#1




SGBAU BSC Final Syllabus
I am a student of the BSC Final year course at Sant Gadge Baba Amravati University (SGBAU) . I lost my syllabus any where . will you please tell how I can download the BSC Final year course syllabus from website of the SGBAU.

Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
SGBAU B.Com Final Year Result  Unregistered  General Discussion  2  March 2nd, 2017 01:38 PM 
B.Com Syllabus SGBAU  Unregistered  General Discussion  2  February 15th, 2017 11:16 AM 
SGBAU BCOM Final Result  Unregistered  General Discussion  1  July 14th, 2016 10:17 AM 
SGBAU LLB Syllabus  Unregistered  General Discussion  1  May 5th, 2016 05:25 PM 
SGBAU MBA Syllabus  Unregistered  General Discussion  1  February 8th, 2016 08:50 AM 
M.com syllabus SGBAU  Unregistered  General Discussion  1  January 30th, 2016 05:49 PM 
SGBAU 4th Sem Syllabus  Unregistered  General Discussion  1  January 18th, 2016 01:36 PM 
SGBAU Syllabus M.A. English  Unregistered  General Discussion  0  September 3rd, 2015 11:46 AM 
SGBAU Pat Exam Syllabus  Unregistered  General Discussion  0  June 19th, 2015 11:45 AM 
SGBAU BA final result  Unregistered  General Discussion  0  June 18th, 2015 03:46 PM 
SGBAU Syllabus For BCA  Unregistered  General Discussion  0  June 10th, 2015 05:07 PM 
SGBAU M Sc Chemistry Syllabus  Unregistered  General Discussion  0  May 21st, 2015 11:52 AM 
Msc Syllabus SGBAU  Unregistered  General Discussion  0  May 19th, 2015 09:30 AM 
SGBAU BSC Final Time Table  Unregistered  General Discussion  0  April 20th, 2015 10:30 AM 
SGBAU syllabus15  Unregistered  General Discussion  0  April 18th, 2015 11:43 AM 
#3




Re: SGBAU BSC Final Syllabus
Ok, I am providing you the syllabus of B.Sc Final year of Sant Gadge Baba Amravati University
SGBAU B.Sc Final year Syllabus Semester V Sr.No. Subject 1 Mathematics (Paper IX) 2 Mathematics (Paper X) 3 Science subjects excluding Mathematics Semester VI Sr.No. Subject 1 Mathematics (Paper XI) 2 Mathematics (Paper XII) 3 Science subjects excluding Mathematics 5S Mathematics  Paper – IX (Analysis) Unit I : Riemann Integral. Integrability of continuous and monotonic functions. The fundamental theorem of integral calculus. Mean value theorems of integral calculus. Improper integrals and their convergence. Comparison and limit tests . Unit II : Continuity and differentiability of complex functions. Analytic functions. CauchyRiemann equations. Harmonic and Conjugate functions. Milne Thompson method Unit III : Elementary functions Mapping by elementary functions. Mobius transformations. Fixed points. Cross ratio. Inverse points and critical points. Conformal mappings. Unit IV : Metric Spaces :Countable and uncountable sets. Definition & examples of metric spaces. Neighbourhoods. Limit points. Interior points. Open and closed sets. Closure, Interior & boundary points. Subspace of a metric space. Cauchy sequences. Completeness. Cantor’s intersection theorem. Baire category theorem. Unit V : Compactness. Connectedness. Limit of functions. Uniform continuous functions. Continuity and compactness. Continuity and connectedness. Reference Books : 1. R. R. Goldberg:Methods of Real Analysis, Oxford IBH publishing Co. New Delhi, 1970. 2. T. M. Karade, J. N. Salunke, K. S. Adhav, M. S. Bendre : Lectures on Analysis, Sonu Nilu Publication, Nagpur. 3. Walter Rudin: Principles of Mathematical Analysis, International students edition (Third edition ) 4. T. M. Apostol :Mathematical Analysis, Narosa Publishing House, New Delhi, 1985., 5. S. Lang : Undergraduate Analysis, SpringerVerlag New York, 1983. 6. D. Somasundaram & B. Choudhari : A First Course in Mathematical Analysis, New Delhi. 1997. 7. Shanti Narayan : A Course of Mathematical Analysis, S. Chand & Co., New Delhi. 8. P. K. Jain & S. K. Kaushik : An Introduction to Real Analysis, S. Chand & Co. New Delhi, 2000. 9. R. V. Churchiln and J.W.Brown, Complex Variables and Applications, 5th Edition, McGraw Hill, New York,1990 10. Mark J Ablowitz and : A.S. Fokas, Complex Variable Introduction and Application ,Cambridge University Press ,South Asian Edition ,1998. 11. Shanti Narayan : Theory of functions of Complex Variable,,S.Chand and Co. New Delhi. 12. E.T.Coption,:Metric Spaces, Cambridge University Press ,1968. 13. P.K.Jain and K.Ahmed ,:Metric Spaces ,Narosa Publishing House, New Delhi 1996. 14. G.F.Simmons :Introduction to Topology and Modern Analysis, McGraw Hill, New York,1963 For complete syllabus here is the attachment Contact Sant Gadge Baba Amravati University Camp Area, Near Tapovan Gate, Amravati, Maharashtra 444602 
#4




Quote:
