.	Given $f(x) =$	$\log\left(\frac{1+1}{1-1}\right)$	$\left(\frac{x}{x}\right)$ and $g(x)$	$(x) = \left(\frac{3x + 3x}{1 + 3x}\right)$	$\left(\frac{x^3}{x^2}\right)$ the	en (fog)	x equa	als: ,
	-f(x)						(D)	
29.	If z=x +i y an	$d Z^{1/3}$	= p + iq, then	$a\left(\frac{x}{p} + \frac{y}{q}\right)$	$/(p^2+q)$	²) is equ	ial to	:
(A)	2	(B)	1	(e)	-2		(D)	None of the above
30.	If w is an ima	iginary	cube root of	unity, the	n (1+w-	$(w^2)^7$ equ	ials:	
(A`	-128w	(B)	-128w ²	•	(C)	128w	(E) None of the above
31.	The points re	present	ing $(\sqrt{5} + i\sqrt{5})$	$(\overline{3})^{1/3}$ lie or	na:			
(A)	straight line		N		(B) ci	rcle with	centr	e at (0,0) and radius $\sqrt{2}$
(C) _.	circle with ce	entre at	(0, 0) and rac	dius $2\sqrt{2}$	(D) No	one of th	e abov	ve
32.	The expression	on tan	$i\log\left(\frac{x-iy}{x+iy}\right)$	reduce	s to:			
(A)	$\frac{2xy}{x^2 - y^2}$	(B)	$\frac{xy}{x^2 - y^2}$	(C)	$\frac{2xy}{x^2+y}$	$\frac{y}{y^2}$	(D)	None of the above
33.	If x is real, th	ne maxi	mal value of	$(3x^2 + 9x$	+17)/($3x^2 + 9x$	+ 7)is	:
(A)	1	(B)	17/7	(0	C) 41	•	(D)	None of the above

34.	The real root	ts of the	equation 7 ^{log} 7	$(x^2-4x+5) =$	x-1 are	:					
(A),	4 and 5	(B)	2 and 3	(C	C) 1 and	12	(D)	None of the above			
35.	If a^2,b^2,C^2	are in A	A.P., then $\frac{a}{b+c}$	$\frac{b}{c+a}$	$\frac{c}{a+b}$ as	re in :					
(A)	A.P.	(B)	G.P.	(C)	H.P.		(D)	None of the above			
36.	Number of c	ommon	tangents to the	circles	$x^2 + y^2$	$^{2} + 4x +$	·6 <i>y</i> +9 =	= 0 and			
	$x^2 + y^2 - 8x$	-10y +	5 = 0 is:			•	`				
(A)	1	(R)	2	(C)	3		(D)	None of the above			
37.	The locus of	the poir	nts of intersecti	on of th	e perpe	ndicula	` ′	nts to the parabola			
	$x^2 = 4ay, is$										
(A)	y=a	(B)	x=a	(C)	y=-a		(D)	None of the above			
38.	If the normal	s at two	points P and C	of a pa	rabola	$y^2 = 4\delta$		sect at a third point R or			
,	the curve, then the product of the ordinates of P and Q is:										
(A)	$8a^2$	(B)			$-4a^2$		(D)	None of the above			
39.	If the vertex a	and focu	s of hyperbola	are (2,3	3), (6,3)	respec	tively a	nd eccentricity is 2, ther			
	equation of th										
(A)	$\frac{(x+2)^2}{9} - \frac{(y+2)^2}{2}$	$\frac{-3)^2}{27}$	1			(B)	$\frac{(x+1)}{16}$	$\frac{(y-3)^2}{48} = 1$			
(C)	$\frac{(x+2)^2}{16} - \frac{(y+2)^2}{16}$	$\frac{(-3)^2}{48} = \frac{1}{100}$		•		(D)	None	of the above			
40.	If a,b,c are in	A.P., th	en the value of	f				•			
	$\begin{vmatrix} x+1 & x+2 \\ x+2 & x+3 \\ x+3 & x+4 \end{vmatrix}$		is:								
(A` ·	0	(B)	3	(C)	-3		(D)	None of the above			
41.	The equation :	x+2y+3	z=1, x-y+4z=0	` '		ave:	(2)	Trone of the above			
(A)	only one solut					(B)	no sol	ution			
(C)	infinitely man	y soluti	ons			(D)	None o	of the above			
,						-					

