2023 2024 EduVark > Education Discussion > Entrance Exams


  #1  
June 3rd, 2016, 08:09 AM
Unregistered
Guest User
 
NIPER PHD Entrance Exam

Hello sir, I am Sujeet. I am from Mohali. I want you to help me by giving me some information about the National Institute of Pharmaceutical Education and Research (NIPER) PhD entrance exam and its syllabus. Can you help me?
Similar Threads
Thread
NIPER entrance exam papers
NIPER PhD Entrance Exam Syllabus
NIPER PhD Entrance
NIPER Joint Entrance Examination
NIPER Entrance Exam Syllabus
NIPER Entrance
NIPER Entrance Exam Date
NIPER M Pharm Entrance
NIPER Entrance Exam Date
Syllabus for NIPER entrance exam
Niper Entrance Exam Syllabus Pdf
Entrance Exam For NIPER
NIPER Entrance Exam Eligibility
NIPER Ph.D Entrance Exam Syllabus
NIPER Entrance exam criteria

  #2  
June 3rd, 2016, 08:11 AM
Super Moderator
 
Join Date: Mar 2012
Re: NIPER PHD Entrance Exam

As you have asked about the National Institute of Pharmaceutical Education and Research (NIPER) PhD entrance exam and its syllabus, I am giving you information about it, check below for the details

Eligibility:
Candidates should have Master’s degree in respective field with min 60% marks

Selection procedure:
Selection for Ph.D. is based on GPAT/ GATE/ NET Score card, NIPER written test score and personal interview.

Exam pattern:
GPAT Exam:
Duration 3 hours
Total no. of questions: 150
Each question will be of 3 marks
For each right answer 3 marks will be awarded
For each wrong answer 1 mark will be deducted

Syllabus:


Medicinal chemistry and Bulk Drugs (Pharmaceutical Technology)
IUPAC nomenclature, R and S nomenclature, E and Z isomerism, atropiisomerism, Conformations
Hybridization, aromaticity, Huckel’s rule reaction mechanisms- Electrophilic, Nucleophilic, SN1, SN2, SNi, Elimination E1 E2 etc.
Ester hydrolysis, Aac1 Aac2……all eight mechanisms (Jerry march) Markovnikoves rule, Bredts rule, Stereoselectivity, stereospecificity, regioselectivity, chemoselectivity, chirality, stereochemistry, conformations, rearrangements, acids and bases.
Imine-enamine Tautomerism, keto-enol tautomerism, pericyclic reactions, racemic mixture, resolution methods.
Amino acids proteins, various methods for amino acid detection, Ninhydrin test, peptide sequencing, structures of amino acids, essential and nonessential amino acids,
Introduction to thermal methods of analysis like, TGA, DSC, DTA etc.
Carbohydrates classification, osazone test, mutarotation, etc,
Various Heterocycles, Heterocycle synthesis, reactions.
Introduction to Redox reactions.
Spectroscopy: (basics specially): Very very IMP topic. NMR, and C-NMR ranges from Morrison & Boyd or Pavia Mass -Basic concepts about various peaks M+1, molecular ion, base peak etc. (Silverstein) IR - Frequencies of various groups specially carbonyls. UV
Chromatography: Details of every chromatographic method.
Reaction kinetics, first second third and pseudo first order reactions, radio labeling for determination of mechanism.
Common condensation reactions like Aldol, Claisen Perkin, Dickmann, Darzen etc.
Other reactions like Cannizarro’s reaction, Prins reaction, especially reactions of carbonyl compounds.

Natural Products:

In natural products more stress should be given on phytochemistry part rather than biological aspects.
Methods of extraction, isolation and characterization of natural products. Various separation techniques used for isolation of natural products.
Biosynthetic pathways.
Primary metabolites, their examples.
Secondary metabolites, various classes of secondary metabolites (e.g. Alkaloids, glycosides, tannins, lignans, saponins, lipids, flavonoids, coumarins, anthocyanidines etc.). Here most imp. Part is chemistry of these classes.
Important therapeutic classes: antidiabetics, hepatoprotectives, immmunomodulators, neutraceuticals, natural products for gynecological disorders, anti-cancer, anti-viral (mainly anti-HIV), adaptogens etc.
Dietary antioxidants, Marine natural products, Plant growth regulators.
Spectroscopy: Basic concepts of UV, NMR, IR and Mass spectroscopy. Give more stress on IR and NMR.
Stereochemistry: Basic concepts.
Fischer, sawhorse and newmon projection formulaes.
Biological sources of important classes of natural products. (Selected ones only)
Standardization of natural products.
What is difference between natural products and pharmacognosy?

