CET 2009

Code No.: 209101

Important: Ple	ease consult your Admit Card / F	Roll No. Slip before filling your Roll Number on the Test Booklet			
and Answer Sho	<u>eet</u>				
Roll No.	In Figures	In Words			
O.M.R. Answer Sheet Serial No. Signature of the Candidate:					
Paper : II Subject : C	I				

Time: 70 minutes **Number of Questions: 60** Maximum Marks: 120

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS

- Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Subject and Code No. of Question Booklet on the OMR Answer Sheet. Darken the 2. corresponding bubbles with Black Ball Point / Black Gel pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- To open the Question Booklet remove the paper seal (s) gently when asked to do so. 4.
- Please check that this Question Booklet contains 60 questions. In case of any discrepancy, inform the 5. Assistant Superintendent within 10 minutes of the start of test.
- Each question has four alternative answers (A, B, C, D) of which only one is correct. For each question, 6. darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point / Black Gel pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the 7. Answer Sheet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the 8. Question Booklet.
- Negative marking will be adopted for evaluation i.e., 1/4th of the marks of the question will be deducted 9. for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- 10. For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not
- For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used. 11.
- The Answer Sheet is designed for **computer evaluation**. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
- After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty. 13.
- In no case the Answer Sheet, the Question Booklet, or its part or any material copied/ noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent / Observer whose decision shall be final.
- Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.

1.	Whi	ch of the following is an antibiotic?			
	(A)	Paracetamol	(B)	Aspirin	
	(C)	Caffeine	(D)	Penicillin	
2.	Diazonium salt can be prepared by reacting nitrous acid with:				
	(A)	Toluene	(B)	Phenol	
	(C)	Aniline	(D)	Pyridine	
3 .	Fried	del-Craft's alkylation proceeds in the pro	esence	e of:	
	(A)	Lewis acid	(B)	Lewis base	
	(C)	Peroxides	(D)	Sodium hydroxide	
4.	Oils	and fats are esters formed from glycerol	and:		
	(A)	Sulphonic acids	(B)	Long chain aliphatic acids	
	(C)	Aromatic acids	(D)	α-Amino acids	
5 .	Acet	aldehyde reacts with CH ₃ MgI to yield:			
	(A)	Isopropyl alcohol	(B)	Ethanol	
	(C)	Acetone	(D)	t-Butyl alcohol	
		CH ₃ Br O			
6.	The	compound CH ₃ –CH–CH ₂ –CH–C–CH ₃ h	as the	e IUPAC name as :	
	(A)	3-Bromo-5-methyl-2-hexanone	(B)	3-Bromo-2-heptanone	
	(C)	4-Bromo-2-methyl-5-hexanone	(D)	3-Bromo-4-isopropyl-2-butanone	
7.		ch is the correct statement ?			
	(A)	Ethanol should boil at a temperature lower	than tl	nat for ethane.	
	(B)	Ethanol is less acidic than phenol			
	` /	Phenol is more acidic than acetic acid			
_	(D)	Ethyne is a non-linear molecule.			
8.		rboxylic acid can be converted into the co	_	•	
	(A)	SOCl ₂	(B)	<u> </u>	
0	(C)	Conc. H ₂ SO ₄		P_2O_5	
9.		first step in the chlorination of methane		_	
	(A)	Heterolytic fission of chlorine molecule	(B)	C–H bond cleavage	
10	(C)	Homolytic fission of chlorine molecule	(D)	Formation of a carbocation	
10.		ch is not a true statement?			
	(A)	Starch is a polysaccharide			
	(B)	Sucrose is a carbohydrate	1	lan famoula	
	(C)	Fructose and glucose don't have the same n Glucose is a monosaccharide	ioiecu	iar formula	
11	(D)		h	ng the starting material.	
11.	(A)	synthetic resin bakelite can be obtained l Formic acid	(B)	Acetic acid	
	(A) (C)	Formamide Formamide	(D)	Formaldehyde	
	(C)	Tornamia	(D)	Tormaldenyde	