Series-B

MP-11/Maths

42.
$$\lim_{n\to\infty} \left[\frac{1}{n^2} \sec^2 \frac{1}{n^2} + \frac{2}{n^2} \sec^2 \frac{4}{n^2} + \frac{3}{n^2} \sec^2 \frac{9}{n^2} + \dots + \frac{n}{n^2} \sec^2 1 \right] = :$$

- $\frac{1}{2}$ tan 1 (A)

- (B) $\tan 1$ (C) $\frac{1}{2} \sec 1$ (D) None of the above

43. If
$$f(x) = \left[\frac{e^{(1/x)} - 1}{e^{(1/x)} + 1}\right]$$
, $x \neq 0$ and $f(0) = 0$; then f is:

- (A)continuous at x=0
- discontinuous at x=0 (B)
- discontinuous at x=0 but can not be made continuous at x=0 (C)
- (D) None of the above

44. If
$$f(x) \begin{vmatrix} x^3 & \cos x & e^{x^2} \\ \sin x & x^2 & \sec x \\ \tan x^3 & 1 & 2 \end{vmatrix}$$
, then the value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$ is:

- (A)
- (C) 0
- None of the above (D)

45.
$$\int \frac{\cos x}{\cos(x-a)} dx \text{ is equal to } :$$

- $x \cos a + \sin a \log |\cos (x-a)| + c$ (A)
- $x \cos a \sin a \log |\cos (x-a)| + c$ **(B)**
- $\sin a \sin a \log |\cos (x-a)| + c$ (C)
- (D) None of the above
- $\int \cos(\log x) dx$ is equal to: 46.
- (A) $\frac{x}{2}[\cos(\log x) \sin(\log x)] + c$
- (B) $\frac{x}{2}[\cos(\log x) + \sin(\log x)] + c$
- $x[\cos(\log x) + \sin(\log x)] + c$ (C)
- None of the above (D)

47. If
$$f(x) = f(a - x)$$
, the $\int_0^a x f(x) dx$ is equal to:

(A) $a \int_0^a f(x) dx$ (B) $a^2 \int_0^a f(x) dx$ (C) $\frac{a}{2} \int_0^a f(x) dx$ (D) None of the above

- 48. $\int_{0}^{\pi} \frac{dx}{1 2a \cos x + a^{2}} \quad a < 1 \text{ is equal to}:$
- (A)
- $\frac{\pi \ a \log 2}{4}$ (B) $\frac{4\pi}{2-a^2}$ (C) $\frac{\pi}{1-a^2}$
- (D) None of the above

