Go Back   2017 2018 EduVark > Education Discussion > General Discussion

  #1  
Old August 13th, 2014, 05:29 PM
Unregistered
Guest User
 
Posts: n/a
Default Time to start preparation for the exam of Graduate Aptitude Test in Engineering

I want to give the exam of Graduate Aptitude Test in Engineering and for that I want to get the details of time to start preparation for the exam of Graduate Aptitude Test in Engineering so can you provide me that?
Reply With Quote Quick reply to this message
Have a Facebook Account? Ask your Question Here
  #2  
Old August 14th, 2014, 09:33 AM
Super Moderator
 
Join Date: Mar 2012
Posts: 21,952
Default Re: Time to start preparation for the exam of Graduate Aptitude Test in Engineering

As you want to get the details of time to start preparation for the exam of Graduate Aptitude Test in Engineering so here it is for you:

According to me you must start 6 months before the exam

Most important tip for you that firstly make the time table and just stick to that time table

Candidates must have their basics covered and cleared

Candidates must solve previous year question pap[ers as much as they can

Candidates must refer reference books

Here for your reference I am giving you the syllabus of GATE ECE:

ENGINEERING MATHEMATICS


Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Greenís theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchyís and Eulerís equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables: Analytic functions, Cauchyís integral theorem and integral formula, Taylorís and Laurentí series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson,Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations.

Transform Theory: Fourier transform,Laplace transform, Z-transform.

ELECTRONICS AND COMMUNICATION ENGINEERING

Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Nortonís maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations usingLaplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.

Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers.p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.

Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS. Simple diode circuits, clipping, clamping, rectifier.Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power. Frequency response of amplifiers.Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations.Function generators and wave-shaping circuits, 555 Timers. Power supplies.

Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.

Signals and Systems: Definitions and properties ofLaplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.

Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.

Communications: Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.

Electromagnetics: Elements of vector calculus: divergence and curl; Gaussí and Stokesí theorems, Maxwellís equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.
Reply With Quote Quick reply to this message
Sponsored Links




















Reply

Similar Threads
Thread
Number of attempts which are allowed for thr exam of Graduate Aptitude Test in Engineering
List of reference books for Graduate Aptitude Test in Engineering ECE exam
Will I be able to get a job after the exam of Graduate Aptitude Test in Engineering?
Graduate Aptitude Test in Engineering exam dates
Appropriate time when to start preparation for the UPSC Civil Services Exam
Graduate Aptitude Test in Engineering exam pattern of Mechanical Engineering (ME)
Right time to start the preparation for TANCET exam
Reference books for the exam of Graduate Aptitude Test in Engineering of Mechanical Engineering
How many attempts are allowed for the exam of Graduate Aptitude Test in Engineering
Right time to start preparation for GATE exam
List of reference books for the exam of Graduate Aptitude Test in Engineering of CS
Graduate Aptitude Test in Engineering (GATE) Exam
Eligibility for the exam of Graduate Aptitude Test in Engineering
Tips for the exam of Graduate Aptitude Test in Engineering
Graduate Aptitude Test in Engineering Exam for Computer Science Engineering question


Bookmarks

Quick Reply
Your Username: Click here to log in

Message:
Options

Forum Jump


All times are GMT +5.5. The time now is 12:29 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2017, vBulletin Solutions, Inc.
Content Relevant URLs by vBSEO 3.6.0

1 2 3