12.	Whic	ch of the following is not contributing to the	ne env	rironmental pollution?
	(A)	Nitrogen	(B)	Carbon dioxide
	(C)	Sulphur dioxide	(D)	Chlorofluorohydrocarbons
13 .	•	mes are biocatalysts belonging to a class	of co	-
	` /	Alkaloids	(B)	Steroids
	` ′	Proteins	` /	Polyesters
14.		natic sulphonic acids are important comp		
	` /	Soaps	(B)	
		Nylons	(D)	Detergents
15 .		ch of the following is most basic?		
		O H,N-C-NH,		
	(A)	$H_2N-C-NH_2$		$C_6H_5-NH_2$
	(4)		(7)	O C ₆ H ₅ -C-NH,
1.0		$C_2H_5-NH_2$		0 3 2
10.		compound which cannot undergo dehydro	7	
		Methyl bromide	` ′	n-Butyl Chloride
17	` /	Ethyl iodide		Isopropyl bromide
1/.		anilide is obtained by a reaction of aniling		
	(A)		` /	Acetamide
10	` '	Methyl chloride	` '	Acetyl chloride
10.		ch of the following does not undergo Cam		
	` ′	Acetaldehyde Triablaragetaldehyde	` /	Formaldehyde Panzaldehyde
10	` /	Trichloroacetaldehyde	` ′	Benzaldehyde
19.	(A)	number of sigma bonds and pi-bonds in ((B)	_
	(A) (C)		(D)	
20		ch one is an electrophile?	(D)	2, 1
4 0.		AlCl ₃	(B)	C,H,NH,
	(C)			$C_2H_5H_2$ C_2H_5OH
21	` /	nybridized orbitals employed to explain	` /	2 3
41 .	(A)	sp ²		sp^3d^2
	(C)	-	` ′	sp ³ d
22.	` /	planar geometry is exhibited by :	(D)	<i>эр</i> u
	_	ClO ₄	(B)	CO ₃ ²⁻
	(C)	7	(D)	5
23.	` ′	largest O–O bond length is expected in t	` ′	3
		O, 2+	(B)	O, +
	(C)	2	\ /	$O_2^{2^-}$
	(-)	<u> </u>		L

24.	The values of n and m for the spectral lines	to be	observed in the visible region in the relationship			
	$\overline{v} = \mathbf{R} \left[\frac{1}{\mathbf{n}^2} - \frac{1}{\mathbf{m}^2} \right]$, correspond to:					
	(A) $n = 1; m = 2, 3, 4$	(B)	n = 1; m = 3, 4, 5			
	(C) $n = 2; m = 3, 4, 5$	(D)	n = 2; $m = 4, 5, 6$			
25 .	The weakest base amongst the halide ions is :	:				
	(A) F^{-}	(B)	CI			
	(C) Br ⁻	(D)	Γ			
26.	6. Li ⁺ ions would form the most thermally stable compound with the anion :					
	(A) CO_3^{2-}	(B)	9			
	(C) ClO_4^-		NO_3^-			
27 .		nizat	ion energies (in ev) of IInd period elements is			
	represented by:					
	(A) C < B	\ /	Be < B			
	(C) O < N	()	N < C			
28.	The carbide ion $[C_3^{-4}]$, present in Mg_2C_3 is iso					
	$\begin{array}{ccc} \text{(A)} & \text{C}_2\text{N}_2 \\ \end{array}$		CO_2			
• •	(C) C ₂ ²⁻	()	CN ⁻			
29.	An element whose hydride when reacted with		-			
	(A) CsH		BeH ₂			
20	(C) AlH ₃	` '	SiH ₄			
30.	The number of ione pairs on oxygen in the cor					
	(A) 0	()	1			
21	(C) 2	(D)	3			
31.	Which element representing the following con					
	(A) [Ne] $3s^2 3p^3$		[Ne] $3s^2 3p^4$			
22	(C) [Ne] 3s ² 3p ⁵	()	[Ne] 3s ¹			
34.	Which of the following electronic configuration (A) $x = 2 \cdot I = 2 \cdot m = \pm 1$					
	(A) $n = 3; l = 2; m = +1$ (C) $n = 3; l = 1; m = +1$		n = 4; $l = 0$; $m = 0n = 4$; $l = 1$; $m = +1$			
22		\ /				
<i>33</i> .	The number of nodal planes in the angular wa $(A) = 0, 1$		•			
		(B) (D)				
3/1	(C) $1, 2$ When Ω is ionized to form Ω^+ the electron r	` /				
J -1 .	When O_2 is ionized to form O_2^+ , the electron r		$\pi^{\rm b}$			
	(A) σ (C) π*	(D)	σ*			
35	What is the oxidation number of S in HS?	(D)	O .			
JJ.	(A) -2	(B)	_1			
	(A) = -2 (C) = +1	(D)				
		(1)	· <u>~</u>			
Che	mistry/209101	3	[Turn over			