6

49.	The area enclosed by the curve $y=x^5$, x axis and the ordinates $x=1$, and $x=-1$ is:
(A)	0 (C) $\frac{1}{6}$ (D) None of the above
50	The smaller area enclosed by the circle $x^2 + y^2 = a^2$ and the line x+y=a, is:
(A)	$\frac{a^2}{4}(\pi-2)$ (B) $\frac{a^2}{4}(\pi+2)$ (C) $\frac{a^2}{2}(\pi+2)$ (D) None of the above
51	Solution of equation $\frac{dy}{dx} + \frac{1}{x} \tan y = \frac{1}{x^2} \tan y \sin y$ is:
(A)	$2x + \sin y (1 + cx^2) = 0$ $(B)^{\alpha} 2x = \sin y (1 + 2cx^2)$
(C)	$2x = \cos y (1 + cx^2)$ (D) None of the above
52	The solution of $\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$ is:
(A),	$x+c = \log\left(1+\tan\frac{x+y}{2}\right) \qquad (B) \qquad y+c = \log\left(1+\tan\frac{x+y}{2}\right)$
(C)	y+c= $\log \left(1 - \tan \frac{x+y}{2}\right)$ (D) None of the above
53.	Mean deviation of numbers 3,4,5,6,7 from the mean is:
(A)	5 (B) 25 (C) 1.2 (D) None of the above
54.	In an experiment with 15 observations the following results were available
	$\sum x = 170$, $\sum x^2 = 2830$. One observation that was 20 was found to be wrong and
	was replaced by the correct value of 30. The correct variance is:
(A)	78 (B) 188 (C) 8.33 (D) None of the above
55.	A car completes the first half of its journey with a velocity v_1 and the rest half with
	velocity v_2 . Then the average velocity of the car for the whole journey is:
(A)	$\sqrt{v_1} v_2$ (B) $\frac{2v_1 v_2}{v_1 + v_2}$ (C) $\frac{v_1 + v_2}{2}$ (D) None of the above
56.	The mean of the numbers 1,2,3, n with frequencies x,2x,3x, nx is:
(A)	(2n+1)/3 (B) $(2n+1)/6$ (C) $n/2$ (D) None of the above

7

57.	If P (A \cup B) = 2/3; P (A \cap B) = $\frac{1}{6}$, $P(A) = \frac{1}{3}$, then:
(A)	A and B are disjoint events (B) A and B are independent events.
(C)	A and B are dependent events (D) None of the above
58.	If A, B, C can hit a target 4 times in 5 shots, 3 times in 4 shots and 2 times in 3 shot
	respectively, then the probability that exactly two of them will hit the target is:
(A) _.	$\frac{13}{30}$ (B) $\frac{17}{30}$ (C) $\frac{5}{6}$ (D) None of the above
59.	There are m persons sitting in a row. Two of them are selected at random. The probabilit
	that the two selected persons are not together is:
(A)	$\frac{1-\frac{2}{m}}{m}$ (B) $\frac{2}{m}$ (C) $\frac{m(n-1)}{(m+1)(m+2)}$ (D) None of the above
60.	The frequencies of numbers 0,1,2,n, are q^n , C_1 , q^{n-1} , C_2 , q^{n-2} ,
	respectively, where p+q=1, then the mean is:
(A)	np (B) nq (C) npq (D) None of the above
61.	Let $ \overline{a} = 1$, $ \overline{b} = 2$, $ \overline{c} = 3$ and $\overline{a} \perp (\overline{b} + \overline{c})$, $\overline{b} \perp (\overline{c} + \overline{a})$, and $\overline{c} \perp (\overline{a} + \overline{b})$, then $ \overline{a} + \overline{b} + \overline{c} $
	is:
(A)	$\sqrt{13}$ (B) 6 (C) $\sqrt{14}$ (D) None of the above
62.	$(\overline{a}.\hat{i})^2 + (\overline{a}.\hat{j})^2 + (\overline{a}.\hat{k})^2$ is equal to: $(\alpha \cdot \hat{i}) \stackrel{(\alpha \cdot \hat{i})}{\alpha}$
(A)	$(\overline{a}.\hat{i})^2 + (\overline{a}.\hat{j})^2 + (\overline{a}.\hat{k})^2 \text{ is equal to} : \qquad (\alpha.\hat{i}) \stackrel{(\alpha.\hat{i})}{\sim} $ $a^2 \qquad (B) 3\overline{a} \qquad (C) \overline{a}.(\hat{i}+\hat{j}+\hat{k}) ^2 \qquad (D) \text{ None of the above}$
	$[\overline{a} + \overline{b}, \overline{b} + \overline{c}, \overline{c} + \overline{a}]$ is equal to:
(A)	$[\overline{a}, \overline{b}, \overline{c}]$ $(C) 3 [\overline{a}, \overline{b}, \overline{c}]$ (D) None of the above
64.	If $\overline{a}, \overline{b}, \overline{c}$ are non coplanar vectors and $\overline{p} = \frac{\overline{b} \times \overline{c}}{[b,c,a]}$, $q^- = \frac{\overline{c} \times \overline{a}}{[\overline{c},\overline{a},\overline{b}]}$, $r = \frac{a \times b}{[\overline{a},\overline{b},\overline{c}]}$, then
	$(\overline{a}+\overline{b}).\overline{p}+(\overline{b}+\overline{c}).\overline{q}+(\overline{c}+\overline{a}).\overline{r}$ is equal to:
(4)	(R) 2 (C) 3 (D) None of the above