Pharmacology and toxicology:

Pharmacokinetics, pharmacodynamics, pharmacological effect, desired, undesired, toxic, adverse effects.
Bioavailability, bioequivalence, various factors of ADME. (From Bramhankar)
Drug metabolism: various pathways and other details.
Drug interactions, agonist, antagonist, partial agonist, protein binding, drug distribution, distribution volume, excretion pathways etc.
Pharmacological screening: general principles, various screening models, screening methodologies (in vitro and in vivo tests).
Mechanism of drug action, drug-receptor interaction.
Various adrenergic, cholinergic and other receptors
Detailed study of CNS pharmacology
Study of basis of threshold areas of work in NIPER in pharmacology dept. mentioned in brochure.
Diseases: study of the pharmacology of the diseases and drugs used with mode of action especially of diabetes, malaria, leishmaniasis, TB, hypertension, myocardial ischemia, inflammation, and immunomodualtion.
Chemotherapy and pathophysiology- knowledge of antibiotics, their mode of action and the microorganisms responsible for various common diseases.
Bioassay methods, various requirements. Brief knowledge of the statistical tests.

Pharmaceutics and formulation (Pharmaceuticl Technology)

Drug delivery systems (DDS): NDDS models, osmotic pumps, various release patterns eg. Controlled release, delayed release. Sustained release etc., order of release. Oral controlled DDS, factors affecting controlled release.
Carriers in DDS: polymers and their classification, types, carbohydrates, surfactants, proteins, lipids, prodrugs etc.
Transdermal drug delivery systems (TDDS): principles, absorption enhancers, evaluation of TDDS.
Parenterals: requirements, advantages, disadvantages, release pattern, route of drug delivery.
Drug targeting: microspheres, nano particles, liposomes, monoclonal antibodies, etc.
Preformulation detailed.
Complexation, solubilization, polymerization, viscosity measurements.
Dosage form development- stages, implications of dosage form.
Additives of formulation, types, examples, advantages, disadvantages, drug excipient interaction, incompatibility, various types of incompatibilities.
Dosage forms: solid (tablets, capsules, pills etc), liquid (emulsion, suspension etc), sterile (injectables), aerosols. Principles, advantages, disadvantages and problems.
Coating - in detail.
Packaging: materials, labeling etc. Types of containers (e.g. Tamper-proof containers)
In process controls, Product specification, documentation.
Compartmental modeling. (From Bramhankar)
Bioavailability, bioequivalence studies. Methods of improvement of oral bioavailability.
Evaluation of formulation, principles and methods of release control in oral formulations.

Pharmaceutical analysis:

Stability testing of pharmaceuticals, various stability tests, kinetic studies, shelf life determination, thermal stability, formulation stability.
Various analytical techniques
Tests: physical and chemical tests, limit tests, microbiological tests, biological tests, disintegration and dissolution tests.
Spectroscopic methods; UV, NMR, IR, MS, FT-IR, FT-NMR, ATR (Attenuated Total Reflectance), FT-Raman- basics and applications.
Thermal techniques: DSC, DTA, TGA, etc.
Particle sizing: law of diffraction.
Electrophoresis: capillary electrophoresis.
Chromatography- detailed.
QA and QC: GLP, TQM, ISO system.
Preformulation, cyclodextrin inclusion compounds
Solubility: pH, pka, surfactant HLB values, Rheology.
Crystallinity, polymorphism, solvates and hydrates, crystal habits, porosity, surface area flow properties.
Dosage forms, Stages of dosage form development
Osmolality, osmolarity, osmotic pressure, conductivity, Preservatives, Media for bioassay.

Biotechnology:, Pharmaceutical technology biotechnology

Genetic Engg: Gene expression, mutation, replication, transcription, translation, recombination, bacteriophages.
Cloning: methods, isolation of nucleic acids, enzymes in cloning (restriction endonucleases, DNA ligase, DNA gyrase, polymerases etc...), functions of these enzymes, Pallindromes.
Fermentation: fermenters, fermentation process, its regulation, conditions, bioprocessors, various enzymes in fermentation technology. Fermentation of Antibiotics, vitamins, amino acids, hydroxy acids such as lactic acid etc. Chemical engg. aspects realated to fermentation
Gene therapy: methods and applications.
Monoclonal antibodies, insulin, interferons, enkephalins, angiotensin analogues and other peptides.


Quick Reply
Your Username: Click here to log in

Message:
Options



All times are GMT +5. The time now is 10:44 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
Content Relevant URLs by vBSEO 3.6.0

1 2 3 4 5 6 7 8