36	Whi	ch of the following alkali metal hydroxid	ec ic t	he strongest hase?	
50.	(A)	LiOH	(B)	NaOH	
	(C)	КОН	()	CsOH	
37	` ′	arrangement representing the correct se	` /		
		$N_3^- < O^{2-} < F^-$		$F^{-} < O^{2-} < N_3^{-}$	
		$O^{2-} < F^- < N_3^-$		$F < N_3 - < O^{\frac{3}{2}}$	
38.		queous solution of borax is :	()	3	
	(A)	highly acidic	(B)	highly basic	
		mildly acidic	(D)	mildly basic	
39 .		highest electronegativity is shown by :		•	
	(A)	Carbon atom in its ground state configuration	n		
	(B)	Carbon atom in sp ³ hybridized state			
	` '	Carbon atom in sp ² hybridized state			
	(D)	Carbon atom in sp hybridized state			
40.	Amo	ongst the following, the complex ion with	maxi	imum number of unpaired electrons is : [At No. of	
	Mn =	= 25, Co = 27, Ni = 28, Cu = 29:			
	(A)	MnCl ₄ ²⁻	(B)	CoCl ₄ ²⁻	
	(C)	NiCl ₄ ²⁻	(D)	CoCl ₄ ²⁻ CuCl ₄ ²⁻	
41 .	How	many moles of air are in the lungs of an a	vera	ge adult with a lung capacity of 3.8L? Assume that	
	the person is at 1.00 atm pressure and has a normal body temperature of 37°C.				
	(A)	0.15 mol	(B)	1.5 mol	
	(C)	15 mol	(D)	150 mol	
42.	The	rate of diffusion of a gas is :			
	(A)	directly proportional to its density			
	(B)	directly proportional to its molecular weight			
	(C) directly proportional to square root of its molecular weight				
	(D) inversely proportional to square root of its molecular weight.				
43 .	Whi	ch of the following statements about the	First	law of thermodynamics written as $\Delta U = q + w$ for	
	a clo	sed system, is not correct?			
	(A)	△ U of a process is independent of the path	nofaj	process	
	(B)	q + w is not independent of the path of a pr	ocess		
	(C)	q is not independent of the path of a proces	S		
	(D)	w is not independent of the path of a proces			
44.				and the enthalpy of hydration of BaCl ₂ (anhydrous)	
	is -7	.03 kcal. What is the enthalpy of solution		- <u>2</u>	
	(A)	-4.93 kcal	(B)		
	(C)	+ 4.93 kcal	(D)	–9.13 kcal	