65.	Constant fo	orces $\overline{P} =$	$=\hat{i}-2\hat{j}+3\hat{k}$	$, \overline{Q} = -\hat{i} + \hat{j}$	$3\hat{j}-\hat{k}, a$	$nd \ \overline{R} = 2\hat{i} - 4\hat{j}$	$+3\hat{k}$ act on a	particle at
						(6,1,-3), then		
(A)	13	(B)		(C)		1	None of the	
66.	The order	and deg	ree of diff	ferential e	quation:	$\left[\frac{d^2y}{dx^2} + x\frac{dy}{dx}\right]$	$ = \left[\frac{d^2 y}{dx^2} \right]^{1/2} $	³ + yx are
	respectivel	y:						
(A)	2, 3	(B)	2, 9	(C)	2, 3/4	(D)	None of the	above
67.	The Points	on the cu	$rve y = \frac{2}{3}x$	$3 + \frac{1}{2}x^2 \ at$	which th	he tangents mo	ake equal ang	eles with
coord	linate axes, a	re:					C) *
(A)	$\left(-\frac{1}{2},\frac{5}{25}\right)$	$\left(-1,\frac{-1}{6}\right)$			(B)	$\left(\frac{1}{2},\frac{5}{24}\right)\left(1,\right)$	$\frac{-1}{6}$	
(C)	$\left(\frac{1}{2},\frac{5}{24}\right)$	$\left(-1,\frac{-1}{6}\right)$:		(D)	None of the	above	
68.	The equati	on sin x+	$x \cos x=0$	nas at least	one real	roof in the inte	erval:	
	$(0,\pi)$	$(\mathbf{B}_{i}) (-\pi)$	$(2, \pi/2)$		$(C) (0, \pi$	74)	(D) None of	tne above
69.	The volum	ne of a sph	iere is incre	asing at the	rate of	1200 c.c./sec.	The rate of in	crease of
	its surface	when the	radius is 10	cm is:				
(4)	120 sa am	Isac	Ø21 240 s	a cm /sec	(C) 2	00sa.cm/sec	(D) None o	of the above

- ve $2x^2 - x$ at which the tangent line is parallel to the line The points on the curve y70.

(A)
$$(2,-2), \left(\frac{2}{3},\frac{14}{27}\right)$$
 (B) $(2,-2), \left(\frac{-2}{3},\frac{14}{27}\right)$

(C)
$$(-2,2)(\frac{-2}{3},-\frac{14}{27})$$
 (D) None of the above

The length of tangent to the curve $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ at θ point is: 71

(A)
$$2a \sin\left(\frac{\theta}{2}\right)$$
 (B) $a \sin\left(\frac{\theta}{2}\right)$ (C) $2a \sin\theta$ (D) None of the above

