2023 2024 EduVark > Education Discussion > Entrance Exams


  #2  
July 16th, 2014, 09:51 AM
Super Moderator
 
Join Date: Mar 2012
Re: ISRO space engineering entrance exam syllabus

This is the ISRO space engineering entrance exam syllabus:

(1) Physical Electronics, Electron Devices and ICs:
Electrons and holes in semi-conductors, Carner Statistics, Mechanism of current flow in a semiconductor,
Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar
Junction transistor; Field effect transistors; Power switching devices like SCRs, GTOs, power
MOSFETs; Basics of ICs-bipolar, MOS and CMOS types; basic and Opto Electronics.

(2) Signals and Systems:
Classification of signals and systems; System modeling in terms of differential and difference
equations; State variable representation; Fourier series; Fourier transforms and their application to
system analysis; Laplace transforms and their application to system analysis; Convolution and
superposition integrals and their applications; Z-transforms and their applications to the analysis and
characterization of discrete time systems; Random signals and probability; Correlation functions;
Spectral density; Response of linear system to random inputs.

(3) Network Theory:
Network analysis techniques; Network theorems, transient response, steady state sinusoidal response;
Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z,
Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network
functions: parts of network functions, obtaining a network function from a given part. Transmission
criteria: delay and rise time, Elmore's and other definitions effect of cascading. Elements of network
synthesis.

(4) Electromagnetic Theory:
Analysis of electrostatic and magneto-static fields; Laplace's and Poisson's equations; Boundary value
problems and their solutions; Maxwell's equations; application to wave propagation in bounded and
unbounded media; Transmission lines: basic theory, standing waves, matching applications, microstrip

lines; Basics of wave guides and resonators; Elements of antenna theory.
(5) Analog Electronic Circuits: Transistor biasing and stabilization. Small signal analysis. Power
amplifiers. Frequency. response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers.
Oscillators, Rectifiers and power supplies. Op Amp, PLL, other linear integrated circuits and
applications. Pulse shaping circuits and waveform generators.

(6) Digital Electronic Circuits:
Transistor as a switching element; Boolean algebra, simplification of Boolean function Karnaugh map
and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS,
PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, Full adder;
Digital comparator; Multiplexer De-multiplexer; ROM and their applications. Flip-flops. R-S, J-K, D
and T flip-tops; Different types of counters and registers. Waveform generators. A/D and D/A
converters. Semi-conductor memories.

(7) Control Systems:
Transient and steady state response of control systems; Effect of feedback on stability and sensitivity;
Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M
and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart;
Approximation of transient response from closed loop frequency response; Design of Control Systems;
Compensators; Industrial controllers.

(8) Communication Systems:
Basic information theory; Modulation and detection in analogue and digital systems; Sampling and
data reconstructions; Quantization and coding; Time division and frequency division multiplexing;
Equalization; Optical Communication: in free space and fiber optic; Propagation of signals at HF,
VHF, UHF and microwave frequency; Satellite Communication.

(9) Microwave Engineering:
Microwave Tubes and solid state devices, Microwave generation and amplifiers, Wave guides and
other Microwave Components and Circuits, Microstrip circuits, Microwave Antennas, Microwave
Measurements, Masers, Lasers; Micro-wave propagation. Microwave Communication Systemsterrestrial
and satellite based.

(10) Computer Engineering:
Number Systems. Data representation; Programming; Elements of a high level programming language
PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design;
Control unit design; Memory organization, I/o System Organization.
Microprocessors: Architecture
and instruction set of Microprocessor's 8085 and 8086, Assembly language Programming.
Microprocessor Based system design: typical examples. Personal computers and their typical uses.


Quick Reply
Your Username: Click here to log in

Message:
Options



All times are GMT +5. The time now is 10:18 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
Content Relevant URLs by vBSEO 3.6.0

1 2 3 4 5 6 7 8