45 .	For a	reaction to occur spontaneously at a giv	en te	mperature and pressure :
	(A)	$\Delta H > 0$ and $\Delta S < 0$	(B)	$\Delta H < T \Delta S$
	(C)	$\Delta S < 0$	(D)	$\Delta S > 0$
46.	The s	solubility of CaF_2 (mol. wt 80) is 80 mg pe	r litr	e. Its solubility product value will be :
	(A)	1×10^{-9}	(B)	2×10 ⁻⁹
	(C)	3×10 ⁻⁹	(D)	4×10 ⁻⁹
47 .	Two	moles of NH, gas are introduced into	a pre	viously evacuated 1.0 litre container in which it
	undergoes dissociation at high temperature			
		$2NH_3(g) =$	N ₂ (g	$(g) + 3H_2(g)$
	At eq	quilibrium 1.0 mole of $NH_3(g)$ is left. The	value	of equilibrium constant, K _c , is :
	(A)	0.75 mole ² litre ⁻²	(B)	1.00 mole ² litre ⁻²
	(C)	1.50 mole ² litre ⁻²	(D)	1.70 mole ² litre ⁻²
48.	For t	he forward reaction in the equation $\mathbf{H}_{2}(\mathbf{g})$	$+\mathbf{F}_{,}$	(g) = $2HF(g)$, $\Delta H = -536 \text{ kJ/mol H}_2$ and the energy
	of act	tivation = 208 kJ/mol H_2 . Which of the following	llowi	ng conclusions about the reaction is not correct?
	(A)	The heat of formation of HF is –268 kJ mol		
	(B)	The activation energy for the reverse reaction	ons is	372 kJ per mole of hydrogen fluoride.
	(C)	At equilibrium, decrease in temperature inc	reases	s the percentage yield of HF
	(D)	At equilibrium, an increase in temperature i	ncrea	ses the percentage yield of HF
49 .	The I	Miller indices of the crystal plane which	cut tł	rough the crystal axes at (2a, 3b, c) are :
	(A)	321	(B)	231
	(C)	123	(D)	326
50.	Whic	ch of the four collegative properties is mo	st oft	en used for molecular mass determination ?
	(A)	Elevation in boiling point	(B)	Depression in freezing point
	(C)	Osmotic pressure	(D)	None of these
51 .	The 1	molal depression constant for water is 1.	86/m	ole kg^{-1} . The freezing point of a solution which has
	0.05	mole of urea dissolved in 250g of water i	s:	
	(A)	− 0.372°C	(B)	− 0.093°C
	(C)	− 0.0372°C	(D)	+ 0.0372°C
52.	The s	specific conductance of 0.01 molar acet	ic aci	id solution at 300 K is 14.5 $\times 10^{-5}\Omega^{-1} cm^{-1}$ and the
	limiti	ing molar conductance of acetic acid at t	he sa	me temperature is 290 $\Omega^{ ext{1}}$ cm $^{ ext{-}}$ mol $^{ ext{1}}$. The degree of
	dissociation of acetic acid is:			
	(A)	5×10^{-1}	(B)	5×10^{-2}
	(C)	5×10^{-3}	(D)	5×10^{-7}
53 .	Assu	me that the following reaction occurs in a	an ele	ectrochemical cell $Cd(S) + Cu^{2+} = Cd^{2+} + Cu(S)$. The
	stand	lard electromotive ϵ^{o} for this cell at 25°C :	is 0.7	416 V. The ΔG^o for the cell reaction at 25°C will be :
	(A)	−143.11 kJmol ⁻¹	(B)	+143.11 kJmol ⁻¹
	(C)	1.431 kJmol ⁻¹	(D)	-1.431 kJmol ⁻¹

- 54. The ϵ for the following cell at 25°C, assuming ideal solutions $Zn|Zn^{++(ZnSO_4)}(10^{-5}M)||Zn^{++(ZnSO_4)}(10^{-4}M)||Zn||$ will be:
 - (A) + 0.059

(B) -0.059

(C) + 0.0296

- (D) -0.0296
- 55. Which of the following statements concerning activation energy is TRUE?
 - (A) The activation energy of a forward reaction can never be smaller than that of a backward reaction.
 - (B) The reaction is fast if the activation energy of a reaction is small.
 - (C) Reaction rates increase with temperature because the activation energy decreases at high temperature.
 - (D) The uncatalysed reaction generally has a lower activation energy than the catalysed reaction.
- 56. Which one of the following statement for order of reaction is not correct?
 - (A) Order of the reaction can be determined experimentally
 - (B) Order of reaction is equal to sum of the powers of concentration terms in differential rate law
 - (C) It is not affected with the stoichiometric coefficient of the reactants.
 - (D) Order of the reaction cannot be fractional.
- 57. The reaction $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ is first order in H_2 and second order in NO. The rate law is :
 - (A) Rate = $k [NO]^2 [H_2]$

(B) Rate = k [NO] [H₂]

(C) Rate = $k [NO] [H_a]^2$

(D) Rate = $k [NO]^{\frac{1}{2}} [H_2]$

- 58. Lyophilic sols are:
 - (A) Irreversible sols

- (B) They are prepared from inorganic compounds
- (C) Coagulated by adding electrolytes
- (D) Self-stabilizing
- 59. Emulsion are colloidal systems consisting of two immiscible liquids and stabilized by substance known as emulsifier or emulsifying agent. The function of emulsifier is:
 - (A) to increase the rate of reaction
 - (B) to increase the surface tension between water and oil
 - (C) to act as a catalyst
 - (D) to lower the interfacial tension between oil and water.
- 60. For a solution, Freundlich adsorption isotherm is represented as:

(A)
$$\frac{x}{m} = KC^{1/n}$$

(B)
$$\frac{m}{x} = KC^{1/n}$$

(C)
$$\frac{x}{m} = KC^n$$

(D)
$$\frac{m}{x} = KC^n$$

where x is the weight of gas adsorbed by m gms of adsorbent at an equilibrium conc. of solute C. K and n are characteristic constants.

ROUGH WORK

ROUGH WORK