72	The maximu	ım value	$e ext{ of } x^{1/x} is :$					
(A),	$(1/e)^e$	(B)	$e^{1/e}$	(Q)	e		(D)	None of the above
73.	The point (0	,3) is ne	arest to the cu	$x^2 =$	= 2y at the	e point	:	
·(A)	(2,2)	(B)	(-2,2)	(C)	(2,-2)		(D)	None of the above
74.	20 is divide	d into t	wo parts so the	hat prod	uct of cul	be of o	one qua	antity and square of the
	other quanti	ty is ma	ximum. The p	arts are :				
(A)	6,14	(B)	16,4	(C)	12,8		(D)	None of the above
75.	The function	f(x) =	$x^3 + 6x^2 + (9$	+2K)x	+1 is incr	easing	functio	n if:
(A)	$K > \frac{3}{2}$	(B)	$K \ge \frac{3}{2}$.(C)	$K < \frac{3}{2}$	<u>.</u>	(D)	None of the above
76.	A particle	of mass	m is thrown	in the	vaccum	with i	nitial v	velocity u and angle of
	projection a	ι. Its po	sition at time	t will be	given by	•	4.	7,5
(A)	$x = (u\cos\alpha)$	$)t, y=(\iota$	$u\sin\alpha (t-gt)$	(B)	(B) x	$=u\cos$	α – gt ,	$y = (u \sin \alpha)t - gt^2$
(C)			$u\sin\alpha$) $t-\frac{1}{2}gt$					
77.	Let T_H be t	he time	taken by a pr	ojectile 1	upto the h	nighest	point a	and T the time of flight.
	Then:							
(A)	$T = T_H$			1	9	(B)	2T=3	T_{H}
(C)	$T_H = (u \sin u)$	$\alpha)/g$, T	$T = (2u\sin\alpha)$	/g		(D)	None	of the above
78	A Projectile	e is thro	own from the	origin v	with such	as ve	locity	u that it passes through
	P (a,a) for the	he two a	ngles of proje	ction α	and β (α	<i>t</i> ≠β).	Then	
(A)	$\alpha + \beta = \frac{3\pi}{4}$. ((B) $\alpha + \beta =$	$=\frac{\pi}{2}$	(C) α	$+\beta = t$	an ⁻¹ 2,	(D) None of the above
79.	Which one	of the fo	llowing is tru	e ?				
(A)	$\overline{F} = yz\hat{i} + z$	$x\hat{j} + xy\hat{k}$	is a conserva	tive for	ce.			
(B)	$\overline{F} = x\hat{i} + y\hat{j}$	$+z\hat{k}$ is i	not a conserv	ative for	ce.			
(C)	$\overline{F} = z^2 \hat{i} + x$	$^{2}\hat{j}+y^{2}\hat{k}$	is a conserv	ative for	rce.		•	
(D).	None of the	above						

80.	W is the wo	rk done l	by the force	$e x^2 \hat{i} + y \hat{j}$	along	g a close	d path	consist	ting of the line	*.
	segments fror	n (0,0) to	(1,1) to (1,	0) to (0,0)	, then	:				
(A)	W=0	(B)	W=1/3	(C)	W=1		(D)	None o	of the above	
81.	$If x^2 + y^2 + 4$	1x+8y-1	t=0	and $x^2 + y$	$y^2 + \lambda x$	+3y-4=	0 cut	orthog	onally then the	
	value of λ is	:								
(A)	11	(B)	11/2	* (C)	$-\frac{11}{2}$		(D)) None	of the above	
82.	$\text{If } \sum_{k=0}^{100} i^k = x$	+iy, then	values of x	and y are	;:					
(A)	x=1,y=0						(D)	None	of the above	•
(83)	If $i(1+i)(1+i)$	2 <i>i</i>)	(1+ni)=0	a+ib, then	1.2.5.	10	$(1+n^2)$	is equ	al to:	
(A)	a^2-b^2					(C) b^2 –	a^2	(D) N	one of the above	Э
84.	The argumen	t of the co	omplex nur	mber $\frac{13-}{4-9}$	$\frac{5i}{9i}$ is			,		
(A)			$\frac{\pi}{4}$				(D)	None	of the above	•
85.	If α , β are in	maginary	cube roots	of unity,	then va	due of α	$^4+\beta^{28}$	$+\frac{1}{\alpha\beta}$ i	s:	
(A)	1	(B)	-1	(C)	0		(D)	None	of the above	
86.	The equation	of line w	hich passe	s through	the poi	nt (3,4) a	nd the	sum of	its intercepts on	l
	axes is 14, is	•								
(A)	4x+3y=24, x	+y=7			(B)	4x-3y	=24, x+	-y=7		
(C)	4x+3y=24, x		11-2		(D)		of the a			
<u>87</u> .	If a ray trav	velling a	long the li	ne x = 1	gets re	flected f	rom th	e line	x+y=1, then the	e
	equation of t	he line al	ong which	the reflect	ed ray	travels is	:			
(A)	x-y=1	. `	B) y=0		` '	x=0		(B)	None of the ab	
88 -									s in the form of	of
	integers) exa	actly in th	e interior o	f triangle	with ve	ertices (0,	0), (0,2	21) and		
(A)	233	(B ₁	133		(C)	190		(D)	None of the ab	ove

	6 units on x-axi	s. If the centre of	circle lies in Ist q	uadrant then, it	s equation is:
(A)	$x^2 + y^2 - 10x - 8y$	y + 16 = 0		(B)	$x^2 + y^2 + 10x + 8y - 16 = 0$
(C)	$x^2 + y^2 - 10x - 8y$	-16 = 0		(D)	None of the above
90.	If the lines 3x-4	y+4=0 and 6x-8y	=7 are tangents to	a circle, then	the radius of the circle
	is:				
(A)	3 (B)	3/2	(C) ³ / ₄	. (1	None of the above
-0 1.	The equation of	a circle whose co	entre is (3,-1) and	which cuts off	a chord of length 6
	units on the line	e 2x-5y+18=0, is	:		
(A)	$x^2 + y^2 - 6x + 2y$	-28=0		(B)	$x^2 + y^2 + 6x - 2y - 28 = 0$
(C)	$x^2 + y^2 - 6x + 2y$	+28 = 0		(D)	None of the above
92.	The vertices of	a right angled t	riangle are (2,-2)	, (-2,1) and (5	,2). The equation of its
	circum circle is	:			
(A)	(x-2)(x+2) + (y+2)	(y-1)=0		(B)	(x+2)(x-5) + (y-1)(y-2)=0
(C)	(x-2)(x-5)+(y+2)	(y-2)=0		(D)	None of the above
93.	If the distance b	etween foci of an	ellipse is 10 and	latus rectum is	15, then eccentricity is:
(A)	1/4	(B) 1/3	(0	1/2	(D) None of the above
94.	The centre of hype	$rbola 9x^2 - 16y^2$	-18x + 32y - 151	=0, is:	
(A)	(1,1)	(B) (-1,1)	(C)	(1,-1) (D	None of the above
95_	The equation of	hyperbola whose	asymptotes are th	ne straight lines	3
	3x-4y+7=0 and	4x+3y+1=0 and v	which passes throu	igh origin is:	
(A)	$12x^2 - 7xy - 12y$	$x^2 + 31x - 17y = 0,$	(B)	$12x^2 - 7xy - 1$	$2y^2 + 31x + 17y = 0,$
(C)	$12x^{2} - 7xy - 12y$ $12x^{2} + 7xy + 12y$	$x^2 - 31x - 17y = 0$), (D)	None of the a	bove
96.	$\lim_{x\to 3}\frac{x-3}{ x-3 }=$				
ſA	does not exist.	(B) 1	(C)	-1 (D)	None of the above
97.	If $f(2)=4$; and f	(2) = 1, then $\lim_{x \to \infty} Lin$	$n^{\frac{x}{2}} \frac{f(2)-2f(x)}{x-2}$	is given by:	
(A)	-4	(B) -2	(C) 2	(D) None of the above
MP-	11/Maths		Series-B		12

A circle touches y- axis at a distance + 4 units from origin and cuts an intercept of length

89

The value of the derivative of |x-1|+|x-3| at x=2, is: *9*8.

- (A) -2
- 0 ₽,
- (C) 2
- None of the above (D)

The derivative of $f(x) = \log_{x^2} 3$ w.r.t. x is: 99.

- (A)
- $\frac{2 \log 3}{x(\log x)^2}$ (B) $\frac{\log 3}{x(\log x)^2}$, (C) $\frac{\log 3}{2x(\log x)^2}$
- (D) None of the above

1/00. If $x^m y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is:

- (D) None of the above